Exploring Vitamin D Deficiency and IGF Axis Dynamics in Colorectal Adenomas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Blood Sample Collection and Laboratory Detection
2.3. Statistics
3. Results
3.1. Demographic Data
3.2. Serum Values of the IGF Axis and Vitamin D Metabolites in the Study Groups
3.3. Serum Correlations between IGF-1, IGFBP-3 and Vitamin D Metabolism
3.4. Serum Values of IGF-1, IGFBP-3 and Vitamin D Metabolites as Risk Factors for CRA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Serrano, D.; Bellerba, F.; Johansson, H.; Macis, D.; Aristarco, V.; Accornero, C.A.; Guerrieri-Gonzaga, A.; Trovato, C.M.; Zampino, M.G.; Salè, E.O.; et al. Vitamin D Supplementation and Adherence to World Cancer Research Fund (WCRF) Diet Recommendations for Colorectal Cancer Prevention: A Nested Prospective Cohort Study of a Phase II Randomized Trial. Biomedicines 2023, 11, 1766. [Google Scholar] [CrossRef] [PubMed]
- Vieth, R. Vitamin D Supplementation: Cholecalciferol, Calcifediol, and Calcitriol. Eur. J. Clin. Nutr. 2020, 74, 1493–1497. [Google Scholar] [CrossRef] [PubMed]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D Deficiency 2.0: An Update on the Current Status Worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Aguirre, J.; Balasubramanian, P.; Guevara-Aguirre, M.; Wei, M.; Madia, F.; Cheng, C.W.; Hwang, D.; Martin-Montalvo, A.; Saavedra, J.; Ingles, S.; et al. Growth Hormone Receptor Deficiency is Associated with a Major Reduction in Pro-Aging Signaling, Cancer, and Diabetes in Humans. Sci. Transl. Med. 2011, 3, 70ra13. [Google Scholar] [CrossRef]
- Ungvari, Z.; Csiszar, A. The Emerging Role of IGF-1 Deficiency in Cardiovascular Aging: Recent Advances. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67A, 599–610. [Google Scholar] [CrossRef]
- Pivonello, R.; Auriemma, R.S.; Grasso, L.F.S.; Pivonello, C.; Simeoli, C.; Patalano, R.; Galdiero, M.; Colao, A. Complications of Acromegaly: Cardiovascular, Respiratory and Metabolic Comorbidities. Pituitary 2017, 20, 46–62. [Google Scholar] [CrossRef]
- Zhong, W.; Wang, X.; Wang, Y.; Sun, G.; Zhang, J.; Li, Z. Obesity and Endocrine-Related Cancer: The Important Role of IGF-1. Front. Endocrinol. 2023, 14, 1093257. [Google Scholar] [CrossRef] [PubMed]
- Tarasiuk, A.; Mosińska, P.; Fichna, J. The Mechanisms Linking Obesity to Colon Cancer: An Overview. Obes. Res. Clin. Pract. 2018, 12, 251–259. [Google Scholar] [CrossRef]
- Gou, Z.; Li, F.; Qiao, F.; Maimaititusvn, G.; Liu, F. Causal Associations Between Insulin-Like Growth Factor 1 and Vitamin D Levels: A Two-Sample Bidirectional Mendelian Randomization Study. Front. Nutr. 2023, 10, 1162442. [Google Scholar] [CrossRef]
