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Abstract: Type 2 diabetes mellitus (T2DM) is a prevalent chronic metabolic disorder characterized
by insulin resistance and progressive beta cell dysfunction, presenting substantial global health
and economic challenges. This review explores recent advancements in diabetes management,
emphasizing novel pharmacological therapies and their physiological mechanisms. We highlight the
transformative impact of Sodium-Glucose Cotransporter 2 inhibitor (SGLT2i) and Glucagon-Like
Peptide 1 Receptor Agonist (GLP-1RA), which target specific physiological pathways to enhance
glucose regulation and metabolic health. A key focus of this review is tirzepatide, a dual agonist of
the glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 receptors. Tirzepatide illustrates
how integrating innovative mechanisms with established physiological pathways can significantly
improve glycemic control and support weight management. Additionally, we explore emerging
treatments such as glimins and glucokinase activators (GKAs), which offer novel strategies for
enhancing insulin secretion and reducing glucose production. We also address future perspectives
in diabetes management, including the potential of retatrutide as a triple receptor agonist and
evolving guidelines advocating for a comprehensive, multifactorial approach to care. This approach
integrates pharmacological advancements with essential lifestyle modifications—such as dietary
changes, physical activity, and smoking cessation—to optimize patient outcomes. By focusing
on the physiological mechanisms of these new therapies, this review underscores their role in
enhancing T2DM management and highlights the importance of personalized care plans to address
the complexities of the disease. This holistic perspective aims to improve patient quality of life and
long-term health outcomes.

Keywords: insulin resistance; SGLT2i; GLP1-RA; tirzepatide; GIP receptor agonists;
diabetes management; comprehensive care approach; pharmacological therapies

1. Introduction

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by
insulin resistance and progressive beta cell dysfunction, leading to hyperglycemia. It is
the most common form of diabetes, accounting for about 90–95% of all diabetes cases
worldwide. The prevalence of T2DM has been rising at an alarming rate, driven by factors
such as population aging, urbanization, and lifestyle changes, which include unhealthy
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diets and physical inactivity. According to the International Diabetes Federation (IDF), as
of 2021, approximately 537 million adults (20–79 years) were living with diabetes globally,
a figure projected to increase to 643 million by 2030 and 783 million by 2045 [1]. This rapid
rise in diabetes cases imposes a substantial burden on individuals and healthcare systems.
Diabetes is associated with serious complications such as cardiovascular disease, kidney
failure, neuropathy, and retinopathy, which can lead to disability and premature death [2].
In addition to the human cost, diabetes poses significant economic challenges. The global
healthcare expenditure on diabetes was estimated to be USD 966 billion in 2021, an increase
of 316% over the past 15 years [1]. These statistics underscore the urgent need for effective
diabetes management strategies that not only control blood glucose levels but also address
the broader health implications and socioeconomic impacts of the disease.

In recent years, the management of diabetes has seen significant advancements
with the introduction of innovative medications that offer improved glycemic control
and additional health benefits. Medications such as Sodium-Glucose Cotransporter 2 in-
hibitor (SGLT2i), Glucagon-Like Peptide 1 Receptor Agonist (GLP-1RA), and the novel
dual glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 receptor agonist,
tirzepatide, have revolutionized diabetes treatment paradigms (Table 1). However, while
these pharmacological advancements are crucial, managing diabetes effectively extends
beyond medication alone [3–5]. Diabetes management, in fact, requires a multifactorial
approach that addresses not only blood glucose control but also the myriad of factors
that influence overall health and well-being. Pharmacological treatment alone is insuffi-
cient. Multifactorial care integrates dietary modifications, regular physical activity, weight
management, and smoking cessation, which are critical in reducing the risk of complica-
tions such as cardiovascular disease, nephropathy, and neuropathy. Moreover, continuous
patient education and psychological support play vital roles in enhancing treatment ad-
herence, self-management, and quality of life. Personalized care plans must consider
individual patient needs, preferences, comorbidities, and control of the entire spectrum
of risk factors for cardiovascular disease, not only to prevent the onset of complications
but also to enhance overall cardiovascular health. By addressing the diverse aspects of
diabetes, a multifactorial care approach aims to achieve comprehensive disease manage-
ment, improve patient outcomes, and reduce the burden of diabetes on individuals and
healthcare systems [6].

