Biologic and Small Molecule Therapy in Atopic Dermatitis
Abstract
:1. Introduction
2. Current Therapies
3. Phosphodiesterase 4 Inhibitors
3.1. Crisaborole
3.2. Roflumilast
3.3. Difamilast
4. Overview of Biologics
4.1. Dupilumab
4.2. Tralokinumab
4.3. Lebrikizumab
4.4. Nemolizumab
4.5. Rocatinlimab
5. Overview of Small Molecules
5.1. Janus Kinase Inhibitors
5.1.1. Baricitinib
5.1.2. Upadacitinib
5.1.3. Ruxolitinib
5.1.4. Abrocitinib
6. TRPV1 Antagonist
7. Aryl Hydrocarbon Receptor Antagonist
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ständer, S. Atopic Dermatitis. N. Engl. J. Med. 2021, 384, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Berke, R.; Singh, A.; Guralnick, M. Atopic Dermatitis: An Overview. Atopic Dermat. 2012, 86. [Google Scholar]
- Gooderham, M.J.; Bissonnette, R.; Grewal, P.; Lansang, P.; Papp, K.A.; Hong, C. Approach to the Assessment and Management of Adult Patients With Atopic Dermatitis: A Consensus Document. Section II: Tools for Assessing the Severity of Atopic Dermatitis. J. Cutan. Med. Surg. 2018, 22, 10S–16S. [Google Scholar] [CrossRef] [PubMed]
- Emollient Enhancement of the Skin Barrier from Birth Offers Effective Atopic Dermatitis Prevention. 2014. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180007/#:~:text=10.1016/j.jaci.2014.08.005 (accessed on 16 July 2024).
- Xu, D.; Stengel, R.; Sun, P. Effectiveness of Emollients in the Prevention of Atopic Dermatitis in Infants: A Meta-Analysis. Dermatology 2022, 238, 711–716. [Google Scholar] [CrossRef]
- Hon, K.L.; Kung, J.S.C.; Ng, W.G.G.; Leung, T.F. Emollient treatment of atopic dermatitis: Latest evidence and clinical considerations. Drugs Context 2018, 7, 212530. [Google Scholar] [CrossRef]
- Hodgens, A.; Sharman, T. Corticosteroids. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK554612/ (accessed on 8 April 2024).
- Harvey, J.; Lax, S.J.; Lowe, A.; Santer, M.; Lawton, S.; Langan, S.M.; Roberts, A.; Stuart, B.; Williams, H.C.; Thomas, K.S. The long-term safety of topical corticosteroids in atopic dermatitis: A systematic review. Skin Health Dis. 2023, 3, e268. [Google Scholar] [CrossRef] [PubMed]
- Nygaard, U.; Deleuran, M.; Vestergaard, C. Emerging Treatment Options in Atopic Dermatitis: Topical Therapies. Dermatology 2017, 233, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.B.; Nadkarni, N.J.; Patil, S.P.; Godse, K.V.; Gautam, M.; Agarwal, S. Topical corticosteroids in dermatology. Indian J. Dermatol. Venereol. Leprol. 2016, 82, 371. [Google Scholar] [CrossRef] [PubMed]
- Barta, K.; Fonacier, L.S.; Hart, M.; Lio, P.; Tullos, K.; Sheary, B.; Winders, T.A. Corticosteroid exposure and cumulative effects in patients with eczema: Results from a patient survey. Ann. Allergy. Asthma. Immunol. 2023, 130, 93–99.e10. [Google Scholar] [CrossRef]
- Kim, K.; Kim, M.; Rhee, E.; Lee, M.-H.; Yang, H.-J.; Park, S.; Kim, H.S. Efficacy and Safety of Low-Dose Cyclosporine Relative to Immunomodulatory Drugs Used in Atopic Dermatitis: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 1390. [Google Scholar] [CrossRef]
