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Abstract: HIV‑1 infects monocyte‑derived macrophages (MDM) that migrate into the brain and se‑
crete virus and neurotoxic molecules, including cathepsin B (CATB), causing cognitive dysfunction.
Cocaine potentiates CATB secretion and neurotoxicity in HIV‑infected MDM. Pretreatment with
BD1047, a sigma‑1 receptor antagonist, before cocaine exposure reduces HIV‑1, CATB secretion, and
neuronal apoptosis. We aimed to elucidate the intracellular pathways modulated by BD1047 in HIV‑
infected MDM exposed to cocaine. We hypothesized that the Sig1R antagonist BD1047, prior to
cocaine, significantly deregulates proteins and pathways involved in HIV‑1 replication and CATB
secretion that lead to neurotoxicity. MDM culture lysates from HIV‑1‑infected women treated with
BD1047 before cocaine were compared with untreated controls using TMT quantitative proteomics,
bioinformatics, Lima statistics, and pathway analyses. Results demonstrate that pretreatment with
BD1047 before cocaine dysregulated eighty (80) proteins when compared with the infected cocaine
group. We found fifteen (15) proteins related to HIV‑1 infection, CATB, and mitochondrial func‑
tion. Upregulated proteins were related to oxidative phosphorylation (SLC25A‑31), mitochondria
(ATP5PD), ion transport (VDAC2–3), endoplasmic reticulum transport (PHB, TMED10, CANX), and
cytoskeleton remodeling (TUB1A‑C, ANXA1). BD1047 treatment protects HIV‑1‑infected MDM ex‑
posed to cocaine by upregulating proteins that reduce mitochondrial damage, ER transport, and
exocytosis associated with CATB‑induced neurotoxicity.

Keywords: human immunodeficiency virus (HIV); cocaine; BD1047; monocyte‑derived macrophages
(MDM)

1. Introduction
Cocaine contributes to HIV‑1 transmission and the development of neurocognitive

disorders (HAND) by dysregulating immune cell function [1,2]. Cocaine increases viral
progression and neurodegeneration [3–5]. Studies have demonstrated that cocaine use,
along with HIV‑1 infection, increases BBB dysfunction [6], viral replication [7], dysfunc‑
tion of endothelial cells [8], infiltration of immune cells and inflammatory components
into the brain, as well as neuronal and astrocyte degeneration [9–12]. In addition, cocaine
promotes the secretion of neurotoxic factors from HIV‑infected macrophages, including
cathepsin B (CATB), a lysosomal cysteine protease that induces neuronal apoptosis in vitro
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and in vivo [5,13]. CATB concentrations increase in the plasma of HIV‑1 seropositive pa‑
tients who are cocaine abusers [10].

Cocaine binds to the Sig1R at physiological conditions of 2–7 µM [14]. Similarly, co‑
caine augments the secretion of extracellular vesicles (EVs) and infection‑relatedmolecules
in T‑cells, dendritic cells, and macrophages [15–17]. HIV‑1‑infected dendritic cells and
macrophages show increased expression of Sig1R along with proinflammatory cytokines
in their EVs when compared with T‑cells [17]. We have previously reported that phar‑
macological modulation of Sig1R using the specific antagonist BD1047 before cocaine ex‑
posure reduces HIV‑1 replication, CATB secretion, and neuronal apoptosis [1]. However,
the pathways triggered by Sig1R interaction to decrease CATB secretion in HIV‑1‑infected
macrophages are unknown. We hypothesize that the Sig1R antagonist BD1047, before co‑
caine exposure, significantly deregulates essential proteins involved in HIV‑1 replication,
CATB secretion, and neurotoxicity. This proteome dysregulation correlates with path‑
ways that might include additional protein targets for the reduction of HIV‑1 infection
and CATB exocytosis.

Limited quantitative proteomics information is available that describes the combined
effect of HIV‑1 and cocaine in vitro using blood monocyte‑derived macrophages (MDM).
Proteomics analysis of HIV‑1‑infected MDM has been published using one‑dimensional
SDS polyacrylamide electrophoresis (1‑DE) [18,19], surface‑enhanced laser desorption ion‑
ization (SELDI) [20–25], matrix‑assisted laser desorption/ionization‑time of flight (MALDI‑
TOF)mass spectrometry [26], electrospray ionization liquid chromatography‑tandemmass
spectrometry (ESI LC/MS/MS) [26–29], and two‑dimensional differential in‑gel
electrophoresis (2D DIGE) [29–31]. Other proteomics techniques for HIV‑1 work include
stable isotope labeling (SILAC) [32–35], isobaric tags for relative and absolute quantifi‑
cation [36,37], oxygen 18 isotope labeling [38,39], and label‑free procedures [40–44]. We
selected tandem mass tag (TMT) quantitative proteomics labeling for this study as it pro‑
vides a platform for simultaneous analysis of many samples, reduces technical variability,
and uses a high‑throughput instrument with lower coefficients of variance [45,46]. How‑
ever, to the best of our knowledge, there are no TMT proteomics studies in HIV‑1‑infected
MDM exposed to cocaine using a pharmacological approach to modulate Sig1R. A similar
approach was used in a study recently published by our group to determine the mecha‑
nisms of JWH‑133 cannabinoid antagonist treatment in infected HIV‑1 macrophages as a
potential anti‑inflammatory agent [47]. Since our group alreadydemonstrated that BD1047
decreased HIV infection, CATB secretion, and neurotoxicity in infected MDM exposed to
cocaine in vitro and in vivo, we thought of applying this quantitative proteomics approach
to previously collected samples [1].

In this study, we present a quantitative and functional analysis of the relative protein
abundance of HIV‑1‑infectedMDM exposed to a combination of BD1047 and cocaine com‑
pared with unexposed controls. This work is important because it describes the protein
networks affected by BD1047 treatment in HIV‑1‑infected MDM exposed to cocaine. The
effect of BD1047 on HIV‑1 infection, mitochondrial, and lysosomal dysfunction, as well as
CATB secretion, trafficking, and processing, is also described. Together, these data sug‑
gest new roles in how the Sig1R antagonist BD1047 contributes to HIV‑1 infection, CATB
secretion in MDM, and its related neurotoxicity.

2. Materials and Methods
2.1. Isolation of MDM, HIV‑1 ADA Infection, Cocaine Exposure, and Treatments with Sig1R
Antagonist (BD1047)

Isolation of PBMC from peripheral blood of n = 11 women over 21 years, the MDM
culture, and in vitro HIV‑1 infection have been previously described in detail and sum‑
marized below [1]. In the previous study, Dr. Velez‑López tested BD‑1047 Sig1R antago‑
nist and PRE‑084 agonist. MDM‑HIV and MDM‑control lysates (n = 3) corresponding to
BD‑1047 treatment at the optimal concentration showing significant effect on decreasing
CATB and neurotoxicity (10 micromolar) were selected for this study. The current work
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was approved by the University of Puerto Rico Institutional Regulatory Committee (IRB)
(Protocol #0720416). Each donor willingly agreed to participate in the study and signed
an informed consent. The privacy rights of human subjects were always observed by the
Code of Ethics of the World Medical Association (Declaration of Helsinki of 1975).

Briefly, PBMCs previously isolated were cultured in T25 flasks (1 × 107 cells/well) or
six‑well plates (5 × 106 cells/well) in complete monocyte media (fetal bovine serum 10%
(FBS), human serum1%, RPMI, Penicillin/Streptomycin 1%) (SigmaAldrich, St. Louis,MO,
USA) and incubated at 37 ◦C in 5% CO2. Media was changed every 3 days, and after seven
days, adherent cells were differentiated as ≥90% MDM as described [1,13]. After 7 days
of differentiation, media was withdrawn, andMDMwas infected in vitro with HIV‑1ADA
(0.1 MOI) for 18 to 24 h. After infection, uninfected or HIV‑infected MDM was treated
with media (non‑treated group), cocaine (10 µM), Sig1R antagonist (BD1047 10 µM) alone,
or Sig1R antagonist (BD1047 10 µM) one hour before cocaine treatment (10 µM) for 3, 6,
9 days post‑infection (dpi) as described previously by cell viability and pharmacological
assays. Supernatants were collected and stored at −80 ◦C. Levels of HIV‑1 infection in
MDM were assessed through p24 antigen levels in supernatants by ELISA as described
previously [1].

2.2. Preparation of MDM Lysates and Protein Determination
Macrophages at 12 dpiwere lysed and stored at−80 ◦C for proteomics studies. Briefly,

MDM cultures were washed twice with sterile phosphate‑buffered saline (PBS) and incu‑
bated with 100 µL of lysis buffer (5 mM Tris‑HCl at pH 8.0, Triton X‑100) containing 5 µL
of protease inhibitor cocktail (AEBSF, Aprotinin, Bestatin, ethylenediaminetetraacetic acid
(EDTA), and Leupeptin) as described for isolating the whole proteome in our previous
studies [13]. Cells were incubated on ice for 30 min, and flasks were scraped for protein ex‑
traction. Each sample was carefully observed in the microscope each time after scraping to
ensure properMDMdetaching from flasks. PBS buffer was used to wash each of the flasks
several times. Samples were vortexed and centrifuged at 4 ◦C for 10 min at 1500 rpm.

Bicinchoninic acid (BCA) assay (DC Protein Assay, Bio‑Rad, Hercules, CA, USA) was
performed for total protein quantitation of MDM lysates according to the manufacturer’s
instructions (Bio‑Rad, La Jolla, CA, USA). Samples were assayed in technical replicates
and read at 450 nm in a Varioskan Flash Spectral Reader (Thermo Fisher Scientific, Mount
Prospect, IL, USA). Fifty (50) µg of total protein was aliquoted for future studies, and 20 µg
of protein was further used for TMT analyses.