Balancing the efficacy and benefits of new medications with comprehensive care
strategies ensures that patients receive personalized, effective, and sustainable treatment,
ultimately improving their overall quality of life and long-term health outcomes. This
review explores the modern challenges in diabetes management by examining the latest
therapeutic innovations and their integration into a holistic care framework.

Table 1. Overview of key diabetes medications.

Drug Class Drug Name Mechanism
of Action Indications Drug Formulation Restrictions Adverse Effects

SGLT2i

Dapagliflozin
Empagliflozin
Canagliflozin
Sotagliflozin
Ertugliflozin

SGLT2 inhibition in
the proximal tubule
of the kidney,
reducing glucose
reabsorption

T2DM; T1DM
in combination
with insulin
(Sotagliflozin,
Dapagliflozin);
HFrEF
(Dapagliflozin,
Empagliflozin)

Film-coated tablet

Hypersensitivity to
the active substance
or excipients;
caution in patients
at high risk of
diabetic ketoacidosis

Urogenital
infections, diabetic
ketoacidosis,
diarrhea, increased
creatinine, polyuria,
pollakiuria,
volume depletion

GLP-1RA
Liraglutide
Dulaglutide
Semaglutide

GLP-1 receptor
agonists: enhance
insulin secretion,
inhibit glucagon
release, and slow
gastric emptying

T2DM, obesity

Solution for
injection in
pre-filled pen;
tablet (Semaglutide)

Hypersensitivity to
the active substance
or excipients

Nausea, vomiting,
diarrhea, abdominal
pain, decreased
appetite, fatigue,
local injection
site reactions,
cholelithiasis,
gastroesophageal
reflux disease,
constipation,
flatulence
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Table 1. Cont.

Drug Class Drug Name Mechanism
of Action Indications Drug Formulation Restrictions Adverse Effects

GLP-1/GIP
Receptor Agonist Tirzepatide

Dual agonist: acts as
both a GIP analogue
and GLP-1 receptor
agonist, enhancing
insulin secretion
and reducing
glucagon levels

T2DM, obesity
Solution for
injection in
pre-filled pen

Hypersensitivity to
the active substance
or excipients

Nausea, vomiting,
diarrhea, abdominal
pain, fatigue,
gastroesophageal
reflux disease,
constipation,
flatulence, local
injection site
reactions,
hypersensitivity
reactions

Glimins Imeglimin

Dual mechanism:
improves
mitochondrial
function, reducing
insulin resistance,
and enhances
insulin secretion
from pancreatic
beta cells

T2DM Oral tablets

Restricted in
patients with severe
renal impairment or
hepatic impairment

Nausea, vomiting,
diarrhea, possible
risk of lactic acidosis

GK Activators Dorzagliatin

GK activator
increases glucose
sensitivity and
enhances insulin
secretion by
activating
glucokinase

T2DM
(investigational)

Oral tablets
(investigational)

Limited data
available;
contraindications
pending further
clinical trials

Hypoglycemia,
gastrointestinal
disturbances,
potential long-term
cardiovascular risks
(under investigation)

GLP-1/GIP/
Glucagon Receptor
Agonist

Retatrutide

Triple agonist:
activates GLP-1, GIP,
and glucagon
receptors, leading to
improved glycemic
control, enhanced
insulin secretion,
weight loss, and
lipid control

Obesity, T2DM
(under
investigation)

Subcutaneous
injection
(investigational)

Contraindicated in
patients with a
history of medullary
thyroid carcinoma
or multiple
endocrine neoplasia
syndrome

Nausea, vomiting,
diarrhea, possible
risk of thyroid
tumors (under
investigation),
pancreatitis, and
gallbladder issues

2. Research Strategy

In preparing this review, a structured literature search was conducted to identify
relevant studies on novel pharmacological therapies and their physiological mechanisms
in Type 2 diabetes management. We utilized databases such as PubMed, MEDLINE,
Web of Science, and Scopus, focusing on peer-reviewed articles published within the last
10 years. Our search strategy employed key terms such as “Type 2 Diabetes”, “SGLT2
inhibitors”, “GLP-1 receptor agonists”, “tirzepatide”, “Glimins”, “Glucokinase activators”,
and “multifactorial care”. The inclusion criteria emphasized studies that explored the
impact of these novel therapies on glycemic control, weight management, and overall
metabolic health. We also prioritized studies that discussed the transition from single drug
therapies to their integration within multifactorial care approaches. We included clinical
trials, systematic reviews, and meta-analyses to ensure a comprehensive review of the
evidence. Exclusion criteria involved studies that lacked clinical relevance and statistical
power and where not written in English.