- Moreno-Santos, I.; Castellano-Castillo, D.; Lara, M.F.; Fernandez-Garcia, J.C.; Tinahones, F.J.; Macias-Gonzalez, M. IGFBP-3 Interacts with the Vitamin D Receptor in Insulin Signaling Associated with Obesity in Visceral Adipose Tissue. Int. J. Mol. Sci. 2017, 18, 2349. [Google Scholar] [CrossRef]
- Jorde, R.; Grimnes, G. Serum Cholecalciferol May Be a Better Marker of Vitamin D Status Than 25-Hydroxyvitamin D. Med. Hypotheses 2018, 111, 61–65. [Google Scholar] [CrossRef]
- Obadina, D.; Haider, H.; Micic, D.; Sakuraba, A. Older Age at First Screening Colonoscopy is Associated With an Increased Risk of Colorectal Adenomas and Cancer. J. Clin. Gastroenterol. 2023, 57, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.I.; Trikudanathan, G.; Feinn, R.; Anderson, J.C.; Nicholson, M.; Lowe, S.; Levine, J.B. Low Serum Vitamin D: A Surrogate Marker for Advanced Colon Adenoma? J. Clin. Gastroenterol. 2016, 50, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Yoo, M.Y.; Lee, J.; Chung, J.I.; Yeo, Y.; Cho, I.Y. The Association Between Serum Vitamin D Concentration and Colon Polyp: A Cross-Sectional Study Using Health Care Screening Database in a Tertiary Hospital in Korea. Korean J. Fam. Med. 2021, 42, 303–309. [Google Scholar] [CrossRef]
- Jacobs, E.T.; Hibler, E.A.; Lance, P.; Sardo, C.L.; Jurutka, P.W. Association Between Circulating Concentrations of 25(OH)D and Colorectal Adenoma: A Pooled Analysis. Int. J. Cancer 2013, 133, 2980–2988. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Kim, Y.H.; Cho, C.H.; Kim, S.H.; Lee, J.E. Circulating Levels of Vitamin D and Colorectal Adenoma: A Case-Control Study and a Meta-Analysis. World J. Gastroenterol. 2015, 21, 8868–8877. [Google Scholar] [CrossRef]
- Song, M.; Lee, I.M.; Manson, J.E.; Buring, J.E.; Dushkes, R.; Gordon, D.; Walter, J.; Wu, K.; Chan, A.T.; Ogino, S.; et al. No Association Between Vitamin D Supplementation and Risk of Colorectal Adenomas or Serrated Polyps in a Randomized Trial. Clin. Gastroenterol. Hepatol. 2021, 19, 128–135.e6. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, F.; Tang, J.; Jia, L.; Feng, Y.; Xu, P.; Faramand, A. Association Between Vitamin D Supplementation and Mortality: Systematic Review and Meta-Analysis. BMJ 2019, 366, l4673. [Google Scholar] [CrossRef]
- Bikle, D.D. Extraskeletal Actions of Vitamin D. Ann. N. Y. Acad. Sci. 2016, 1376, 29–52. [Google Scholar] [CrossRef]
- Medeiros, J.F.P.; de Oliveira Borges, M.V.; Soares, A.A.; dos Santos, J.C.; de Oliveira, A.B.B.; da Costa, C.H.B.; Cruz, M.S.; Bortolin, R.H.; de Freitas, R.C.C.; Dantas, P.M.S.; et al. The Impact of Vitamin D Supplementation on VDR Gene Expression and Body Composition in Monozygotic Twins: Randomized Controlled Trial. Sci. Rep. 2020, 10, 11943. [Google Scholar] [CrossRef]