2.3. Preparation of Protein Samples for Tandem Mass Tag (TMT) Labeling
A total of twenty‑four (24) protein samples (3 donors and 8 conditions) were used in a

TMT 10‑plex platform as described previously [48]. Briefly, for acetone precipitation, 50 µL
of 10% sodium dodecyl sulfate (SDS) was added into a tube with 20 µg of protein from cell
lysates, mixed, and heated for 15 min at 70 ◦C. Thereafter, cold acetone (~1 mL) was added
to a final dilution of 15%, and samples were incubated overnight at −20 ◦C. The next day,
samplesweremicro‑centrifuged at 10,000× g for 10min, and the supernatantwas removed,
followed by the addition of sample buffer (2× Laemmli Buffer + β‑mercaptoethanol, Bio‑
Rad, USA).

Samples were heated at 70 ◦C for 10 min and run on a Mini‑PROTEAN TGX Precast
Gel 4–20% for 10 min at 200 volts. Gels were stained with Biosafe Coomassie G‑250 stain
and documented using a Chemi‑Doc XRS+ (Bio‑Rad, La Jolla, CA, USA) [48]. A repre‑
sentative gel image of the MDM protein extract for each of the treatments can be seen in
Figure S1. Each of the gel lanes from the Coomassie‑stained gels was cut out manually
and diced into 1 mm3 cubes. Gel pieces were de‑stained using a solution of 50% acetoni‑
trile and 50 mM ammonium bicarbonate, alkylated with 10 mM iodoacetamide (IAA) in
50 mM ammonium bicarbonate for 45 min, and reduced using 25 mM dithiothreitol (DTT)
in 50 mM ammonium bicarbonate for 30 min at 55 ◦C. Samples were then digested at
37 ◦C overnight with a grade‑modified trypsin solution in 50 mM ammonium bicarbon‑
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ate (Promega, Madison, WI, USA). Peptides were extracted from the gel pieces first using
150 µL of a mixture of 50% acetonitrile and 2.5% formic acid in water, then 150 µL of 100%
acetonitrile, and then dried.

2.4. TMT Labeling
Eight protein samples (100 µL) from HIV‑infected and uninfected MDM lysates and

one internal control pool of all samples were labeled with TMT10 plex Mass Tag Label‑
ing kits (Thermo Scientific, Mount Prospect, IL, USA). Samples included four treatments
(HIV only, HIV + cocaine, HIV + BD1047, HIV + BD1047/cocaine, uninfected only,
uninfected + cocaine, uninfected + BD1047, uninfected + BD1047/cocaine). This makes for
a total of eight samples. Since samples from three donors were used, this corresponded
to 24 technical replicates (Table S1). The final pool is commonly used in TMT analyses
to control the abundances of peptides in all samples and to normalize volume for further
mixing of labeled TMT peptides as described previously [47,48]. A total of three kits were
used for the three donors. Dried peptides were reconstituted in 100 mM triethylammo‑
nium bicarbonate (TEAB) buffer and subsequently labeled with the TMT10‑plex reagents
described in Figure 1. The labeling was performed following the manufacturer’s instruc‑
tions (Thermo Fisher Scientific, Mount Prospect, IL, USA). Briefly, TMT reagents were re‑
suspended in 41 µL of anhydrous acetonitrile (99.9%), added to each respective sample,
and incubated for one hour at room temperature. Finally, the TMT reaction was quenched
using 5% hydroxylamine for 15 min. After quenching was completed, 5 µL of each of the
labeled samples were mixed in a single tube. The mixture was diluted tenfold in buffer A
(0.1% formic acid in HPLC water) to decrease the acetonitrile concentration down to 3%.
This mixture was analyzed by LC‑MS/MS as described in the following section to make
volume corrections for the final sample pools. For ratio check, 2 µL of labeled samples
were injected into the Q‑Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific,
Mount Prospect, IL, USA) for determination of the relative abundance of each reporter
ion. Proteome discoverer (2.5) program (Thermo Fisher Scientific, Mount Prospect, IL,
USA) was used for setting the defined parameters for the ratio checked per each TMT
tag and exported to Microsoft Excel Program 2007 (Redmond, WA, USA). After export‑
ing reporting ion abundances into the Excel program, these were averaged per TMT tag.
Then, normalization of each reporter ion abundance was done by the following equation:

average mean abundane o f each TMT tag
mean abundance o f TMT tag with greatest value × 100. The TMT tag with the greatest value was as‑
signed a 100% abundance. For dilution factor calculation, the same approach was used
following equation normalized TMT label with lowest value

normalized TMT label o f each sample × 100. The lesser normalized TMT la‑
bel was assigned a dilution factor of one. After ratio checks, all the calculated volumes
per sample tag were mixed, and combined samples were dried in a speed vacuum for
one hour. Samples were then cleaned up using the Pierce® C18 Spin Columns (Thermo
Fisher Scientific, Mount Prospect, IL, USA). For this procedure, dried samples were recon‑
stituted in a sample buffer (2% trifluoroacetic acid in 20% acetonitrile) and C18 columns
were activated by adding 50% methanol and centrifugation at 1500× g for one minute,
twice. Equilibration solution (0.5% trifluoroacetic acid in 5% acetonitrile) was added and
centrifuged for 1500× g for one minute, twice. Samples were loaded into each column of
resin and centrifuged at 1500× g for oneminute, twice. Wash solution (0.5% trifluoroacetic
acid in 5% acetonitrile) was added, centrifuged at 1500× g for one minute, and repeated
thoroughly. The elution solution (70% acetonitrile) was added to the top of the resin beds.
Samples were centrifuged at 1500× g for one minute. Finally, cleaned samples were dried
in a speed vacuum and stored for mass spectrometry analyses.
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Figure 1. Experimental Design. Lysates from cultured humanmacrophages (MDM) in different con‑
ditions (HIV‑infected, cocaine‑exposed BD1047 treatments, and their controls) were acetone precip‑
itated and subjected to SDS‑PAGE. Gel regions were reduced, alkylated, and digested with trypsin.
Each sample type was labeled with a unique TMT reagent. Samples were combined, desalted, and
subjected to LC‑MS/MS using a Thermo Q Exactive instrument, (Thermo Fisher Scientific, Mount
Prospect, IL, USA). Proteomics analysis was performed using Proteome Discoverer Proteome Dis‑
coverer version 2.2 (Thermo Fisher Scientific, Mount Prospect, IL, USA), Limma Software, and IPA
(IPA®, IPA; Ingenuity Systems, Qiagen, Redwood City, CA, USA).

2.5. Liquid Chromatography/Mass Spectrometry (LC‑MS/MS) Protein Identification and
Quantitative Analysis

Peptide separation was performed using an HPLC system (Easy nLC 1200) (Thermo
Fisher Scientific, Mount Prospect, IL, USA). Peptides were loaded onto a Pico Chip H354
REPROSIL‑Pur C18‑AQ 3 µM 120 A (75 µm × 105 mm) chromatographic column (New
Objective, Littleton, MA, USA). The separation was obtained using a total gradient time
of 128 min running at a rate of 300 L/min as follows: 7–25% of 0.1% of formic acid in 80%
acetonitrile (Buffer B) for 102 min, 25–60% of Buffer B for 20 min, and 60–95% for 6 min.
Separated peptides were electro‑sprayed into and analyzed using a Q‑Exactive Plus mass
spectrometer (Thermo Fisher Scientific, Mount Prospect, IL, USA). The instrument was op‑
erated in positive polarity mode and data‑dependent mode. The MS1 (full scan) was mea‑
sured over the range of 375 to 1400 m/z and at a resolution of 70,000. The MS2 (MS/MS)
analysis was configured to select the ten most intense ions for HCD fragmentation, con‑
figured over the range of 200 to 2000 m/z at a resolution of 35,000. A dynamic exclusion
parameter was set for 30.0 s with a repeat count of three.

MS/MS raw data files were searched against a forward and reverse human protein
database fromUniProt (CC‑BY 4.0 version 2021) (Universal Protein Source) (www.uniprot.
org). Protein identificationwas performed using ProteomeDiscoverer version 2.2 (Thermo
Fisher Scientific, Mount Prospect, IL, USA) with a SEQUEST HT algorithm. The search
parameters included trypsin as the enzyme for proteolysis, in which twomissed cleavages
were allowed with a minimal peptide length of 6 and a maximal length of 144. Peptide
mass tolerances were set at 20 ppm for the precursor mass tolerance and at 0.02 Da for the
fragmentmass tolerance. Dynamicmodifications included oxidation +15.995Da (M). Static
modifications included carbamidomethyl +57.021 Da (C), TMT 6plex +229.163 DA (any N‑
terminus, K). The false discovery rate was set at 0.01 (strict) and 0.05 (relaxed). Obtained

www.uniprot.org
www.uniprot.org
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raw protein files were exported from Proteome Discoverer software version 2.1 into a .xls
format using Microsoft Excel Program 2016 (Redmond, WA, USA).

2.6. Statistics and Bioinformatics Analyses
Protein abundances were analyzed using the Bioconductor package R‑Limma for sta‑

tistical analysis [49]. Before statistical analysis with Limma software (version 3.60.4), miss‑
ing protein abundances across all group comparisons were eliminated by applying Base
R software (version 4.1.0) commands. A custom Python program (Phyton programming
language Version 3.x, Phyton Software Foundation, 2023, www.phyton.org , Wilmington,
DE, USA) was developed for cleaning and preparing the data into the input format into
tables that consisted of accession protein number and its related abundance per TMT tag
per donor per treatment required for the analysis. The Python program arranged these
accession numbers and abundances into matrixes that were further used for Limma soft‑
ware.