- Khattri, S.; Shemer, A.; Rozenblit, M.; Suárez-Fariñas, M.; Dhingra, N.; Czarnowicki, T.; Finney, R.; Gilleaudeau, P.; Sullivan-Whalen, M.; Zheng, X.; et al. Cyclosporine A in Atopic Dermatitis Modulates activated inflammatory pathways and reverses epidermal pathology. J. Allergy Clin. Immunol. 2014, 133, 1626–1634. [Google Scholar] [CrossRef]
- Manabe, T.; Park, H.; Minami, T. Calcineurin-nuclear factor for activated T cells (NFAT) signaling in pathophysiology of wound healing. Inflamm. Regen. 2021, 41, 26. [Google Scholar] [CrossRef] [PubMed]
- Segal, A.O.; Ellis, A.K.; Kim, H.L. CSACI position statement: Safety of topical calcineurin inhibitors in the management of atopic dermatitis in children and adults. Allergy Asthma Clin. Immunol. 2013, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Braschi, É.; Moe, S.S. Topical calcineurin inhibitors for atopic dermatitis. Can. Fam. Phys. 2023, 69, 773–774. [Google Scholar] [CrossRef] [PubMed]
- Patrizi, A.; Raone, B.; Ravaioli, G.M. Management of atopic dermatitis: Safety and efficacy of phototherapy. Clin. Cosmet. Investig. Dermatol. 2015, 8, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Jekler, J.; Larkö, O. UVB phototherapy of atopic dermatitis. Br. J. Dermatol. 1988, 119, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.M.R.; Drucker, A.M.; Alikhan, A.; Bercovitch, L.; Cohen, D.E.; Darr, J.M.; Eichenfield, L.F.; Frazer-Green, L.; Paller, A.S.; Schwarzenberger, K.; et al. Guidelines of care for the management of atopic dermatitis in adults with phototherapy and systemic therapies. J. Am. Acad. Dermatol. 2024, 90, e43–e56. [Google Scholar] [CrossRef]
- Lee, J.H.; Yun, S.-J.; Lee, J.-B.; Lee, S.-C. Therapeutic Efficacy and Safety of Methotrexate in Moderate-to-Severe Atopic Dermatitis: A Retrospective Study of Korean Patients at Tertiary Referral Hospital. Ann. Dermatol. 2020, 32, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Methotrexate. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012. Available online: http://www.ncbi.nlm.nih.gov/books/NBK548219/ (accessed on 5 July 2024).
- Napolitano, M.; Marasca, C.; Fabbrocini, G.; Patruno, C. Adult atopic dermatitis: New and emerging therapies. Expert Rev. Clin. Pharmacol. 2018, 11, 867–878. [Google Scholar] [CrossRef]
- Silverberg, J.I.; Nelson, D.B.; Yosipovitch, G. Addressing treatment challenges in atopic dermatitis with novel topical therapies. J. Dermatol. Treat. 2016, 27, 568–576. [Google Scholar] [CrossRef]
- Balakirski, G.; Novak, N. Novel therapies and the potential for a personalized approach to atopic dermatitis. Curr. Opin. Allergy Clin. Immunol. 2021, 21, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Purohit, V.; Riley, S.; Tan, H.; Ports, W.C. Predictors of Systemic Exposure to Topical Crisaborole: A Nonlinear Regression Analysis. J. Clin. Pharmacol. 2020, 60, 1344–1354. [Google Scholar] [CrossRef] [PubMed]