- Gnagnarella, P.; Raimondi, S.; Aristarco, V.; Johansson, H.A.; Bellerba, F.; Corso, F.; Gandini, S. Vitamin D Receptor Polymorphisms and Cancer. Adv. Exp. Med. Biol. 2020, 1268, 53–114. [Google Scholar] [CrossRef] [PubMed]
- Sherlala, R.A.; Kammerer, C.M.; Kuipers, A.L.; Wojczynski, M.K.; Ukraintseva, S.V.; Feitosa, M.F.; Mengel-From, J.; Zmuda, J.M.; Minster, R.L. Relationship Between Serum IGF-1 and BMI Differs by Age. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 76, 1303–1308. [Google Scholar] [CrossRef] [PubMed]
- Janiak, A.; Oset, P.; Talar-Wojnarowska, R.; Kumor, A.; Małecka-Panas, E. Insulin, Insulin-Like Growth Factor 1 and Insulin-Like Growth Factor Binding Protein 3 Serum Concentrations in Patients with Adenomatous Colon Polyps. Prz. Gastroenterol. 2013, 8, 308–314. [Google Scholar] [CrossRef]
- Renehan, A.G.; Painter, J.E.; Atkin, W.S.; Potten, C.S.; Shalet, S.M.; O’Dwyer, S.T. High-Risk Colorectal Adenomas and Serum Insulin-Like Growth Factors. Br. J. Surg. 2001, 88, 107–113. [Google Scholar] [CrossRef]
- Teramukai, S.; Rohan, T.; Lee, K.; Eguchi, H.; Oda, T.; Kono, S. Insulin-Like Growth Factor (IGF)-I, IGF-Binding Protein-3 and Colorectal Adenomas in Japanese Men. Jpn. J. Cancer Res. Gann 2002, 93, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Keku, T.O.; Lund, P.K.; Galanko, J.; Simmons, J.G.; Woosley, J.T.; Sandler, R.S. Insulin Resistance, Apoptosis, and Colorectal Adenoma Risk. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2076–2081. [Google Scholar] [CrossRef]
- Schoen, R.E.; Weissfeld, J.L.; Kuller, L.H.; Thaete, F.L.; Evans, R.W.; Hayes, R.B.; Rosen, C.J. Insulin-Like Growth Factor-I and Insulin are Associated with the Presence and Advancement of Adenomatous Polyps. Gastroenterology 2005, 129, 464–475. [Google Scholar] [CrossRef]
- Jacobs, E.T.; Martínez, M.E.; Alberts, D.S.; Ashbeck, E.L.; Gapstur, S.M.; Lance, P.; Thompson, P.A. Plasma Insulin-Like Growth Factor I is Inversely Associated with Colorectal Adenoma Recurrence: A Novel Hypothesis. Cancer Epidemiol. Biomark. Prev. 2008, 17, 300–305. [Google Scholar] [CrossRef]
- Kasprzak, A. Insulin-Like Growth Factor 1 (IGF-1) Signaling in Glucose Metabolism in Colorectal Cancer. Int. J. Mol. Sci. 2021, 22, 6434. [Google Scholar] [CrossRef]
- Trummer, C.; Schwetz, V.; Pandis, M.; Grübler, M.R.; Verheyen, N.; Gaksch, M.; Zittermann, A.; März, W.; Aberer, F.; Lang, A.; et al. Effects of Vitamin D Supplementation on IGF-1 and Calcitriol: A Randomized-Controlled Trial. Nutrients 2017, 9, 623. [Google Scholar] [CrossRef]