To calculate their respective fold changes and p‑values, a total of three different com‑
parisons (experimental cases/controls) of protein abundances were analyzed with the
Limma software. Single channel analyses included abundances among [HIV infected
(127N) vs. uninfected (126)], [HIV infected + cocaine (128N) vs. HIV infected (127N]),
and finally [HIV infected BD1047 + cocaine (129C)] vs. [HIV infected + cocaine (128N)]
(Table S1). Information on deregulated design linear model groups of comparison as well
as all proteins without significant p‑values can be seen on Supporting Information Elec‑
tronic Data deposited in PRIDE. For fold change calculations, the mean protein abun‑
dances of each experimental condition were divided by the mean protein abundance of
their control (Mean protein abundance experimental)

(Mean protein abundance control) . Then, these matrixes were quantified based
on linear models described by the functions of E(yg)=Xβg

where for each protein (g), we

have a vector of protein expression values
(
yg

)
and a design matrix (X) that correlates

three values to some coefficient of interest (βg). Variation of samples was expressed as

var
(
ygj

)
=

σ2
g

wgj
. The Limma software package includes empirical Bayesian methods to

obtain variance estimators. Since all the protein abundances fit under a Gaussian distri‑
bution, several Student’s paired t‑tests were performed. Statistically significant proteins
were obtained as a result, with fold change (FC) values greater or equal to the absolute
value of themodule of one point five and p‑value lower or equal to 0.05 (i.e., FC≥ |1.5| and
p‑value ≤ 0.05, 95% confidence). Proteins whose fold changes are under the fold changes
pertaining to [−1.5≤ x≤ 1.5] were considered deregulated; those with fold changes under
x≤ −1.5 were considered downregulated, while those with fold changes over x > 1.5 were
considered upregulated.

We analyzed the dysregulated proteins in our study using several graphical repre‑
sentations, including volcano plots, heatmaps, and Venn diagrams. We compared three
groups: HIV‑infected vs. uninfected individuals, HIV‑infected individuals with and with‑
out cocaine use, and HIV‑infected individuals treated with BD1047 plus cocaine vs. those
treated with cocaine alone. We generated Venn diagrams using Venny, an interactive tool
that facilitates the comparison of lists through Venn diagrams [50]. To create the volcano
plots, we utilized the VolcaNoseR web application, as described in its publication [51].
We used GraphPad Prism version 10.2.0 (GraphPad Software, Boston, MA, USA, www.
graphpad.com) to visualize the fold changes across comparisons in heatmaps. This ap‑
proach allowed us to identify unique and shared patterns of protein dysregulation across
the three groups we studied.

2.7. Ingenuity Pathway Analyses (IPA) and Literature Review
The lists of 94 differentially expressed proteins were uploaded to Qiagen Ingenu‑

ity Pathway Analysis (IPA®, Ingenuity Systems, Qiagen, Redwood City, CA, USA) soft‑
ware for CORE analysis and molecular annotations using the Ingenuity Pathway Knowl‑
edge Base (version 21.0). The group comparisons uploaded to IPA were HIV+ vs. HIV−,

www.phyton.org
www.graphpad.com
www.graphpad.com
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HIV+ cocaine vs. HIV+, and HIV+ BD1047/cocaine vs. HIV+ cocaine. The analysis was
performed to identify proteins associated with Lysosome and CATB network interactions;
Lysosome and Mitochondria network interactions; and HIV Infection Protein‑Protein In‑
teraction for the group HIV+ cocaine vs. HIV+ and HIV+ BD1047/cocaine vs. HIV+ co‑
caine. The cutoff to consider significant proteins in the CORE analysis was based on a fold
change ≥ |1.5| and p‑value ≤ 0.05. The human model was considered the model organ‑
ism for annotations. Further, protein selection was based on IPA nodes representation as
well as primary literature. Deregulated proteins were chosen based on fold change dif‑
ferences and significant p‑values (≤0.05) from three biological replicates (n = 3). Selection
of candidate proteins for further studies was based on the following criteria: (1) Signifi‑
cant fold change differences and/or p‑values were based on Limma analyses; (2) Ingenuity
Pathway analyses relating each subjected topic of mitochondrial, lysosomal, and cathep‑
sins; and (3) Literature‑based function regarding their role with HIV‑1 infection, lysosome,
and mitochondrial instability, CATB trafficking, processing, or secretion.

3. Results and Discussion
3.1. Pretreatment with BD1047 Prior to Cocaine Reduces HIV‑1 Infection, CATB Secretion in
Infected MDM, and TMT Group Analyses

In previous studies, we reported thatHIV‑1‑infectedMDMexposed to cocaine showed
decreased infection and CATB secretion after the addition of the Sig1R antagonist
BD1047 [1]. According to the previous results, MDM from three donors was infected
with HIV‑1 in vitro, exposed to cocaine or cocaine with no virus, and pre‑treated with
BD1047. Infection, as measured by HIV‑1 p24 antigen levels, increased to higher levels in
the presence of cocaine [1]. The effect of cocaine on boosting HIV infection in MDM was
also reported in another study [10]. We demonstrated that HIV‑1‑infected MDM with‑
out treatment averaged 5.0 × 104 pg/mL, while those infected and exposed to cocaine
increased further to 1.2 × 105 pg/mL at 13 days post‑infection. However, when HIV‑
infected MDM were treated with BD1047 before cocaine exposure, the HIV‑1 p24 anti‑
gen decreased significantly when compared with the other groups (<2.5 × 104 pg/mL) [1].
Therefore, for this study, we selected 13‑day MDM lysates stored at −80 ◦C from the pre‑
vious study and analyzed by TMT quantitative proteomics and bioinformatics. The TMT
tags for each of the treatments included the following three comparison groups: (1) HIV
infected (127N) vs. uninfected (126), (2) HIV infected + cocaine (128N) vs. HIV infected
(127N), (3) HIV infected + BD1047 + cocaine (130N) vs. HIV infected + cocaine (128N)
(Figure 1). Since our hypothesis was to determine the signaling pathways of Sig1R antago‑
nist BD1047 modulation of CATB secretion, HIV‑1 infection, and lysosomal and mitochon‑
drial network interactions, we focused our results on the third comparison group of HIV
infected + BD1047 + cocaine with HIV infected + cocaine in the absence of BD1047. Never‑
theless, a discussion of the intracellular pathways in HIV‑1 infection and cocaine exposure
is included (Figure 1).

3.2. Differentially Expressed Proteins in Macrophages Among Comparison Groups
After processing macrophage lysates from the three comparison groups for TMT, LC‑

MS/MS, and proteomics analyses, 5096 raw proteins were identified from the first donor,
4877 from the second donor, and 4939 from the third donor (raw data deposited in PRIDE).
Thereafter, proteins were quantified based on the exclusion criteria of at least two unique
peptides. The number of proteins per donor was reduced when exclusion criteria were
applied to 1435 for the first donor, 1435 for the second, and 1444 for the third, respec‑
tively (Table S2). After considering the statistical parameters of fold change ≥ |1.5| and a
p‑value≤ 0.05, we found that there are no unique proteins dysregulated byHIV‑1 infection
(HIV+ versus HIV−) groups. Two upregulated proteins (plectin, succinate dehydrogenase
complex flavoprotein subunit) and two downregulated protein fragments (large ribosomal
subunit protein eL30), for a total of four (4) proteins, are shared with the BD1047/cocaine
group. These proteins contribute to cell structure, respirative oxidation, and protein syn‑
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thesis (Table S2). When we compared the HIV + cocaine versus HIV+ group, we found
seven (7) proteins that were upregulated and sharedwith theHIV + BD1047/cocaine group:
UDP‑N‑acetylglucosamine pyrophosphorylase 1 like 1 (UAP1L1), stalled ribosome sensor
GCN1 (GCN1), and three glial fibrillary acidic protein fragments (GFAP). BD1047/cocaine
and cocaine groups are both dysregulated proteins related to protein synthesis, modifi‑
cation, and cell integrity. Dysregulation of only one protein, the proteasome 26S subunit
ubiquitin receptor, non‑ATPase 2 (H7C1H2) in theHIV + cocaine group further strengthens
our observation of mechanisms to protect protein synthesis (Table S2). When comparing
HIV+ BD1047/cocaine versus HIV+ cocaine groups by Limma analyses, a total of eighty
(80) differentially abundant groups were identified. Of those differentially abundant pro‑
teins, sixty‑four (n = 64) proteins were more abundant and twenty‑nine (29) less abundant
(Table S2). From those proteins, we selected twenty‑four (n = 24) based on their significance
for HIV‑1 infection, mitochondrial dysfunction, lysosomal dysfunction, and cathepsin B.
Sixteen (16) differentially more abundant (upregulated) and four (4) less abundant (down‑
regulated) proteins have strong associations with mitochondrial dysfunction, lysosomal
function, cathepsin B, and HIV infection. Newly identified proteins per group of analyses
can be seen on the Venn diagram in Figure 2.
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plot with the top significantly differentiated protein in HIV+ cocaine versus HIV+. (C) Volcano plot
with the top significantly differentiated protein in HIV+ BD1047/HIV+ cocaine versus HIV+ cocaine.
(D) Heat map on the top significant differentiated proteins based on FC = |1.5| and p‑values ≤ 0.05.
(E). Venn diagram the total number of differentially abundant proteins based on FC = |1.5| and
p‑values ≤ 0.05 that are unique or shared among groups. Proteins were selected for the
BD047/cocaine group based on literature review and IPA analyses. The red color indicates upreg‑
ulated protein, and green indicates downregulated protein.