- Zane, L.T.; Kircik, L.; Call, R.; Tschen, E.; Draelos, Z.D.; Chanda, S.; Van Syoc, M.; Hebert, A.A. Crisaborole Topical Ointment, 2% in Patients Ages 2 to 17 Years with Atopic Dermatitis: A Phase 1b, Open-Label, Maximal-Use Systemic Exposure Study. Pediatr. Dermatol. 2016, 33, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Schlessinger, J.; Shepard, J.S.; Gower, R.; Su, J.C.; Lynde, C.; Cha, A.; Ports, W.C.; Purohit, V.; Takiya, L.; Werth, J.L.; et al. Safety, Effectiveness, and Pharmacokinetics of Crisaborole in Infants Aged 3 to <24 Months with Mild-to-Moderate Atopic Dermatitis: A Phase IV Open-Label Study (CrisADe CARE 1). Am. J. Clin. Dermatol. 2020, 21, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Eichenfield, L.F.; Call, R.S.; Forsha, D.W.; Fowler, J.J.; Hebert, A.A.; Spellman, M.; Stein Gold, L.F.; Van Syoc, M.; Zane, L.T.; Tschen, E. Long-term safety of crisaborole ointment 2% in children and adults with mild to moderate atopic dermatitis. J. Am. Acad. Dermatol. 2017, 77, 641–649.e5. [Google Scholar] [CrossRef] [PubMed]
- Pao-Ling Lin, C.; Gordon, S.; Her, M.J.; Rosmarin, D. A retrospective study: Application site pain with the use of crisaborole, a topical phosphodiesterase 4 inhibitor. J. Am. Acad. Dermatol. 2019, 80, 1451–1453. [Google Scholar] [CrossRef]
- Crocetti, L.; Floresta, G.; Cilibrizzi, A.; Giovannoni, M.P. An Overview of PDE4 Inhibitors in Clinical Trials: 2010 to Early 2022. Molecules 2022, 27, 4964. [Google Scholar] [CrossRef] [PubMed]
- Weidinger, S.; Beck, L.A.; Bieber, T.; Kabashima, K.; Irvine, A.D. Atopic dermatitis. Nat. Rev. Dis. Primer 2018, 4, 1. [Google Scholar] [CrossRef]
- Renert-Yuval, Y.; Guttman-Yassky, E. What’s New in Atopic Dermatitis. Dermatol. Clin. 2019, 37, 205–213. [Google Scholar] [CrossRef]
- Simpson, E.L.; Yosipovitch, G.; Bushmakin, A.G.; Cappelleri, J.C.; Luger, T.; Stander, S.; Tom, W.L.; Ports, W.C.; Zielinski, M.A.; Tallman, A.M.; et al. Direct and Indirect Effects of Crisaborole Ointment on Quality of Life in Patients with Atopic Dermatitis: A Mediation Analysis. Acta Derm. Venereol. 2019, 99, 756–761. [Google Scholar] [CrossRef]
- Aprile, S.; Serafini, M.; Pirali, T. Soft drugs for dermatological applications: Recent trends. Drug Discov. Today 2019, 24, 2234–2246. [Google Scholar] [CrossRef]
- Saeki, H.; Ito, K.; Yokota, D.; Tsubouchi, H. Difamilast ointment in adult patients with atopic dermatitis: A phase 3 randomized, double-blind, vehicle-controlled trial. J. Am. Acad. Dermatol. 2022, 86, 607–614. [Google Scholar] [CrossRef]
- Saeki, H.; Baba, N.; Ito, K.; Yokota, D.; Tsubouchi, H. Difamilast, a selective phosphodiesterase 4 inhibitor, ointment in paediatric patients with atopic dermatitis: A phase III randomized double-blind, vehicle-controlled trial. Br. J. Dermatol. 2022, 186, 40–49. [Google Scholar] [CrossRef]
- Hamilton, J.D.; Suárez-Fariñas, M.; Dhingra, N.; Cardinale, I.; Li, X.; Kostic, A.; Ming, J.E.; Radin, A.R.; Krueger, J.G.; Graham, N.; et al. Dupilumab improves the molecular signature in skin of patients with moderate-to-severe atopic dermatitis. J. Allergy Clin. Immunol. 2014, 134, 1293–1300. [Google Scholar] [CrossRef]
- Ratchataswan, T.; Banzon, T.M.; Thyssen, J.P.; Weidinger, S.; Guttman-Yassky, E.; Phipatanakul, W. Biologics for Treatment of Atopic Dermatitis: Current Status and Future Prospect. J. Allergy Clin. Immunol. Pract. 2021, 9, 1053–1065. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.L.; Bieber, T.; Guttman-Yassky, E.; Beck, L.A.; Blauvelt, A.; Cork, M.J.; Silverberg, J.I.; Deleuran, M.; Kataoka, Y.; Lacour, J.-P.; et al. Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. N. Engl. J. Med. 2016, 375, 2335–2348. [Google Scholar] [CrossRef] [PubMed]