- Ameri, P.; Giusti, A.; Boschetti, M.; Bovio, M.; Teti, C.; Leoncini, G.; Ferone, D.; Murialdo, G.; Minuto, F. Vitamin D Increases Circulating IGF1 in Adults: Potential Implication for the Treatment of GH Deficiency. Eur. J. Endocrinol. 2013, 169, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, C.; Mølgaard, C.; Hauger, H.; Kristensen, M.; Damsgaard, C.T. Winter Vitamin D3 Supplementation Does Not Increase Muscle Strength, but Modulates the IGF-Axis in Young Children. Eur. J. Nutr. 2019, 58, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Kord-Varkaneh, H.; Rinaldi, G.; Hekmatdoost, A.; Fatahi, S.; Tan, S.C.; Shadnoush, M.; Khani, V.; Mousavi, S.M.; Zarezadeh, M.; Salamat, S.; et al. The Influence of Vitamin D Supplementation on IGF-1 Levels in Humans: A Systematic Review and Meta-Analysis. Ageing Res. Rev. 2020, 57, 100996. [Google Scholar] [CrossRef] [PubMed]
CRA 1 Patients (n = 53) | Controls (n = 32) | p | |
---|---|---|---|
Age | 64.09 ± 10.18 | 58.88 ± 10.67 | 0.02 |
Gender | 31 men (58%) 22 women (42%) | 18 men (56%) 14 women (44%) | 0.9 |
BMI 2 | 29.0 ± 4.7 | 29.3 ± 4.70 | 0.8 |
Abdominal circumference | 103.2 ± 12.6 | 102.8 ± 13.1 | 0.86 |
Smoking history | 12 (18%) | 9 (28%) | 0.61 |
Low sun exposure | 23 (43%) | 7 (21%) | 0.06 |
Polyp > 1 cm | 24 (45%) | ||
Adenomatous polyps | 45 (84%) | ||
Serrated polyps | 5 (9%) | ||
Hyperplastic polyps | 8 (15%) | ||
High-grade lesions | 16 (30%) | ||
Multiple polyps | 14 (26%) |
CRA 3 Patients (n = 53) | Controls (n = 32) | p | Low Sun Exposure Group (n = 23) | High Sun Exposure Group (n = 62) | p | |
---|---|---|---|---|---|---|
Cholecalciferol (ng/mL) | 70.9 ± 14.9 | 74.0 ± 11.1 | 0.3 | 72.2 ± 15.0 | 72.0 ± 12.9 | 0.96 |
Calcidiol (pg/mL) | 20.2 (15.0325.35) | 19.3 (13.3–27.5) | 0.72 | 19.6 ± 7.1 | 20.1 (15.0–28.9) | 0.38 |
Calcitriol (pg/mL) | 34.9 (29.1–41.3) | 37.9 (30.0–45.8) | 0.26 | 35.3 (28.7–42.2) | 30.7 (29.5–44.3) | 0.21 |
IGF-1 (ng/mL) | 62.7 (40.6–84.7) | 61.4 ± 25.8 | 0.9 | 59.0 ± 24.9 | 66.0 (37.5–84.4) | 0.5 |
IGFBP-3 (mcg/mL) | 2.1 ± 0.9 | 2.4 ± 0.7 | 0.17 | 2.3 ± 0.8 | 2.1 ± 0.8 | 0.36 |
Entire Patient Group | IGF-1 and IGFBP-3 | IGF-1 and Cholecalciferol | IGF-1 and Calcidiol | IGF-1 and Calcitriol | IGF-1 and Age | IGF-1 and BMI 4 |
---|---|---|---|---|---|---|
Spearman’s r coefficient | 0.25 | −0.23 | 0.05 | −0.31 | −0.40 | −0.05 |
p | 0.01 | 0.03 | 0.63 | 0.003 | 0.0001 | 0.61 |
Entire patient group | IGFBP-3 and cholecalciferol | IGFBP-3 and calcidiol | IGFBP-3 and calcitriol | IGFBP-3 and age | IGFBP-3 and BMI | |
Spearman’s r coefficient | −0.07 | 0.01 | −0.09 | −0.20 | 0.06 | |
p | 0.50 | 0.92 | 0.36 | 0.06 | 0.53 | |
CRA group | IGF-1 and IGFBP-3 | IGF-1 and cholecalciferol | IGF-1 and calcidiol | IGF-1 and calcitriol | IGF-1 and age | IGF-1 and BMI |
Spearman’s r coefficient | −0.66 | −0.24 | −0.12 | −0.34 | −0.39 | 0.05 |
p | <0.0001 | 0.07 | 0.37 | 0.01 | 0.003 | 0.70 |
CRA group | IGFBP-3 and cholecalciferol | IGFBP-3 and calcidiol | IGFBP-3 and calcitriol | IGFBP-3 and age | IGFBP-3 and BMI | |
Spearman’s r coefficient | 0.10 | 0.01 | 0.22 | 0.15 | 0.19 | |