3.3. BD1047 and Cocaine Dysregulated Biologically Important Proteins That Are Related to
Infection, Mitochondrial Function, ER Transport, and Cytoskeleton Remodeling in
HIV‑1‑Infected MDM
3.3.1. Differentially Abundant Proteins after HIV‑1 Infection of MDM

HIV‑1 infection in MDM (HIV+ versus HIV−) upregulates two proteins related to
cell morphology, plectin (PLEC) and oxidative phosphorylation succinate dehydrogenase
complex subunit A (SHAD), as well as two subunits of the large ribosomal subunit pro‑
tein eL30 (RPL30) shared with the BD104/cocaine group (Table 1, Figure 2). Plectin is a
protein complex associated with actin‑binding intermediate filaments that associates with
chemokine receptor X4 (CXCR4). Knockdown of plectin reduced CXCR4‑tropic HIV‑1 in‑
fection in MAGI (HeLa‑CD4‑LTR‑Gal) cells [52]. Similarly, C‑C chemokine type recep‑
tor 5 (CCR5), the major receptor for HIV‑1 entry in MDM, increases plectin expression in
monocytes [53]. Plectin expression is related to cytoskeletal arrangements induced by the
virus after it enters the cells. On the other hand, upregulation of the succinate dehydro‑
genase complex subunit A (SDHA) is in accordance with previous studies indicating that
the virus downregulates the cell glycolytic pathways and increases the tricarboxylic acid
(TCA) proteins for further oxidative respiration as a mechanism for maintaining proviral
reservoirs [54]. Similarly, large ribosomal subunit protein eL30 upregulation indicates a
rescue mechanism in response to protein failure and the takeover of the virus of the pro‑
teinmachinery in the cell [55]. The sharing of dysregulated proteins by the BD1047/cocaine
group shows that BD1047 pretreatment does not alienate key regulatory infectivity mech‑
anisms independent of cocaine exposure in MDM. However, no unique proteins among
the HIV+ versus HIV‑ group were found (Figure 2).

Table 1. Dysregulated proteins and functions in HIV+ vs. HIV−MDM.

Uniprot ID Name Gene ID Subcellular Localization Associated
Pathway

Fold
Change p‑Value

E9PMV1 Plectin PLEC Cytosol/Cytoskeleton Actin‑Binding 2.7 6.7 × 10−3

H0Y8X1

Succinate
dehydrogenase

complex
flavoprotein
subunit A

SDHA Mitochondrial Complexes

Mitochondrial
Electron
Transport
Chain

3.5 4.0 × 10−4

A0A0B4J213

Large
ribosomal

subunit protein
eL30

RPL30 Ribosomes/cytosol/Rough
ER

Protein
Synthesis −1.9 5.8 × 10−3

A0A0C4DH44

Large
ribosomal

subunit protein
eL30

RPL30 Ribosomes/cytosol/Rough
ER

Protein
Synthesis −1.9 5.8 × 10−3

Red fold change (FC) = upregulated proteins (FC ≥ |1.5| and p‑value ≤ 0.05) and green FC = downregulated
proteins (FC ≥ |1.5| and p‑value ≤ 0.05).



Biomedicines 2024, 12, 1934 10 of 32

3.3.2. Differentially Abundant Proteins in HIV‑1‑Infected MDM after Exposure
to Cocaine

HIV‑1‑infectedMDMexposed to cocaine, in comparison toHIV alone, revealed seven
upregulated proteins in HIV‑1‑infectedMDM (Table 2). These include the proteasome 26S
subunit ubiquitin receptor, non‑ATPase 2 (H7C1H2), two fragments of UDP‑N‑
acetylglucosamine pyrophosphorylase 1 (UAP1L1), the stalled ribosome sensor GCN1
(GCN1), and three glial fibrillary acidic protein fragments (GFAP). Cocaine addiction has
been reported to upregulate one unique protein named the proteasome 26S subunit ubiq‑
uitin receptor (H7C1H2) when compared with the infected group without the drug. It is
fairly known that the virus hijacks the cell proteasome‑ubiquitination pathways to pro‑
duce its viral proteins. Specifically, HIV‑1 hijacks the expression of the 26S proteasome
complex through the use of ubiquitin proteins termed UPS [56]. Drugs of abuse, such as
cocaine, further potentiate this action inmany cells [57,58]. The 26S proteasome complex is
responsible for taggingmisfolded proteins and damaged proteins in the cell. These results
suggest that both the virus and the drug of abuse synergistically collaborate for “protein
dysregulation chaos” within the infected cell. Both infectedMDMpretreated with BD1047
and those treatedwith cocaine‑only groups shared six proteins after IPA analysis: two frag‑
ments of sugar addition in proteins to be degraded: UDP‑N‑acetylglucosamine pyrophos‑
phorylase 1 like 1 (UAP1L1), protein synthesis‑stalled ribosome sensor GCN1 (GCN1), and
three fragments from cell cytoskeleton filaments glial fibrillary acidic protein (GFAP). As
mentioned above, the virus potentiates the expression of proteins that might be used for its
benefits. However, the upregulation of UAP1 proteins indicates a regulatory mechanism
to increase the Interferon Type 1 response, a possible mechanism for reducing HIV‑1 infec‑
tion inMDM [59]. Similarly, upregulation of the stalled ribosome sensor (GCN1) indicates
a way to reduce HIV‑1 infection by limiting HIV‑1 integrase and HIV‑1 replication [60].
GCN1 forms a complex with another sensor, GCN2, and limits the binding of the HIV‑1
integrase into the cell genome. Although this protein is increased by cocaine, it is further
upregulated by the pretreatment with BD1047, which might explain some of the reducing
effects of the antagonist prior to cocaine. Finally, glial fibrillary acidic protein (GFAP) is
upregulated in the cocaine group but downregulated by BD1047 pretreatment. GFAP is
an intermediate filament of astrocytes, and its expression is usually high in astrocytes, pro‑
moting astrogliosis and inflammation of the central nervous system in patients with HIV‑1
dementia. Its expression is further increased by cocaine, and the addition of the antagonist
indicates that these effects are abrogated [61].

Table 2. Upregulated proteins between HIV+ cocaine vs. HIV+ MDM.

Uniprot ID Name Gene ID Subcellular
Localization

Associated
Pathway

Fold
Change p‑Value

* H7C1H2

Proteasome 26S
subunit ubiquitin

receptor,
non‑ATPase 2

PSMD2 Cytosol Protein regulation/
Degradation 1.5 1.91 × 10−3

A0A087X226

UDP‑N‑
acetylglucosamine
pyrophosphorylase

1 like 1

UAP1L1 Cytosol/
Intermediate filaments

Growth
intermediate
filaments

2.2 7.7 × 10−4

Q3KQV9

UDP‑N‑acetyl
hexosamine

pyrophosphorylase‑
like

UAP1L1 Cytosol/Intermediate
Filaments

Growth/intermediate
filaments 2.2 7.7 × 10−4

Q92616 Stalled ribosome
sensor GCN1 GCN1 Cytosol/

Ribosomes
Control of

ribosomal activity 3.5 4.7 × 10−4
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Table 2. Cont.

Uniprot ID Name Gene ID Subcellular
Localization

Associated
Pathway

Fold
Change p‑Value

A0A1W2PQU7
Glial fibrillary
acidic protein
fragment

GFAP Intermediate filaments Cell morphology 4.0 1.9 × 10−5

A0A1W2PS58
Glial fibrillary
acidic protein
fragment

GFAP Intermediate filaments Cell morphology 4.1 1.9 × 10−5

K7EPI4
Glial fibrillary
acidic protein
fragment

GFAP Intermediate filaments Cell morphology 4.1 1.9 × 10−5

Asterisk *—Only one protein is unique among the group of comparisons of HIV+ cocaine versus HIV+. Six (6)
other proteins are unique among the comparisons. Upregulated proteins (FC ≥ |1.5| and p‑value ≤ 0.05).

3.3.3. Findings of Differentially Abundant Proteins in HIV‑1‑Infected MDM Pretreated
with BD1047 and Exposed to Cocaine

Pretreatment of BD1047 in HIV‑1‑infectedMDM exposed to cocaine uniquely dysreg‑
ulated eighty (80) proteins, as determined by bioinformatics analyses (Figure 2,
Table S2). These proteins have several functions, including cellular remodeling, protein
synthesis, cellular migration, endoplasmic reticulum stress, and many other processes
(Table 3). However, our interest was to identify dysregulated proteins with a strong re‑
lationship with mitochondrial dysfunction, lysosomal damage, CATB networks, and HIV‑
1 infection. For this reason, IPA analyses were built with networks for these processes.
Proteins were selected based on these first networks and needed to have the fold change
(FC) ≥ |1.5| and p ≤ 0.05 criteria. These relevant proteins were further corroborated and
selected based on available and recent literature. Based on the above criteria, for the mito‑
chondrial protein network interactions, twelve (12) proteins were identified (Figure 3). Of
those, nine (9) were upregulated: tubulin alpha 1b, two fragments of voltage‑dependent
ion channel, annexin A1, solute carrier family 25 members, prohibitin, calnexin, and pro‑
hibitin 2. The three (3) downregulated proteins in that group included chitinase 1, tripep‑
tidyl peptidase 2, and the succinate dehydrogenase complex. The upregulation of these
proteins in mitochondria indicates a serious effect of BD1047 on activating mitochondrial
compensation of oxidative respiration proteins (voltage ion channel, solute carrier fam‑
ily 25 members), cytoskeletal remodeling (calnexin, annexin A1, tubulin alpha 1b), and
endoplasmic reticulum stress for reducing mitochondrial stress (prohibitin and calnexin)
concerning cocaine treatment.
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Table 3. Dysregulated proteins and functions in HIV‑positive cocaine vs. HIV‑positive cocaine and BD1047‑treated MDM.

Name FC p‑Value
Function by Literature Review

HIV‑1 Lysosome/Mitochondrial Dysfunction

ATP synthase F (0) complex subunit C1,
mitochondrial 2.2 7.0 × 10−3

Facilitates HIV‑1 transfer in monocytes to
CD4‑positive cells [62].

Tat 101 protein reduces the expression of ATP
synthase in Jurkat cells and promotes mitochondrial

dysfunction [63].

Accumulates in lysosomes of neurons with Batten’s
disease lysosomal disorders. contains all the
machinery proteins for vesicular fusion and

phagosome formation [64].
Formation of the transition pore complex that
promotes mitochondrial degradation [65,66].