- Blauvelt, A.; de Bruin-Weller, M.; Gooderham, M.; Cather, J.C.; Weisman, J.; Pariser, D.; Simpson, E.L.; Papp, K.A.; Hong, H.C.-H.; Rubel, D.; et al. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): A 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial. Lancet 2017, 389, 2287–2303. [Google Scholar] [CrossRef]
- Simpson, E.L.; Paller, A.S.; Siegfried, E.C.; Boguniewicz, M.; Sher, L.; Gooderham, M.J.; Beck, L.A.; Guttman-Yassky, E.; Pariser, D.; Blauvelt, A.; et al. Efficacy and Safety of Dupilumab in Adolescents With Uncontrolled Moderate to Severe Atopic Dermatitis: A Phase 3 Randomized Clinical Trial. JAMA Dermatol. 2020, 156, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Neagu, N.; Dianzani, C.; Avallone, G.; Dell’Aquila, C.; Morariu, S.-H.; Zalaudek, I.; Conforti, C. Dupilumab ocular side effects in patients with atopic dermatitis: A systematic review. J. Eur. Acad. Dermatol. Venereol. JEADV 2022, 36, 820–835. [Google Scholar] [CrossRef]
- Narla, S.; Silverberg, J.I.; Simpson, E.L. Management of inadequate response and adverse effects to dupilumab in atopic dermatitis. J. Am. Acad. Dermatol. 2022, 86, 628–636. [Google Scholar] [CrossRef]
- Blair, H.A. Tralokinumab in Atopic Dermatitis: A Profile of Its Use. Clin. Drug Investig. 2022, 42, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Popovic, B.; Breed, J.; Rees, D.G.; Gardener, M.J.; Vinall, L.M.K.; Kemp, B.; Spooner, J.; Keen, J.; Minter, R.; Uddin, F.; et al. Structural Characterisation Reveals Mechanism of IL-13-Neutralising Monoclonal Antibody Tralokinumab as Inhibition of Binding to IL-13Rα1 and IL-13Rα2. J. Mol. Biol. 2017, 429, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Wollenberg, A.; Blauvelt, A.; Guttman-Yassky, E.; Worm, M.; Lynde, C.; Lacour, J.-P.; Spelman, L.; Katoh, N.; Saeki, H.; Poulin, Y.; et al. Tralokinumab for moderate-to-severe atopic dermatitis: Results from two 52-week, randomized, double-blind, multicentre, placebo-controlled phase III trials (ECZTRA 1 and ECZTRA 2). Br. J. Dermatol. 2021, 184, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Paller, A.S.; Flohr, C.; Cork, M.; Bewley, A.; Blauvelt, A.; Hong, H.C.; Imafuku, S.; Schuttelaar, M.L.A.; Simpson, E.L.; Soong, W.; et al. Efficacy and Safety of Tralokinumab in Adolescents With Moderate to Severe Atopic Dermatitis: The Phase 3 ECZTRA 6 Randomized Clinical Trial. JAMA Dermatol. 2023, 159, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.L.; Merola, J.F.; Silverberg, J.I.; Reich, K.; Warren, R.B.; Staumont-Sallé, D.; Girolomoni, G.; Papp, K.; de Bruin-Weller, M.; Thyssen, J.P.; et al. Safety of tralokinumab in adult patients with moderate-to-severe atopic dermatitis: Pooled analysis of five randomized, double-blind, placebo-controlled phase II and phase III trials*. Br. J. Dermatol. 2022, 187, 888–899. [Google Scholar] [CrossRef]
- Labib, A.; Ju, T.; Yosipovitch, G. Managing Atopic Dermatitis with Lebrikizumab—The Evidence to Date. Clin. Cosmet. Investig. Dermatol. 2022, 15, 1065–1072. [Google Scholar] [CrossRef]