p | 0.46 | 0.94 | 0.10 | 0.25 | 0.15 | |
Control group | IGF-1 and IGFBP-3 | IGF-1 and cholecalciferol | IGF-1 and calcidiol | IGF-1 and calcitriol | IGF-1 and age | IGF-1 and BMI |
Spearman’s r coefficient | 0.16 | −0.22 | 0.28 | −0.28 | −0.45 | −0.29 |
p | 0.36 | 0.22 | 0.11 | 0.10 | 0.01 | 0.10 |
Control group | IGFBP-3 and cholecalciferol | IGFBP-3 and calcidiol | IGFBP-3 and calcitriol | IGFBP-3 and age | IGFBP-3 and BMI | |
Spearman’s r coefficient | −0.11 | −0.11 | −0.23 | −0.05 | −0.31 | |
p | 0.52 | 0.52 | 0.19 | 0.76 | 0.07 |
OR (95% CI) 4 | p | Adjusted OR (95% CI) (a) | p (a) | Q-Value (b) | |
---|---|---|---|---|---|
Cholecalciferol ≤ 64.4 ng/mL | 4.63 (1.67–12.7) | 0.004 | 3.858 (1.33–12.68) | 0.017 | 0.07 |
Cholecalciferol ≥ 78.34 ng/mL | 0.68 (0.28–1.71) | 0.47 | 1.53 (0.58–4.08) | 0.38 | |
Calcidiol ≤ 16.23 pg/mL | 0.63 (0.26–1.54) | 0.35 | 0.67 (0.25–1.79) | 0.78 | |
Calcidiol ≥ 22.94 pg/mL | 0.68 (0.28–1.71) | 0.47 | 1.49 (0.56–4.01) | 0.41 | |
Calcitriol ≤ 31.87 pg/mL | 1.54 (0.62–3.81) | 0.47 | 1.23 (0.46–3.43) | 0.67 | |
Calcitriol ≥ 40.64 pg/mL | 0.68 (0.28–1.71) | 0.47 | 1.57 (0.59–4.20) | 0.35 | |
IGF-1 ≤ 51.9 ng/mL | 1.54 (0.62–3.81) | 0.47 | 0.92 (0.31–2.76) | 0.89 | |
IGF-1 ≥ 78.62 ng/mL | 0.87 (0.36–2.27) | 0.81 | 0.90 (0.31–2.49) | 0.84 | |
IGFBP-3 ≤ 1.82 mcg/mL | 1.9 (0.78–5.28) | 0.23 | 1.43 (0.51–4.16) | 0.49 | |
IGFBP-3 ≥ 2.64 mcg/mL | 0.72 (0.29–1.81) | 0.63 | 1.32 (0.50–3.45) | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciulei, G.; Orășan, O.H.; Cozma, A.; Negrean, V.; Alexescu, T.G.; Țărmure, S.; Casoinic, F.E.; Lucaciu, R.L.; Hangan, A.C.; Procopciuc, L.M. Exploring Vitamin D Deficiency and IGF Axis Dynamics in Colorectal Adenomas. Biomedicines 2024, 12, 1922. https://doi.org/10.3390/biomedicines12081922
Ciulei G, Orășan OH, Cozma A, Negrean V, Alexescu TG, Țărmure S, Casoinic FE, Lucaciu RL, Hangan AC, Procopciuc LM. Exploring Vitamin D Deficiency and IGF Axis Dynamics in Colorectal Adenomas. Biomedicines. 2024; 12(8):1922. https://doi.org/10.3390/biomedicines12081922
Chicago/Turabian StyleCiulei, George, Olga Hilda Orășan, Angela Cozma, Vasile Negrean, Teodora Gabriela Alexescu, Simina Țărmure, Florin Eugen Casoinic, Roxana Liana Lucaciu, Adriana Corina Hangan, and Lucia Maria Procopciuc. 2024. "Exploring Vitamin D Deficiency and IGF Axis Dynamics in Colorectal Adenomas" Biomedicines 12, no. 8: 1922. https://doi.org/10.3390/biomedicines12081922
APA StyleCiulei, G., Orășan, O. H., Cozma, A., Negrean, V., Alexescu, T. G., Țărmure, S., Casoinic, F. E., Lucaciu, R. L., Hangan, A. C., & Procopciuc, L. M. (2024). Exploring Vitamin D Deficiency and IGF Axis Dynamics in Colorectal Adenomas. Biomedicines, 12(8), 1922. https://doi.org/10.3390/biomedicines12081922