ATP synthase lipid‑binding protein 2.2 7.0 × 10−3 No information. Present in isolates of cells with proteins in lysosomes
of Batten’s disease [67,68].

ADP/ATP translocase 4 2.0 8.6 × 10−3 Binds to HIV‑1 Vpr protein and promotes
mitochondrial membrane permeabilization [69–71].

Promotes mitochondrial permeabilization and storage
of cargo protein in associated lysosomes [72].

Phosphate carrier protein, mitochondrial 1.9 2.1 × 10−2 Regulates mitochondrial permeabilization [73]. Integral mitochondrial protein [74].

Tubulin Alpha Chain 1A‑ C subunits 1.9 3.4 × 10−3 Bind to microtubule chains to promote
polymerization for HIV‑1 vesicle exportation [75–77].

Reduced TUB1A (tubulin alpha chain subunits)
related to impaired lysosomal cargo in neurites

in vitro and in vivo [78].
Interacts with spinster protein on the lysosomal

membrane to protect lysosomes from leakage [79].

Voltage‑dependent anion‑selective channel
protein 3
(VDAC3)

1.7 2.1 × 10−2
Vpr induces T cell and Jurkat cell apoptosis and
mitochondrial permeabilization and reduces its

expression through the transition pore
complex [80,81].

Prevents mitochondrial calcium internalization and
permeabilization of lysosomes by calcium [80,81].

Outer mitocondrial membrane protein porin
2 (fragment)
(VDAC2)

1.7 1.5 × 10−2
Modulates apoptosis and membrane

permeabilization.
Its expression is inhibited by HIV‑1 [69]

Regulates Ca+2 channel to prevent lysosome leakage
of cathepsins and autophagy [80,81].

Annexin 1 (fragment) 1.6 5.9 × 10−2
ANXA 2 interacts with Gag in CD63 compartments

for virion exportation into cells [82].
ANXA2 binds to serine protease inhibitors for viral

entry into macrophages [83].

Coupled in tetramer at the cell surface for excretion
and retention of cathepsins [84]. Transduction of

Tat‑ANXA1 inhibits cyclooxygenase and promotes an
anti‑inflammatory response in raw 264.7 cells [85]
ANXA1 signaling is dysfunctional in SIV infection
and may contribute to chronic inflammation [86].

ANXA1 is correlated with exosomes of CATB protein
in P2XR‑activated cells [87,88]
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Table 3. Cont.

Name FC p‑Value
Function by Literature Review

HIV‑1 Lysosome/Mitochondrial Dysfunction

Prohibitin 1.6 2.0 × 10−4 Prohibitin 1/2 heterodimer interacts with HIV‑1
glycoprotein for viral spread [89].

Reduces mitochondrial UPR response [90]
Modulates oxidative stress and mitochondrial

dysfunction [91].
Downregulation of mitochondrial PHB is a crucial

event in mitochondrial damage [92]

Voltage‑dependent anion‑selective channel
protein VDAC‑1 1.6 9.4 × 10−3

Its expression is inhibited by HIV‑1 [69,82].
HIV‑1Tat dysregulates VDAC‑1 inducing ATP release

and cell death [93].

Allows for communication between the
mitochondrion and the cell mediating the balance

between cell metabolism and cell death [94].

Calnexin (fragment) 1.5 1.3 × 10−3

HIV‑Nef modulates calnexin, suppressing cholesterol
flux [95].

High Binding of calnexin to gp120 promotes
inefficient gp120 processing [96].

Nef associated with Calnexin promotes lipid
accumulation in the endoplasmic reticulum (ER) and

binds to gp120 [97].

Involved with proteins destined for secretion,
endosomal reticulum stress. Chaperone that protects

and retains protein secretion [98].

Transmembrane emp24 domain‑containing
protein 1.5 1.2 × 10−2 Rev interacts with the protein for the secretion of viral

particles [99].

Vesicular trafficking of proteins promotes retrograde
transport of exocytotic vesicles and other cargo [100].
Controls TLR4 signaling. Found in late endosome
Rab7‑LAMP1‑positive lysosomes where cathepsin D

fractions are present for protein and cargo
exportation [101].

Proteasome 26S Subunit Ubiquitin Receptor −1.4 1.4 × 10−3 PSMD2 interacts with Vpr for viral infectivity
[102,103] Ubiquitin of proteins that are damaged [102].

Surfeit locus protein 4 −1.6 1.1 × 10−3
Regulates and promotes replication of HCV in
replication complexes and other positive‑strand

viruses [104].

Maintenance of the architecture of the endoplasmic
reticulum (Golgi). Cargo protein of secretory proteins

out of ER [104].

Obg‑likeATPase 1 (Fragment) −1.8 3.8 × 10−3 Interacts with p17 and promotes CD4 T cell
proliferation and autophagy inhibition [105].

Hydrolyzes ATP and can also hydrolyze GTP with
lower efficiency [105].

UDP‑N‑acetyl‑hexosamine phosphorylase
type −3.0 2.0 × 10−5 Helps with immune function of IF3 and activation

against viral infection [106].
Adds glucosamine and other sugars to the proteins
being transported in ER and other cargo [106].
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Table 3. Cont.

Name FC p‑Value
Function by Literature Review

HIV‑1 Lysosome/Mitochondrial Dysfunction

UDP‑N‑acetyl‑glucosamine
pyrophosphorilase type −3.0 2.0 × 10−5 Helps with the immune function and activation

against viral infection [59,106].
Adds sugars to protein being transported in ER and

other cargo [106].

Plectin (Fragment) −2.13 9.0 × 10−3 CXCR4 signaling is related to the modulation of
autophagy [52].

Pectin‑stabilized actin filaments aids in the
autophagosome–lysosome fusion that supports

autophagy [107].

Glial fibrillary acidic protein (Fragment) −4.4 5.1 × 10−5 Increases its expression in HIV+‑infected
macrophages and astrocytes after ER stress [108]

Cytoskeletal fragments of astrocytes and occasionally
in monocytes [109]

Stalled ribosome sensor GCN1 −8.7 4.8 × 10−5 Combines with GCN2 for HIV‑1 integration into
nucleus [110]

Reduces protein synthesis if translation is not
correct [111]

Red fold change (FC) = upregulated proteins (FC ≥ |1.5| and p‑value ≤ 0.05), and green FC = downregulated proteins (FC ≥ |1.5| and p‑value ≤ 0.05). Red = upregulated proteins
(FC ≥ |1.5| and p‑value ≤ 0.05), and green = downregulated proteins (FC ≥ |1.5| and p‑value ≤ 0.05).
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brane subunit locus c1, voltage-dependent anion channel 2, microsomal glutathione S-
transferase 3, annexin A1, prohibitin, calnexin, prohibitin 2, cystatin B, and cathepsin D. 
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again compensatory mechanisms of the antagonist to reduce oxidative stress within the 
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Figure 3. Pathway analysis of HIV+ cocaine vs. HIV+ cocaine and BD1047 in mitochondrial inter‑
actions. Significant proteins as determined by fold change (FC) ≤ |1.5| and p ≤ 0.05 criteria were
identifiedwith an asterisk (*). Significant proteinswere corroboratedwith available literature related
toHIV infection. Red indicates upregulated proteins, while green indicates downregulated proteins.

The lysosomal and cathepsin network protein interactions, based on IPA analysis,
included sixteen (16) dysregulated proteins. Of those, nine (9) were upregulated and
seven (7) were downregulated. The upregulated proteins include ATP synthase mem‑
brane subunit locus c1, voltage‑dependent anion channel 2, microsomal glutathione S‑
transferase 3, annexin A1, prohibitin, calnexin, prohibitin 2, cystatin B, and cathepsin D.
The downregulated proteins include cathepsin A, cathepsin Z, chitinase 1, albumin, tripep‑
tidyl peptidase 2, plectin, and glial fibrillary acidic protein (Table 4, Figure 4). The up‑
regulation of seven proteins in the CATB networks by BD1047 indicates that there are
again compensatory mechanisms of the antagonist to reduce oxidative stress within the
lysosome/mitochondrial axis (voltage‑dependent ion channel 2, microsome glutathione S‑
transferase and ATP synthase membrane subunit loci c1), an increase of stable lysosomal
cytoskeletal integrity (prohibitin, calnexin, prohibitin 2), and regulation of CATB activa‑
tion by cystatin B and other analogous cathepsin D. Downregulated proteins indicate that
other cathepsins and other cytoskeletal proteins are downregulated by BD1047.
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Table 4. Description of selected differentially abundant proteins in HIV‑infected MDM exposed to cocaine after BD‑1047 treatment versus HIV + cocaine groups
selected after IPA and literature analyses. Fold change: red = upregulated proteins, green = downregulated proteins.

Uniprot ID Name Gene ID Subcellular
Localization Associated Pathway FC p‑Value

D6R9H7 ATP synthase F subunit C1 ATP5MC1 Mitochondrial
Membrane

Mitochondrial ATP
Formation 2.2 7.0 × 10−3

Q06055 ATP synthase C2 ATP5MC2 Mitochondrial
Membrane

Mitochondrial ATP
Formation 2.2 7.0 × 10−3

P48201 ATP synthase C3 ATP5MC3 Mitochondrial
Membrane

Mitochondrial ATP
Formation 2.2 7.0 × 10−3

O75947 ATP synthase D ATP5PD Mitochondrial
Membrane

Mitochondrial ATP
Formation 2.2 7.0 × 10−3

E7EPU7 ATP synthase lipid‑binding protein ATP5MC1 Mitochondrial
Membrane

Mitochondrial ATP
Formation 2.2 7.0 × 10−3

Q9H0C2 ADP/ATP translocase 4 SLC25A31 Mitochondrial
Membrane

Mitochondrial
ATP/ADP Formation 2.0 8.6 × 10−3

F8VWQ0 Phosphate carrier protein, mitochondrial SLC25A3 Mitochondria Transporter of
phosphate ions 1.9 2.1 × 10−2

F8W0F6 Tubulin Alpha Chain 1A subunit TUBA1A Cytoskeleton Microtubule Formation 1.9 3.4 × 10−3

F8VRK0 Tubulin Alpha Chain 1B subunit TUBA1B Cytoskeleton Microtubule Formation 1.9 2.1 × 10−2

F8VS66 Tubulin Alpha Chain 1C subunit TUBA1C Cytoskeleton Microtubule Formation 1.7 3.5 × 10‑3

E5RFP6
Voltage‑dependent anion‑selective

channel protein 3
(VDAC 3)

VDAC3 Mitochondrion Outer
membrane

Transporter of anions
into mitochondria 1.7 1.1 × 10−3

A2A3S1
Outer mitocondrial membrane protein

porin 2 (Fragment)
(VDAC2)

VDAC2 Mitochondrion Outer
Membrane

Mitochondrial
Transport 1.7 1.5 × 10−2
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Table 4. Cont.