- Silverberg, J.I.; Guttman-Yassky, E.; Thaçi, D.; Irvine, A.D.; Stein Gold, L.; Blauvelt, A.; Simpson, E.L.; Chu, C.-Y.; Liu, Z.; Gontijo Lima, R.; et al. Two Phase 3 Trials of Lebrikizumab for Moderate-to-Severe Atopic Dermatitis. N. Engl. J. Med. 2023, 388, 1080–1091. [Google Scholar] [CrossRef] [PubMed]
- Kabashima, K.; Matsumura, T.; Komazaki, H.; Kawashima, M. Trial of Nemolizumab and Topical Agents for Atopic Dermatitis with Pruritus. N. Engl. J. Med. 2020, 383, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, J.I.; Pinter, A.; Pulka, G.; Poulin, Y.; Bouaziz, J.-D.; Wollenberg, A.; Murrell, D.F.; Alexis, A.; Lindsey, L.; Ahmad, F.; et al. Phase 2B randomized study of nemolizumab in adults with moderate-to-severe atopic dermatitis and severe pruritus. J. Allergy Clin. Immunol. 2020, 145, 173–182. [Google Scholar] [CrossRef]
- Ruzicka, T.; Hanifin, J.M.; Furue, M.; Pulka, G.; Mlynarczyk, I.; Wollenberg, A.; Galus, R.; Etoh, T.; Mihara, R.; Yoshida, H.; et al. Anti–Interleukin-31 Receptor A Antibody for Atopic Dermatitis. N. Engl. J. Med. 2017, 376, 826–835. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Simpson, E.L.; Reich, K.; Kabashima, K.; Igawa, K.; Suzuki, T.; Mano, H.; Matsui, T.; Esfandiari, E.; Furue, M. An anti-OX40 antibody to treat moderate-to-severe atopic dermatitis: A multicentre, double-blind, placebo-controlled phase 2b study. Lancet 2023, 401, 204–214. [Google Scholar] [CrossRef]
- Lé, A.M.; Torres, T. OX40-OX40L Inhibition for the Treatment of Atopic Dermatitis—Focus on Rocatinlimab and Amlitelimab. Pharmaceutics 2022, 14, 2753. [Google Scholar] [CrossRef] [PubMed]
- Damsky, W.; King, B.A. JAK inhibitors in dermatology: The promise of a new drug class. J. Am. Acad. Dermatol. 2017, 76, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Amano, W.; Nakajima, S.; Kunugi, H.; Numata, Y.; Kitoh, A.; Egawa, G.; Dainichi, T.; Honda, T.; Otsuka, A.; Kimoto, Y.; et al. The Janus kinase inhibitor JTE-052 improves skin barrier function through suppressing signal transducer and activator of transcription 3 signaling. J. Allergy Clin. Immunol. 2015, 136, 667–677.e7. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, D.M.; Bonelli, M.; Gadina, M.; O’Shea, J.J. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat. Rev. Rheumatol. 2016, 12, 25–36. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, J.J.; Schwartz, D.M.; Villarino, A.V.; Gadina, M.; McInnes, I.B.; Laurence, A. The JAK-STAT pathway: Impact on human disease and therapeutic intervention. Annu. Rev. Med. 2015, 66, 311–328. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.Y.M.; Guttman-Yassky, E. Deciphering the complexities of atopic dermatitis: Shifting paradigms in treatment approaches. J. Allergy Clin. Immunol. 2014, 134, 769–779. [Google Scholar] [CrossRef]
