Scanning Electron Microscopy (SEM) Evaluation of the Ultrastructural Effects on Conjunctival Epithelial Cells of a New Multiple-Action Artificial Tear Containing Cross-Linked Hyaluronic Acid, Cationic Liposomes and Trehalose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Impression Cytology and SEM Examination
2.2. In Vitro and Ex Vivo Study Design
- CTRL1: Drug examined in vitro for structure identification in SEM (in vitro study)
- CTRL2: Conjunctival tissue monolayer evaluated for drug action at 5 min (ex vivo study)
- CTRL3: Conjunctival tissue monolayer evaluated for drug action at 1 h (ex vivo study).
2.3. In Vivo Study Design
3. Results
3.1. In Vitro and Ex Vivo Study
- CTRL1: The structure and morphological characteristics of Trimix® and its distribution and interaction with the ocular surface are identified in vitro by SEM evaluation (Figure 2).Figure 2. We can see the structure of the tear substitute at SEM at 800× magnification (A) and 8000× magnification (B) to understand how it is placed on the epithelial surface and interacts with microvilli.
- CTRL2: Evaluation of the action of Trimix® by SEM on a monolayer of conjunctival tissue at 5 min: slight alteration of the microvilli (grade 1); it is possible to observe the persistence of the product on the epithelial surface (Figure 3).Figure 3. Persistence of Trimix® on conjunctival tissue at 5 min at 800× magnification (A) and 8000× magnification (orange arrows) (B). Blue arrows indicate areas of cells without microvilli at 800× (A). Yellow arrows evidence areas with the presence of microvilli at 8000× (B).
- CTRL3: Evaluation of Trimix® action by SEM on a monolayer of conjunctival tissue at 1 h: the product remains and interacts with the cell surface; the entire preparation area is completely covered by microvilli, unlike the microscopic picture detected at five minutes (Figure 4).Figure 4. After 1 h, Trimix® persists on conjunctival tissue (orange arrows) and interacts with the cells. The sample evaluations at 800× (A) and 8000× (B) show an area completely covered by microvilli (yellow arrow), unlike its 5 min counterpart.
3.2. In Vivo Study Group
- PATIENT 1: 44-year-old woman with moderate inflammation of the ocular surface (grade 2–3).
- PATIENT 2: 56-year-old woman with marked inflammation of the ocular surface (grade 4).
- PATIENT 3: 51-year-old man with no signs of ocular surface inflammation (grade 0).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Labetoulle, M.; Benitez-del-Castillo, J.M.; Barabino, S.; Herrero Vanrell, R.; Daull, P.; Garrigue, J.-S.; Rolando, M. Artificial Tears: Biological Role of Their Ingredients in the Management of Dry Eye Disease. Int. J. Mol. Sci. 2022, 23, 2434. [Google Scholar] [CrossRef]
- Barabino, S.; Benitez-Del-Castillo, J.M.; Fuchsluger, T.; Labetoulle, M.; Malachkova, N.; Meloni, M.; Utheim, T.P.; Rolando, M. Dry eye disease treatment: The role of tear substitutes, their future, and an updated classification. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 8642–8652. [Google Scholar] [PubMed]
- Vigo, L.; Senni, C.; Pellegrini, M.; Vagge, A.; Ferro Desideri, L.; Carones, F.; Scorcia, V.; Giannaccare, G. Effects of a New Formulation of Multiple-Action Tear Substitute on Objective Ocular Surface Parameters and Ocular Discomfort Symptoms in Patients with Dry Eye Disease. Ophthalmol. Ther. 2022, 11, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Collin, S.P.; Collin, H.B. The corneal epithelial surface in the eyes of vertebrates: Environmental and evolutionary influences on structure and function. J. Morphol. 2006, 267, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Grumetto, L.; Del Prete, A.; Ortosecco, G.; Barbato, F.; Del Prete, S.; Borrelli, A.; Schiattarella, A.; Mancini, R.; Mancini, A. Study on the Protective Effect of a New Manganese Superoxide Dismutase on the Microvilli Eyes Exposed to UV Radiation of Rabbit. BioMed. Res. Int. 2015, 2015, 973197. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, G.L.; Del Prete, A.; Forte, R.; Cafiero, G.; Del Prete, S.; Marasco, D. Impression cytology with scanning electron microscopy: A new method in the study of conjunctival microvilli. Eye 2008, 22, 138–143. [Google Scholar] [CrossRef]