Uniprot ID Name Gene ID Subcellular
Localization Associated Pathway FC p‑Value

P21796
Outer mitocondrial membrane protein

porin 2 (Fragment)
(VDAC1)

VDAC1 Mitochondrion Outer
Membrane

Mitochondrial
Transport Mediate
balance between

metabolism and cell
death

1.6 9.3 × 10−3

Q5N3T0 Annexin 1 (fragment) ANXA1

Endosomes, apical,
basolateral membrane,
extracelular exosome,

nucleus, cillium,
phagocytic cup

Exocytosis of calcium
activated proteins 1.6 5.9 × 10−2

P35232 Prohibitin PHB
Mitochondrion inner

membrane, nucleus, cell
membrane, cytoplasm

Maintains protein
integrity and

mitochondrial integrity
1.6 2.0 × 10−4

D6RAQ8 Calnexin (fragment) CANX Endoplasmic reticulum Chaperone Secretory
Pathway ER 1.5 1.3 × 103

P49755 Transmembrane emp24
domain‑containing protein TMED10

Golgi apparatus,
cis‑Golgi, trans‑Golgi,
endoplasmic reticulum,

cell membrane,
secretory vesicle,
melanosome

Early secretory pathway
between COPI and
COPII vesicles

1.5 1.2 × 10−2

H7C1H2 Proteasome 26S Subunit Ubiquitin
Receptor non‑ATPase 2 PSMD2 Cytoplasm Protein regulation and

degradation −1.4 1.4 × 10−3

B7Z1G8 Surfeit Locus Protein 4 SURF4 Membrane
Endoplasmic

reticulum/Golgi cargo to
membrane

−1.6 1.0 × 10−3

C9JTK6 Obg‑like ATPase (fragment) OLA1 Centrosome/Cytosol Hydrolyzes ATP and
GTP −1.8 4.0 × 10−3

Q3KQV9 UDP‑N‑acetylhexosamine
pyrophosphorylase‑ like UAP1L1 Endoplasmic

reticulum/cargo
Add sugars to cargo for

degradation −3.0 2.1 × 10−5
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Table 4. Cont.

Uniprot ID Name Gene ID Subcellular
Localization Associated Pathway FC p‑Value

A0A087X226 UDP‑N‑acetylglucosamine
pyrophosphorylase‑ like‑1 UAP1L1 Endoplasmic

reticulum/cargo
Add sugars to cargo for

degradation −3.0 2.1 × 10−5

E9PKG0 Plectin (fragment) PLEC Cytoskeleton Interlinks microtubules
with filaments −3.3 3.0 × 10−3

A0A1W2PQU7 Glial Fibrillary Acidic Protein (GFAP) GFAP Intermediate filaments
Cytoskeleton of many

cells including
astrocytes

−4.3 5.1 × 10−5

Q9261 Stalled Ribosome Sensor GCN1 GCN1 Ribosomes/Cytosol
Controls protein

synthesis by inhibiting
certain factors

−8.7 4.8 × 10−4
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Finally, for the HIV‑1 IPA protein interaction analyses, fourteen (14) proteins were
identified. Of those, ten (10) proteins were upregulated, and four (4) downregulated. The
upregulated proteins include solute carrier family 25 member 3, tubulin alpha 1a, tubu‑
lin alpha 1b, tubulin alpha 1c, soluble carrier family 25 member 6, tubulin beta 3 class III,
solute carrier family 25 member 5, tubulin beta 4A class IVa, prohibitin, and calnexin. Of
the downregulated proteins, glial fibrillary acidic protein, plectin, and GCN1 activator of
EIF2AK4 were identified (Table 4, Figure 5). Again, the upregulation of these proteins
indicates a cellular compensatory mechanism to increase cytoskeletal stability in the mem‑
branes that are severely disrupted by the viral cellular takeover. This effect cannot be
abrogated by the Sig1R antagonist.



Biomedicines 2024, 12, 1934 20 of 32
Biomedicines 2024, 12, x FOR PEER REVIEW 16 of 30 
 

 
Figure 5. Pathway analysis of HIV+ cocaine vs. HIV+ cocaine and BD1047 in protein interactions. 
Significant proteins marked with an asterisk (*) were corroborated with available literature in fur-
ther relation to HIV. Fold change: red = upregulated proteins, green = downregulated proteins. 

Table 4. Description of selected differentially abundant proteins in HIV-infected MDM exposed to 
cocaine after BD-1047 treatment versus HIV + cocaine groups selected after IPA and literature anal-
yses. Fold change: red = upregulated proteins, green = downregulated proteins. 

Uniprot ID Name Gene ID 
Subcellular 
Localization Associated Pathway FC p-Value 

D6R9H7 
ATP synthase F 

subunit C1 ATP5MC1 
Mitochondrial 

Membrane  
Mitochondrial ATP 

Formation 2.2 7.0 × 10−3 

Q06055 ATP synthase C2 ATP5MC2 
Mitochondrial 

Membrane 
Mitochondrial ATP 

Formation 2.2 7.0 × 10−3 

P48201  ATP synthase C3 ATP5MC3 
Mitochondrial 

Membrane 
Mitochondrial ATP 

Formation 2.2 7.0 × 10−3 

O75947 ATP synthase D  ATP5PD 
Mitochondrial 

Membrane 
Mitochondrial ATP 

Formation 2.2 7.0 × 10−3 

E7EPU7  
ATP synthase lipid-

binding protein ATP5MC1 
Mitochondrial 

Membrane 
Mitochondrial ATP 

Formation 2.2 7.0 × 10−3 

Q9H0C2 
ADP/ATP 

translocase 4 SLC25A31 
Mitochondrial 

Membrane 
Mitochondrial 

ATP/ADP Formation 2.0 8.6 × 10−3 

F8VWQ0 
Phosphate carrier 

protein, 
mitochondrial 

SLC25A3 Mitochondria Transporter of 
phosphate ions  

1.9 2.1 × 10−2 

F8W0F6 
Tubulin Alpha 

Chain 1A subunit  TUBA1A Cytoskeleton 
Microtubule 
Formation  1.9 3.4 × 10−3 

F8VRK0 
Tubulin Alpha 

Chain 1B subunit TUBA1B  Cytoskeleton 
Microtubule 
Formation  1.9 2.1 × 10−2  

Figure 5. Pathway analysis of HIV+ cocaine vs. HIV+ cocaine and BD1047 in protein interactions.
Significant proteins as determined by fold change (FC) ≤ |1.5| and p ≤ 0.05 criteria were identified
with an asterisk (*). Significant proteins were corroborated with available literature related to HIV
infection. Red indicates upregulated proteins, while green indicates downregulated proteins.

4. Discussion
4.1. Findings of Differentially Abundant Proteins in HIV‑1‑Infected MDM Pretreated
with BD1047

In this study, we aimed to elucidate the intracellular pathways modulated by BD1047
in HIV‑infected macrophages exposed to cocaine. We hypothesized that the Sig1R antag‑
onist BD1047, prior to cocaine exposure, significantly deregulates proteins and pathways
involved in HIV‑1 replication and CATB secretion that led to neurotoxicity. Differentially
abundant proteins in HIV‑1 MDM pretreated with BD1047 and exposed to cocaine were
subjected to IPA analyses and statistical criteria. However, all the findings were subjected
to a recent literature review for further understanding of the underlyingmechanisms of in‑
fection, mitochondrial dysfunction, and lysosomal/CATB exocytosis. Of these twenty (20)
proteins, sixteen (16) are upregulated: ATP synthasemembrane subunit c locus 1, ATP syn‑
thaseC2, ATP synthaseC3, ATP synthaseD,ATP synthase lipid‑bindingprotein, ADP/ATP
translocase, phosphate carrier protein, tubulin alpha chain 1A, tubulin alpha chain 1B,
tubulin alpha chain 1C, voltage‑dependent anion‑selective channel protein 3, outer mito‑
chondrialmembrane protein porin 2, Annexin 1, Prohibitin, Calnexin, and transmembrane
emp24 domain‑containing proteins. Of these, eight (8) proteins are downregulated: four
(4) of these proteins were identified by IPA analyses (Surfeit locus protein 4, Obg‑like AT‑
Pase 1, Plectin, Glial fibrillary acidic protein), and four (4) were selected and added based
on previous relevant proteinswithHIV + cocaine versusHIV+ groups (Proteasome 26S sub‑
unit ubiquitin receptor, non‑ATPase 2, UDP‑N‑acetylhexosamine pyrophosphorylase‑like,
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UDP‑N‑acetylglucosamine pyrophosphorylase 1 like 1, Stalled ribosome sensor GCN1,
glial fibrillary acidic).