- Torrelo, A.; Rewerska, B.; Galimberti, M.; Paller, A.; Yang, C.-Y.; Prakash, A.; Zhu, D.; Pontes Filho, M.A.G.; Wu, W.-S.; Eichenfield, L.F. Efficacy and safety of baricitinib in combination with topical corticosteroids in paediatric patients with moderate-to-severe atopic dermatitis with an inadequate response to topical corticosteroids: Results from a phase III, randomized, double-blind, placebo-controlled study (BREEZE-AD PEDS). Br. J. Dermatol. 2023, 189, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Bieber, T.; Reich, K.; Paul, C.; Tsunemi, Y.; Augustin, M.; Lacour, J.-P.; Ghislain, P.-D.; Dutronc, Y.; Liao, R.; Yang, F.E.; et al. Efficacy and safety of baricitinib in combination with topical corticosteroids in patients with moderate-to-severe atopic dermatitis with inadequate response, intolerance or contraindication to ciclosporin: Results from a randomized, placebo-controlled, phase III clinical trial (BREEZE-AD4)*. Br. J. Dermatol. 2022, 187, 338–352. [Google Scholar] [CrossRef]
- Reich, K.; Teixeira, H.D.; de Bruin-Weller, M.; Bieber, T.; Soong, W.; Kabashima, K.; Werfel, T.; Zeng, J.; Huang, X.; Hu, X.; et al. Safety and efficacy of upadacitinib in combination with topical corticosteroids in adolescents and adults with moderate-to-severe atopic dermatitis (AD Up): Results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2021, 397, 2169–2181. [Google Scholar] [CrossRef]
- Papp, K.; Szepietowski, J.C.; Kircik, L.; Toth, D.; Eichenfield, L.F.; Leung, D.Y.M.; Forman, S.B.; Venturanza, M.E.; Sun, K.; Kuligowski, M.E.; et al. Efficacy and safety of ruxolitinib cream for the treatment of atopic dermatitis: Results from 2 phase 3, randomized, double-blind studies. J. Am. Acad. Dermatol. 2021, 85, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, J.I.; Simpson, E.L.; Thyssen, J.P.; Gooderham, M.; Chan, G.; Feeney, C.; Biswas, P.; Valdez, H.; DiBonaventura, M.; Nduaka, C.; et al. Efficacy and Safety of Abrocitinib in Patients With Moderate-to-Severe Atopic Dermatitis: A Randomized Clinical Trial. JAMA Dermatol. 2020, 156, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.L.; Sinclair, R.; Forman, S.; Wollenberg, A.; Aschoff, R.; Cork, M.; Bieber, T.; Thyssen, J.P.; Yosipovitch, G.; Flohr, C.; et al. Efficacy and safety of abrocitinib in adults and adolescents with moderate-to-severe atopic dermatitis (JADE MONO-1): A multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet 2020, 396, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Park, C.W.; Kim, B.J.; Lee, Y.W.; Won, C.; Park, C.O.; Chung, B.Y.; Lee, D.H.; Jung, K.; Nam, H.-J.; Choi, G.; et al. Asivatrep, a TRPV1 antagonist, for the topical treatment of atopic dermatitis: Phase 3, randomized, vehicle-controlled study (CAPTAIN-AD). J. Allergy Clin. Immunol. 2022, 149, 1340–1347.e4. [Google Scholar] [CrossRef] [PubMed]
- Negishi, T.; Kato, Y.; Ooneda, O.; Mimura, J.; Takada, T.; Mochizuki, H.; Yamamoto, M.; Fujii-Kuriyama, Y.; Furusako, S. Effects of aryl hydrocarbon receptor signaling on the modulation of TH1/TH2 balance. J. Immunol. 2005, 175, 7348–7356. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.H.; Jayawickreme, C.; Rickard, D.J.; Nicodeme, E.; Bui, T.; Simmons, C.; Coquery, C.M.; Neil, J.; Pryor, W.M.; Mayhew, D.; et al. Tapinarof Is a Natural AhR Agonist that Resolves Skin Inflammation in Mice and Humans. J. Investig. Dermatol. 2017, 137, 2110–2119. [Google Scholar] [CrossRef] [PubMed]