- Forte, R.; Cennamo, G.; Del Prete, S.; Cesarano, I.; Del Prete, A. Scanning electron microscopy of corneal epithelium in soft contact lens wearers. Cornea 2010, 29, 732–736. [Google Scholar] [CrossRef]
- Troisi, M.; Del Prete, S.; Troisi, S.; Marasco, D.; Costagliola, C. Scanning Electron Microscopy of Conjunctival Scraping: Our Experience in the Diagnosis of Infectious Keratitis with Negative Culture Tests. Reports 2023, 6, 10. [Google Scholar] [CrossRef]
- Troisi, M.; Del Prete, S.; Troisi, S.; Marasco, D.; Costagliola, C. Correlative microscopy (CLEM) of tarsal conjunctival scraping: A new opportunity in the diagnosis of microbial keratitis. Acta Ophthalmol. 2024, 102. [Google Scholar] [CrossRef]
- Troisi, M.; Del Prete, S.; Troisi, S.; Turco, M.V.; Turco, V.; Del Prete, A.; Gravina, A.; Gravina, A.; Marasco, D. Utility of Scanning Electron Microscopy (SEM) for Suspected Microbial Keratoconjunctivitis Unresponsive to Broad-Spectrum Antibiotic Therapy. J. Clin. Stud. Med. Case Rep. 2023, 10, 155. [Google Scholar] [CrossRef]
- Almulhim, A. Therapeutic Targets in the Management of Dry Eye Disease Associated with Sjögren’s Syndrome: An Updated Review of Current Insights and Future Perspectives. J. Clin. Med. 2024, 13, 1777. [Google Scholar] [CrossRef]
- Thulasi, P.; Djalilian, A.R. Update in Current Diagnostics and Therapeutics of Dry Eye Disease. Ophthalmology 2017, 124, S27–S33. [Google Scholar] [CrossRef] [PubMed]
- Hantera, M.M. Trends in Dry Eye Disease Management Worldwide. Clin. Ophthalmol. 2021, 15, 165–173. [Google Scholar] [CrossRef]
- Tsubota, K.; Yokoi, N.; Watanabe, H.; Dogru, M.; Kojima, T.; Yamada, M.; Kinoshita, S.; Kim, H.-M.; Tchah, H.-W.; Hyon, J.Y.; et al. A New Perspective on Dry Eye Classification: Proposal by the Asia Dry Eye Society. Eye Contact Lens 2020, 46, S2–S13. [Google Scholar] [CrossRef] [PubMed]
- Roszkowska, A.M.; Inferrera, L.; Spinella, R.; Postorino, E.I.; Gargano, R.; Oliverio, G.W.; Aragona, P. Clinical Efficacy, Tolerability and Safety of a New Multiple-Action Eyedrop in Subjects with Moderate to Severe Dry Eye. J. Clin. Med. 2022, 11, 6975. [Google Scholar] [CrossRef] [PubMed]
- Fariselli, C.; Giannaccare, G.; Fresina, M.; Versura, P. Trehalose/hyaluronate eyedrop effects on ocular surface inflammatory markers and mucin expression in dry eye patients. Clin. Ophthalmol. 2018, 12, 1293–1300. [Google Scholar] [CrossRef]
- Laihia, J.; Kaarniranta, K. Trehalose for Ocular Surface Health. Biomolecules 2020, 10, 809. [Google Scholar] [CrossRef]
- Ozek, D.; Kemer, O.E. Effect of the bioprotectant agent trehalose on corneal epithelial healing after corneal cross-linking for keratoconus. Arq. Bras. Oftalmol. 2018, 81, 505–509. [Google Scholar] [CrossRef]
- Mateo-Orobia, A.J.; Del Prado Sanz, E.; Blasco-Martínez, A.; Pablo-Júlvez, L.E.; Farrant, S.; Chiambaretta, F. Efficacy of artificial tears containing trehalose and hyaluronic acid for dry eye disease in women aged 42–54 versus ≥ 55 years. Cont. Lens Anterior Eye 2023, 46, 101845. [Google Scholar] [CrossRef]
- Grassiri, B.; Zambito, Y.; Bernkop-Schnürch, A. Strategies to prolong the residence time of drug delivery systems on ocular surface. Adv. Colloid. Interface Sci. 2021, 288, 102342. [Google Scholar] [CrossRef]
- Nagai, N.; Otake, H. Novel drug delivery systems for the management of dry eye. Adv. Drug Deliv. Rev. 2022, 191, 114582. [Google Scholar] [CrossRef] [PubMed]
- López-Cano, J.J.; González-Cela-Casamayor, M.A.; Andrés-Guerrero, V.; Herrero-Vanrell, R.; Molina-Martínez, I.T. Liposomes as Vehicles for Topical Ophthalmic Drug Delivery and Ocular Surface Protection. Expert. Opin. Drug Deliv. 2021, 18, 819–847. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Zhou, R.; Liu, L.; Lu, Y.; Qi, J.; Wu, W. Liposomes Containing Bile Salts as Novel Ocular Delivery Systems for Tacrolimus (FK506): In Vitro Characterization and Improved Corneal Permeation. Int. J. Nanomedicine 2013, 8, 1921–1933. [Google Scholar] [PubMed]