It is important to note that BD1047 pretreatment on infectedMDM exposed to cocaine
has a profound effect on the dysregulation of key proteins. For example, cocaine exposure
to infected MDM upregulated one unique protein, the proteasome 26S subunit ubiquitin
receptor, non‑ATPase 2 (PSMD2) (1.51); BD1047 pretreatment downregulates this protein
(−1.42). PSMD2 is a protein complex of the 26S ribosome that binds ubiquitin‑damaged
proteins, especially viral proteins and lysosomal‑damaged proteins [62]. It has been seen
that PSMD2 is increased in oxidatively stressed systems or infected cells as a regulatory
mechanism to reduce tagged proteins fromHIV‑1, commonly as an emergencymode. Our
results indicate that BD1047 reduces protein dysregulation after viral hijack in these cells.

Other important proteins upregulated by cocaine include: UDP‑N‑acetylglucosamine
pyrophosphorylase 1 like 1 (UAP1L1) (2.22), UDP‑N‑acetylhexosamine pyrophospho‑
rylase‑like (UAP1L1) (2.22), stalled ribosome sensor GCN1 (GCN1) (3.53), and glial fib‑
rillary acidic protein (GFAP) (4.07). These proteins are all downregulated by BD1047 pre‑
treatment in these cells. UAP1L1 is essential in the golgi and endoplasmic reticulum (ER)
stress responses to oxidative stress, apoptosis, or viral infections. UAP1L1 is essential for
sugar addition to proteins that are going to be degraded or need to be processed for further
editing [63]. Results indicate that cocaine increases cellular oxidative stress, and BD1047
abrogates this. Likely, GCN1 is upregulated by cocaine but downregulated after pretreat‑
ment with BD1047. GCN1 is a protein related to HIV‑1 integration in the nucleus [64]
with GCN2, another protein, but also acts as a regulator of proteome quality in stressed or
apoptotic cells [65].

Finally, glial fibrillary acidic protein (GFAP) is upregulated by cocaine and down‑
regulated by BD1047 pretreatment. This result is consistent with previous literature on
cell models [66]. GFAP is present in MDM and astrocytes and is a hallmark of astrocyto‑
sis, which is increased in patients with HIV dementia. Overall, these results indicate that
BD1047 uses common (shared) mechanistic proteins on infected MDM exposed to cocaine
that reduce ER stress response, proteome translation quality, and cellular structure in an
infected and stressed cell model. This could be essential for further therapeutic approaches
with this antagonist.

4.2. Findings of Unique Differentially Abundant Proteins in HIV‑1‑Infected MDM Pretreated
with BD1047/Cocaine Versus HIV + Cocaine Group

Interestingly, BD1047 pretreatment on infected MDM exposed to cocaine dysregu‑
lates eighty proteins. Of those, twenty (20) unique proteins that are not sharedwith cocaine
were selected based on IPA and literature criteria. This indicates that the antagonist acti‑
vates unique mechanisms for the control of infection, lysosomal damage, mitochondrial
dysfunction, and probably CATB exocytosis. The upregulated proteins included ATP syn‑
thase F (0) complex subunit C1 (subunits C1‑C3 and D), ATP synthase lipid‑binding pro‑
tein (ATP5MC1), ADP/ATP translocase (SLC25A31), phosphate carrier protein (SLC25A3),
tubulin alpha chain 1 (subunits 1A‑C) (TUB1A‑C), voltage‑dependent anion‑selective chan‑
nel proteins 1,2,3 (VDAC 1,2,3), Annexin 1 (ANXA1), prohibitin (PHB), calnexin (CANX),
and transmembrane emp24 domain‑containing protein (TMED10). The downregulated
proteins included surfeit locus protein 4 (SURF4), Obg‑like ATPase 1 (OLA1), Plectin
(PLEC), and glial fibrillary acidic protein (GFAP).

4.3. Literature Findings Based on Mitochondrial/Lysosomal/Protein Trafficking
Results indicate that BD1047 treatment uniquely upregulates proteins related to mi‑

tochondrial oxidative stress and ATP production, including ATP synthase F(0) complex
subunit C1, ATP synthase lipid‑binding protein, ADP/ATP translocase 4, and phosphate
carrier protein. These proteins are related to counter‑regulating mitochondrial stress and
increasing ATP synthesis in some cells. This is important to note since the virus readily
uses the ATP machinery to obtain its energy from the cell [68]. However, it also increases
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mechanisms for reducing oxidative stress or promoting apoptosis [69]. ATPase synthase,
lipid‑binding protein, and phosphate carrier protein promote mitochondrial integrity in
many cells by reducing oxidative stress in the cell [70,71].

Other upregulatedmitochondrial proteins include voltage‑dependent anion‑selective
channel protein (VDAC 2,3) and Obg‑like ATPase (OLA1). Upregulation of proteins such
as VDAC 2,3 suggests tight calcium flux control into lysosomes, a major factor for lysoso‑
mal permeabilization and cathepsin B leakage. VDAC 2,3 modulates mitochondrial up‑
take of lysosomal calcium at mitochondria‑lysosome contact sites, preventing mitochon‑
drial calcium internalization and permeabilization of lysosomes by calcium. VDAC 1 is
the most abundant and interacts with hexokinase and anti‑apoptotic proteins, Bcl‑2 and
Bcl‑xL, regulating the traffic of materials through the VDAC1 channel (94).

In terms of protection from endoplasmic reticulum stress, it indicates that there are
intracellular mechanisms for counteracting lysosomal dysfunction and cellular trafficking:
upregulation of Annexin 1 (ANXA1), prohibitin (PHB), transmembrane emp24 domain‑
containing protein TMED10, and calnexin (CANX). For example, annexin 1 (ANXA1)
(FC = 1.63) and prohibitin (PHB) (FC = 1.56) are related to membrane remodeling for vesic‑
ular export and found in endo‑lysosomal pathways [112,113]. Furthermore, PHB upregu‑
lation decreases lysosomal and mitochondrial dysfunction that might lead to cargo leak‑
age from these organelles, promoting the protection of lysosomes [114]. PHB is essential
for mitochondrial damage by modulating oxidative stress [115]. CANX protects against
endoplasmic reticulum stress, protein retention, and folding [116]. TEMD10 controls Rab7‑
LAMP1‑positive lysosomeswhere cathepsinD/B fractions are present for protein and cargo
exportation [117]. Transmembrane emp24 domain‑containing protein (emp24) indicates
that there are intracellular mechanisms for counteracting lysosomal dysfunction and cellu‑
lar trafficking and promotes vesicular transport among the endoplasmic reticulum andmi‑
tochondria [118]. In the samemanner, TUB1A interacts with spinster protein on the lysoso‑
mal membrane to protect them from leakage [119], and VDAC3 modulates mitochondrial‑
lysosomal calcium leakage, an essential step for permeabilization [120].

Downregulated proteins participate in cellular trafficking and protectivemechanisms
against lysosomal andmitochondrial damage. For example, the downregulation of SURF4
reduces the secretion of secretory cargo out of the endoplasmic reticulum and lysosomal
leakage [121], and PLEC promotes the cellular trafficking of lysosomal contents and mito‑
chondrial integrity [121]. Low levels of Obg‑like ATPase 1 (OLA1) support these findings
as well [105,122].

4.4. Literature Findings Based on Cathepsin B Exocytosis and Trafficking
Wehave found in our dataset several highly abundant proteins thatmight be involved

directly or indirectly with pro‑CATB and mature cathepsin B trafficking and secretion in
our system, including Annexin 1 (ANXA1), prohibitin (PHB), and transmembrane emp24
domain protein (TMED10). While other proteins might be involved in lysosomal disrup‑
tion and cathepsin leakage, these proteins are of great interest based on a literature review.
ANXA1might be involved in non‑classical exocytosis of anti‑inflammatory proteins inM2‑
activated macrophages through the TLR4 receptor, including MMR, CD14, cathepsin B
(CATB), CstB, Trx, Anxa1, peptidyl‑prolyl cis‑trans isomerase A (PPIase), TNF‑α, and C‑C
motif chemokine 2 (CCL2) [123,124]. ANXA1 is mostly related to protein complexes with
ANXA2 and ANXA4 for non‑classical exocytosis [125]. Prohibitin (PHB) binds to ANXA2,
affecting pro‑CATB processing [126]. Although not statistically significant in our dataset,
ANXA2 binds with ANXA1 and pro‑CATB and redirects it to the membrane in several
models for exocytosis [126].

Similarly, a high abundance of TMED10 indicates vesicular trafficking of proteins and
promotes retrograde transport of exocytotic vesicles and other cargo [127]. Also, TMED10
controls TLR4 signaling with great similarity to ANXA1. In addition, it is found in late
endosome Rab7‑LAMP1‑positive lysosomes where cathepsin D fractions are present for
protein and cargo exportation [128]. Rab7‑LAMP1 lysosomes might be involved in CATB
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secretion by ANXA1 or TMED10. Dynamical changes in these proteins or other differen‑
tially abundant proteins might affect CATB trafficking and secretion. Functional analyses
are needed to prove this. Based on our previous results, BD1047 treatments cause instead
of CATB being secreted to be trapped at the membrane into ANXA2/1/TMED10 positive
vesicles, caveolae, or CD36 positive vesicles or exosomes, as seen in the literature [129].