- Furue, M.; Tsuji, G.; Mitoma, C.; Nakahara, T.; Chiba, T.; Morino-Koga, S.; Uchi, H. Gene regulation of filaggrin and other skin barrier proteins via aryl hydrocarbon receptor. J. Dermatol. Sci. 2015, 80, 83–88. [Google Scholar] [CrossRef]
- Paller, A.S.; Stein Gold, L.; Soung, J.; Tallman, A.M.; Rubenstein, D.S.; Gooderham, M. Efficacy and patient-reported outcomes from a phase 2b, randomized clinical trial of tapinarof cream for the treatment of adolescents and adults with atopic dermatitis. J. Am. Acad. Dermatol. 2021, 84, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Peppers, J.; Paller, A.S.; Maeda-Chubachi, T.; Wu, S.; Robbins, K.; Gallagher, K.; Kraus, J.E. A phase 2, randomized dose-finding study of tapinarof (GSK2894512 cream) for the treatment of atopic dermatitis. J. Am. Acad. Dermatol. 2019, 80, 89–98.e3. [Google Scholar] [CrossRef]
- Lovell, K.; Patel, N.; Rao, S.; Strowd, L.C. The Future of Atopic Dermatitis Treatment. In Management of Atopic Dermatitis: Methods and Challenges; Feldman, S.R., Strowd, L.C., Lovell, K.K., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 227–244. [Google Scholar] [CrossRef]
- Locker, J.; Serrage, H.; Ledder, R.G.; Deshmukh, S.; O’Neill, C.A.; McBain, A.J. Microbiological insights and dermatological applications of live biotherapeutic products. J. Appl. Microbiol. 2024, 135, lxae181. [Google Scholar] [CrossRef]
Therapeutic | Mechanism of Action | Efficacy Summary | Key Studies |
---|---|---|---|
Dupilumab | Inhibits IL-4 and IL-13 signaling through competitive binding to the shared subunit of the IL-4 receptor, leading to gene expression changes that normalize skin condition. | +++ (High efficacy demonstrated in numerous randomized control trials with significant improvements in IGA and EASI scores, along with patient-reported outcomes. Comparable effectiveness between dosing frequencies.) | SOLO 1 and SOLO 2 [38,39] LIBERTY AD CHRONOS Trial [40] LIBERTY AD ADOL Trial [41] |
Tralokinumab | Targets and binds strongly to IL-13, inhibiting the inflammatory processes associated with AD. | ++ (Improvement in IGA scores and EASI-75 in phase 3 trials. Maintenance of efficacy up to week 52 demonstrated, with AEs including infections and headaches.) | ECZTRA 1 [46] ECZTRA 2 [46] ECZTRA 6 [47] |
Lebrikizumab | Directly targets IL-13, interrupting the signaling pathway responsible for inflammation and potentially restoring the skin’s natural barrier function. | +++ (Significant improvement in IGA scores and EASI-75 responses in trials. High efficacy in reducing pruritus and improving sleep among patients, with noted AEs such as conjunctivitis and dermatitis exacerbation.) | Advocate1 Trial [50] Advocate 2 Trial [50] |
Nemolizumab | Targets and inhibits IL-31RA, disrupting the IL-31 signaling pathway associated with the itch-scratch cycle in AD. | ++ (Significant reductions in pruritus scores and improvements in skin lesions and disease severity reported. Mild-to-moderate AEs noted, including injection site reactions and upper respiratory tract infections.) | XCIMA Trial [53] |