- Chen, X.; Wu, J.; Lin, X.; Wu, X.; Yu, X.; Wang, B.; Xu, W. Tacrolimus Loaded Cationic Liposomes for Dry Eye Treatment. Front. Pharmacol. 2022, 13, 838168. [Google Scholar] [CrossRef]
- Sánchez-González, J.M.; De-Hita-Cantalejo, C.; Sánchez-González, M.C. Crosslinked hyaluronic acid with liposomes and crocin for management symptoms of dry eye disease caused by moderate meibomian gland dysfunction. Int. J. Ophthalmol. 2020, 13, 1368–1373. [Google Scholar] [CrossRef]
- Fallacara, A.; Vertuani, S.; Panozzo, G.; Pecorelli, A.; Valacchi, G.; Manfredini, S. Novel Artificial Tears Containing Cross-Linked Hyaluronic Acid: An In Vitro Re-Epithelialization Study. Molecules 2017, 22, 2104. [Google Scholar] [CrossRef]
- Troisi, M.; Caruso, C.; D’Andrea, L.; Rinaldi, M.; Piscopo, R.; Troisi, S.; Costagliola, C. Compatibility of a New Ocular Surface Dye with Disposable and Bi-Weekly Soft Contact Lenses: An Experimental Study. Life 2024, 14, 653. [Google Scholar] [CrossRef]
- Troisi, M.; Zannella, C.; Troisi, S.; De Bernardo, M.; Galdiero, M.; Franci, G.; Rosa, N. Ocular Surface Infection by SARS-CoV-2 in COVID-19 Pneumonia Patients Admitted to Sub-Intensive Unit: Preliminary Results. Microorganisms 2022, 10, 347. [Google Scholar] [CrossRef]
- Rolando, M.; Zierhut, M. The ocular surface and tear film and their dysfunction in dry eye disease. Surv. Ophthalmol. 2001, 45, S203–S210. [Google Scholar] [CrossRef]
- Versura, P.; Bonvicini, F.; Caramazza, R.; Laschi, R. Scanning electron microscopy study of human cornea and conjunctiva in normal and various pathological conditions. Scan. Electron. Microsc. 1985, 4, 1695–1708. [Google Scholar]
- Rusciano, G.; Zito, G.; Pesce, G.; Del Prete, S.; Cennamo, G.; Sasso, A. Assessment of conjunctival microvilli abnormality by micro-Raman analysis—by G. Rusciano et al. J. Biophotonics. 2016, 9, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Calonge, M.; Diebold, Y.; Sáez, V.; Enríquez de Salamanca, A.; García-Vázquez, C.; Corrales, R.M.; Herreras, J.M. Impression cytology of the ocular surface: A review. Exp. Eye Res. 2004, 78, 457–472. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, G.; Forte, R.; Del Prete, S.; Cardone, D. Scanning electron microscopy applied to impression cytology for conjunctival damage from glaucoma therapy. Cornea 2013, 32, 1227–1231. [Google Scholar] [CrossRef] [PubMed]
- Tatematsu, Y.; Ogawa, Y.; Shimmura, S.; Dogru, M.; Yaguchi, S.; Nagai, T.; Yamazaki, K.; Kameyama, K.; Okamoto, S.; Kawakami, Y.; et al. Mucosal microvilli in dry eye patients with chronic GVHD. Bone Marrow Transplant. 2012, 47, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Aragona, P.; Ferreri, G.; Micali, A.; Puzzolo, D. Morphological changes of the conjunctival epithelium in contact lens wearers evaluated by impression cytology. Eye 1998, 12, 461–466. [Google Scholar] [CrossRef]
- Meloni, M.; De Servi, B.; Marasco, D.; Del Prete, S. Molecular mechanism of ocular surface damage: Application to an in vitro dry eye model on human corneal epithelium. Mol. Vis. 2011, 17, 113–126. [Google Scholar]
- Liu, L. Development of a New Lubricant and Nutrient Tear Substitute. Ph.D. Thesis, Universität zu Lübeck, Lübeck, Germany, 2004. [Google Scholar]
- Mochizuki, H.; Yamada, M.; Hato, S.; Nishida, T. Fluorophotometric measurement of the precorneal residence time of topically applied hyaluronic acid. Br. J. Ophthalmol. 2008, 92, 108–111. [Google Scholar] [CrossRef]
- Snibson, G.R.; Greaves, J.L.; Soper, N.D.; Tiffany, J.M.; Wilson, C.G.; Bron, A.J. Ocular surface residence times of artificial tear solutions. Cornea 1992, 11, 288–293. [Google Scholar] [CrossRef]