The upregulation of PHB also supports this idea. Cell surface CATB has functional
significance since this protein can be redistributed from perinuclear lysosomes into periph‑
eral vesicles and associated with plasma membranes, probably in caveolae‑rich regions
in several cancer cells [130]. We demonstrated that CATB is secreted extracellularly in
macrophages [13] and exosomes during HIV‑1 infection [131]. A detailed proposedmodel
of the role of deregulated proteins on lysosomal instability, CATB processing, transport,
and retention at the membrane of infected MDM can be depicted in Figure 6.
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Figure 6. Effects of Sigma‑1 receptor agonist BD1047 in preventing HIV infection and cathepsin B
release fromHIV‑1‑infectedMDM exposed to cocaine. Proposedmodel on the effect of BD1047 in re‑
versing CATB processing, trafficking, and secretion. Upregulated (red) and downregulated (green).
(A) Mitochondrial dysfunction, which is evident with the upregulation of selected proteins such as
ATP synthase subunits F0 complex (C1–C4 andD), phosphate carrier protein, voltage gate dependent
channel proteins (VDAC), ATP/ADP translocase 4, and ATP lipid binding proteins. (B) Mitochon‑
drial dysfunction influences lysosomal dysfunction and damage as well. Upregulation of phosphate
carrier protein and tubulin 1A (TUBA1) indicates protecting lysosomal integrity. Upregulation of
proteins such as VDAC suggests a major factor in lysosomal permeabilization and cathepsin B leak‑
age. Downregulation of Obg‑like ATPase protein (OLA1) suggests a protection mechanism against
lysosomal leakage. (C) Upregulation of VDAC promotes vesicular transport into other organelles.
(D) Increased protein folding but reduced ER transport. Calnexin (CANX) suggests increased pro‑
tein folding, processing, and intracellular transport of some proteins, including CATB. Downregu‑
lation of surfeit locus protein 4 (SURF4) suggests a concentration of proteins in the ER. (E) Upreg‑
ulation of transmembrane protein emp24 (TMED10) suggests possible movement of Rab7/LAMP1
vesicles for exocytosis. (F) Upregulation of ANXA1 suggests a binding of these proteins with pro‑
and mature CATB either in vesicles or in free form at the cellular membrane or in the cytoplasm. (G)
BD1047 reduces proteasome activation, indicating that CATB is probably retained in lysosomes and
their cargo is not processed through autophagy, where CATB is exposed to the cytosol or fragmented.
Model made on BioRender Premium software (https://www.biorender.com/pricing, accessed on
1 August 2024) with available permission for publishing.
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4.5. Literature Findings Regarding HIV‑1 Infection in MDM
When searching for differentially abundant proteins related toHIV‑1 infection, our re‑

sults demonstrate that BD1047 treatment promotes a dynamic abundance of proteins that
have a differential effect onHIV‑1 infection in our system. Moreover, BD1047 does not com‑
pletely reduce the role of cocaine in increasing the abundance of proteins involved inHIV‑1
mechanisms of entrance, viral processing, or exportation. Furthermore, BD1047 rather pro‑
motes the abundance of certain cellular proteins that might be exploited by the virus for
its life cycle while suppressing others. Some of these proteins include ATPase synthase F
complex subunits, prohibitin (PHB), and transmembrane protein cargo (emp24). For exam‑
ple, mitochondrial ATPase subunits facilitate HIV‑1 transfer in monocytes to CD4‑positive
cells on the virological synapse [62], while HIV‑1 Tat protein increases TUBA1 subunits
for effective viral exportation into vesicles [132]. Similarly, prohibitin (PHB) promotes vi‑
ral exportation into the membrane [89]. Similarly, transmembrane protein cargo (emp24)
interacts with HIV‑1 Rev protein to export viral particles and endosomal trafficking of in‑
fected cells [133]. Upregulation of these proteins indicates that BD1047 treatment does not
completely prevent HIV‑1 viral entry, processing, and exportationmechanisms in infected
MDMs exposed to cocaine. Interestingly, BD1047 treatment also upregulates proteins re‑
lated to decreased HIV‑1 viral entry, movement, and cell replication mechanisms. Some
of these proteins include CANX, TMED10, and ANXA1. Therefore, CANX binds to gp120
and inhibits its processing in infected cells [134], while TMED10 limits the retrograde trans‑
port of the p24 viral protein inside cells through COPII vesicles [135]. Similarly, ANXA1
limits CCR5 expression in gut PBMCs and is negatively correlated with the simian immun‑
odeficiency virus (SIV) in vitro [86]. In the same manner, low levels of Surf4 indicate that
there might be a halt in the replication of certain retroviruses and flaviviruses, including
HCVandpossiblyHIV‑1 [104]. These last results appear to be alignedwith the reduction of
p24 antigen observed after BD1047 treatment in the previous study [1]. Yet, dynamic pro‑
tein abundance changes might be dependent on other extracellular or intracellular signals,
processes, and receptors that need to be fully studied. A proposed model for the effect
of BD1047 in downregulation of proteins related to HIV‑1 particle release is depicted in
Figure 7.
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nits (C1–C4 andD) indicates a strong oxidative environment indicative of cellular stress. Tat dysregu‑
lates this protein. ATP lipid binding protein, phosphate carrier protein, and voltage gate‑dependent
protein channels 2 and 3 (VDAC2/3) collectively promote mitochondrial permeabilization and dam‑
age with several proteins, such as Vpr. (B) It is unknown whether mitochondrial damage might
promote lysosomal leakage or permeabilization; (C) Upregulation of voltage gate‑dependent pro‑
tein channels (VDAC2/3) suggests that vesicular transport increases in Rab4/LAMP1‑positive vesi‑
cles (two important vesicular proteins) for the exportation of several viral proteins, including gp120.
(D) There is a reduction in the hexosaminidase pathway for reducing sugar uptake and usage of the
virus by UAP1L1. (E) Reduction of the mRNA integration by the GCN1 stable sensor with viral inte‑
grase and mRNA exportation by PSMD2, which binds to Rev protein. (F) Upregulation of calnexin
(CANX) suggests inhibition of gp120 processing and transport into other organelles, such as the
Golgi apparatus. (G) Upregulation of transmembrane emp24 protein (TMED10) suggests possible
sequestration of p24 cargo into secretory vesicles. (H) Upregulation of prohibitin (PHB) and annexin
1 (ANXA1) might suggest that there is a retention of exocytotic vesicles in infected macrophages.
(I) HIV‑1 p24, gp120, Env, and Gag particles bind to microtubule chains to promote polymeriza‑
tion for HIV‑1 vesicle exportation. HIV‑1 particles might be retained or incompletely secreted into
the extracellular environment. Figure made by BioRender Premium software (1 August 2024) with
permission for publishing, p ≤ 0.05 criteria were identified with an asterisk (*).

We are aware of several limitations in our study, including the number of biological
samples of healthy women. In the future it will be important to include healthy men. Sim‑
ilarly, we are aware that this study is limited in protein validation through an alternative
process such asWestern Blot or ELISA. However, we believe that our downstream process
is robust enough with high statistical criteria that it can be readily used for further studies.

5. Conclusions
Complementary therapies are required to reduce the neurotoxic effects of HIV‑1 in‑

fection and cocaine in the brain. Infected MDMs migrate into the brain synergistically
with drugs of abuse and secrete several factors that promote neuroinflammation and tox‑
icity. One of those factors is the lysosomal‑derived protein CATB. In a previous study,
we demonstrated that the Sig1R antagonist BD1047 at 10 µM reduced CATB secretion and
HIV‑1 levels when added one hour before cocaine exposure in vitro [1]. These results high‑
light the importance of this antagonist as a potential therapy as well as the importance of
studying intracellular signaling to understand the mechanisms of action in MDMs.

In the present study, we have quantified the proteome from HIV‑infected macro‑
phages treated with the Sig1R antagonist BD1047 prior to cocaine exposure. We aimed
to understand the intracellular pathways activated and associated proteins modified by
BD1047 in HIV‑1‑infected MDM exposed to cocaine. We wanted to examine their role in
HIV infection, lysosomal and mitochondrial dysfunction, and CATB trafficking and secre‑
tion. For this purpose, we applied TMT quantitative proteomics to MDM lysates of HIV‑
infected, cocaine‑exposed, BD1047‑treated, and their respective controls [1]. Our results
indicate that BD1047 pretreatment reduces key proteins that are shared with the HIV + co‑
caine group regarding protein synthesis, folding, and protein control (Proteasome 26S sub‑
unit ubiquitin receptor, non‑ATPase 2, UDP‑N‑acetylhexosamine pyrophosphorylase‑like,
UDP‑N‑acetylglucosamine pyrophosphorylase 1 like 1, Stalled ribosome sensor GCN1,
glial fibrillary acidic). These proteins are downregulated by BD1047 pretreatment, indicat‑
ing that the antagonist abrogates cocaine action on proteome dysregulation mechanisms.

However, BD1047 also dysregulates eighty (n = 80) proteins when compared with the
HIV+ cocaine group. Of those twenty (n = 20), proteins were selected based on IPA analy‑
ses and a literature review. Our findings indicate that BD1047 activates counterregulatory
mechanisms for reducing mitochondrial permeability, dysfunction, and lysosomal perme‑
ability. Also, dysregulated proteins indicate that the antagonist might modulate protein
trafficking and exportation of infected MDM through several proteins and mechanisms.
However, these mechanisms might not completely describe the role of BD1047 in control‑
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ling CATB trafficking and exocytosis. CATB exocytosis can be done by several processes
that include lysosomal permeabilization and secretion. We are aware that key proteins
such as ANXA1, PHB, and CANX are involved in CATB exocytosis in other biological
models, as evidenced in the literature.

Similarly, quantitative proteomic evidence demonstrates that the antagonist can re‑
duce certain viral processes within the MDM. However, as seen in our previous study [1],
BD1047 significantly reducesHIV‑1 p24 antigen levelswhen comparedwith infectedMDM
exposed to cocaine. Although many proteins have dissimilar effects on different parts of
the viral cycle, proteins such as ANXA1, PHB, and TMED10 play a key role in HIV‑1 entry
and exportation. Other proteins are essential for this process as well. However, under‑
standing of the role of BD1047 pretreatment on infectedMDM exposed to cocaine needs to
be further analyzed for deeper understanding and possible use as a potential therapeutic
approach in HIV‑1 patients who are cocaine abusers.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines12091934/s1, Figure S1: SDS PAGE for MS/MS.tiff;
Table S1: TMT Tags Description; Table S2: Dysregulated Proteins in HIV infection, cocaine expo‑
sure, and BD1047 treatment.
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