Rocatinlimab | Inhibits and reduces OX40 pathogenic T cells responsible for AD inflammatory responses by blocking OX40. | ++ (Significant reductions in EASI score observed in phase IIb study, with progressive and maintained improvements post-treatment. Common AEs include pyrexia, nasopharyngitis, and chills.) | [54] |
Janus Kinase Inhibitors (JAKi) | Inhibits JAK-STAT signaling pathway, crucial for the cytokine-mediated communication involved in AD. | +++ (Significant improvement in AD symptoms and disease measures in clinical trials, highlighting efficacy in both pediatric and adult populations with manageable safety profiles.) | BREEZE-AD PEDS Clinical Trial [61] |
Baricitinib | BREEZE-AD4 Trial [62] | ||
Upadacitinib | The AD Up Trial [63] | ||
Ruxolitinib | The TRuE-AD Trial [64] | ||
Abroctinib | The JADE MONO 1 and JADE MONO 2 [65,66] | ||
Crisaborole | Selective inhibitor of PDE4, reducing inflammation by inhibiting the breakdown of cyclic adenosine monophosphate. | ++ (Effective in reducing AD symptoms with a good safety profile, primarily involving application site reactions. Demonstrated efficacy in both adult and pediatric patients.) | CrisADe CARE 1 [27] AD-301 Trial [28] AD-302 Trial [28] [23,26,29] |
Roflumilast | Second-generation PDE4 inhibitor, reducing inflammation with a reduced risk of causing emesis compared to predecessors. | + (Showed minimal effectiveness in AD treatment in clinical trials, with AEs including application site pain and gastrointestinal symptoms.) | [22] |
Difamilast | PDE4 inhibitor that reduces cytokine production associated with inflammatory conditions like AD. | +++ (Significant improvements in AD severity and symptoms with a well-tolerated safety profile in both adult and pediatric patients.) | [35,36] |
Asivatrep (TRPV1 Antagonist) | Inhibits TRPV1, reducing pruritus and inflammation associated with AD. | ++ (Demonstrated effectiveness in improving clinical signs and symptoms of AD with a well-tolerated safety profile.) | CAPTAIN-AD Trial [67] |
Tapinarof (Aryl Hydrocarbon Receptor Antagonist) | Modulates the aryl hydrocarbon receptor signaling pathways, reducing proinflammatory cytokine expression and oxidative stress. | ++ (Showed promising efficacy and safety in treating AD, with improvements in skin clarity and reduced inflammation in clinical trials.) | [71,72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shergill, M.; Bajwa, B.; Yilmaz, O.; Tailor, K.; Bouadi, N.; Mukovozov, I. Biologic and Small Molecule Therapy in Atopic Dermatitis. Biomedicines 2024, 12, 1841. https://doi.org/10.3390/biomedicines12081841
Shergill M, Bajwa B, Yilmaz O, Tailor K, Bouadi N, Mukovozov I. Biologic and Small Molecule Therapy in Atopic Dermatitis. Biomedicines. 2024; 12(8):1841. https://doi.org/10.3390/biomedicines12081841
Chicago/Turabian StyleShergill, Mahek, Barinder Bajwa, Orhan Yilmaz, Karishma Tailor, Naila Bouadi, and Ilya Mukovozov. 2024. "Biologic and Small Molecule Therapy in Atopic Dermatitis" Biomedicines 12, no. 8: 1841. https://doi.org/10.3390/biomedicines12081841
APA StyleShergill, M., Bajwa, B., Yilmaz, O., Tailor, K., Bouadi, N., & Mukovozov, I. (2024). Biologic and Small Molecule Therapy in Atopic Dermatitis. Biomedicines, 12(8), 1841. https://doi.org/10.3390/biomedicines12081841