- Zhu, H.; Chauhan, A. Effect of viscosity on tear drainage and ocular residence time. Optom. Vis. Sci. 2008, 85, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Casey-Power, S.; Ryan, R.; Behl, G.; McLoughlin, P.; Byrne, M.E.; Fitzhenry, L. Hyaluronic Acid: Its Versatile Use in Ocular Drug Delivery with a Specific Focus on Hyaluronic Acid-Based Polyelectrolyte Complexes. Pharmaceutics 2022, 14, 1479. [Google Scholar] [CrossRef]
- Guarise, C.; Acquasaliente, L.; Pasut, G.; Pavan, M.; Soato, M.; Garofolin, G.; Beninatto, R.; Giacomel, E.; Sartori, E.; Galesso, D. The role of high molecular weight hyaluronic acid in mucoadhesion on an ocular surface model. J. Mech. Behav. Biomed. Mater. 2023, 143, 105908. [Google Scholar] [CrossRef] [PubMed]
- Greaves, J.L.; Wilson, C.G.; Birmingham, A.T. Assessment of the precorneal residence of an ophthalmic ointment in healthy subjects. Br. J. Clin. Pharmacol. 1993, 35, 188–192. [Google Scholar]
- Greaves, J.L.; Wilson, C.G.; Galloway, N.R.; Birmingham, A.T.; Olejnik, O. A comparison of the precorneal residence of an artificial tear preparation in patients with keratoconjunctivitis sicca and normal volunteer subjects using gamma scintigraphy. Acta Ophthalmol. 1991, 69, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.G.; Zhu, Y.P.; Frier, M.; Rao, L.S.; Gilchrist, P.; Perkins, A.C. Ocular contact time of a carbomer gel (GelTears) in humans. Br. J. Ophthalmol. 1998, 82, 1131–1134. [Google Scholar] [CrossRef] [PubMed]
Grade 0 | Grade 1 | Grade 2 | Grade 3 | Grade 4 |
---|---|---|---|---|
Microvilli on site | Microvilli on site | Microvilli on site | Microvilli on site | Smooth area for microvilli absence |
Normal surface | Normal surface | Low alteration of the surface | High alteration of the surface | High alteration of the surface |
High microvillar distribution | Low microvillar distribution | Microvillar distribution on spot | Microvillar sensible reduction with spotted smooth areas | Microvillar absence |
Arborescent structure of microvilli | Structure of microvilli not totally arborescent | Pseudomicrovilli | Pseudomicrovilli | Smooth surface, moon surface |
Patients | OSDI Score | Fluotest | TBUT | SEM Evaluation | ||||
---|---|---|---|---|---|---|---|---|
T0 | T30 | T0 | T30 | T0 | T30 | T0 | T30 | |
F, 44 years old | 18 | 9 | 1 | 0 | 5″ | 9″ | 1 | 0 |
F, 56 years old | 32 | 12 | 4 | 1 | 2″ | 7″ | 3 | 1 |
M, 51 years old | 9 | 6 | 0 | 0 | 10″ | 13″ | 0–1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Troisi, M.; Del Prete, S.; Troisi, S.; Marasco, D.; Rinaldi, M.; Costagliola, C. Scanning Electron Microscopy (SEM) Evaluation of the Ultrastructural Effects on Conjunctival Epithelial Cells of a New Multiple-Action Artificial Tear Containing Cross-Linked Hyaluronic Acid, Cationic Liposomes and Trehalose. Biomedicines 2024, 12, 1945. https://doi.org/10.3390/biomedicines12091945
Troisi M, Del Prete S, Troisi S, Marasco D, Rinaldi M, Costagliola C. Scanning Electron Microscopy (SEM) Evaluation of the Ultrastructural Effects on Conjunctival Epithelial Cells of a New Multiple-Action Artificial Tear Containing Cross-Linked Hyaluronic Acid, Cationic Liposomes and Trehalose. Biomedicines. 2024; 12(9):1945. https://doi.org/10.3390/biomedicines12091945
Chicago/Turabian StyleTroisi, Mario, Salvatore Del Prete, Salvatore Troisi, Daniela Marasco, Michele Rinaldi, and Ciro Costagliola. 2024. "Scanning Electron Microscopy (SEM) Evaluation of the Ultrastructural Effects on Conjunctival Epithelial Cells of a New Multiple-Action Artificial Tear Containing Cross-Linked Hyaluronic Acid, Cationic Liposomes and Trehalose" Biomedicines 12, no. 9: 1945. https://doi.org/10.3390/biomedicines12091945
APA StyleTroisi, M., Del Prete, S., Troisi, S., Marasco, D., Rinaldi, M., & Costagliola, C. (2024). Scanning Electron Microscopy (SEM) Evaluation of the Ultrastructural Effects on Conjunctival Epithelial Cells of a New Multiple-Action Artificial Tear Containing Cross-Linked Hyaluronic Acid, Cationic Liposomes and Trehalose. Biomedicines, 12(9), 1945. https://doi.org/10.3390/biomedicines12091945