3. SGLT2 Inhibitors: A New Era in Diabetes Treatment

Inhibitors of the SGLT2, also known as gliflozins, are a class of antihyperglycemic
drugs crucial in treating T2DM [7]. Healthy kidneys filter approximately 160 g of glucose
per day under euglycemic conditions; when blood glucose levels increase to the point that
the filtered load exceeds this capacity, the excess is excreted in the urine [8]. Approximately
90% of filtered glucose reabsorption is mediated by SGLT2 located on the apical membrane
of the S1 segment of the proximal tubule cells, while SGLT1 reabsorbs the remaining 2–3%
under normoglycemic conditions [9]. SGLT2 symporters cotransport glucose and sodium
in a 1:1 ratio: glucose is passively transported by GLUT1 and GLUT2 transporters at the
anti-luminal site, while sodium is extruded by an active outward movement driven by
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ATP [10]. This sodium gradient across the apical membrane is maintained by basolateral
Na+/K+-adenosine triphosphatase, which pumps out Na+ and pumps in K+, resulting
in low intracellular Na+ concentration, thereby facilitating glucose reabsorption through
the luminal membrane [11]. The capacity for renal glucose reabsorption is enhanced in
diabetes due to SGLT2 overexpression in the proximal tubule cells (PTCs), which can be
explained by their persistent exposure to high glucose levels [12]. This upregulation has
been linked to the activation of angiotensin II (Ang II) AT1 receptors [13] and the transcrip-
tion factor hepatocyte nuclear factor HNF-1α [14], potentially responding to basolateral
hyperglycemia sensed through GLUT2 [15]. Consequently, diabetic patients have a higher
threshold for urinary glucose excretion and increased glucose reabsorption compared to
healthy individuals [16,17]. Under hyperglycemic conditions, increased reabsorption via
SGLT1 and SGLT2 leads to a reduction in sodium concentration in the downstream tubular
lumen [18]. This concentration is falsely perceived as effective hypovolemia by the macula
densa at the end of the Henle loop, triggering tubulo-glomerular feedback. High sodium
levels in the cells inhibit the conversion of ATP into the potent vasoconstrictor adenosine,
leading to a reduction in vasodilation of the afferent arteriole, while the intrarenal activa-
tion of the renin-angiotensin-aldosterone system constricts the efferent arteriole [19,20].
The resulting increase in intraglomerular pressure induces hyperfiltration and glomerular
injury with urinary albumin excretion, potentially leading to kidney damage up to overt
diabetic nephropathy. The PTCs also contain the sodium/hydrogen exchanger (NHE) 3,
responsible for the reabsorption of approximately two thirds of the total sodium reab-
sorption. NHE3 exchangers colocalize with SGLT2 symporters, and their activities are
linked via the accessory membrane-associated protein 17 [21]. As a result, the increased
activity of one may increase the activity of the other, explaining why SGLT2 inhibitors
can block NHE3 [22,23]. Indeed, SGLT2 inhibition is associated with a marked inhibition
of NHE3, even in the absence of glucose. This result can explain the significant SGLT2
inhibitor-induced natriuresis [24] (Figure 1).
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Figure 1. Schematic representation of the mechanism of action of Sodium-Glucose Cotransporter
2 inhibitors (SGLT2is). These inhibitors target SGLT2 transporters in the proximal renal tubules,
reducing glucose reabsorption and enhancing glucose excretion in the urine, thereby lowering blood
glucose levels. The figure also highlights the roles of the Na+/H+ exchanger (NHE3) and the Na+/K+
ATPase pump, which work together to maintain the sodium gradient essential for the operation
of SGLT2. Additionally, the glucose transporter (GLUT) is depicted, illustrating its function in
facilitating the reabsorption of glucose into the bloodstream.
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The induction of glucosuria leads to improved glycemic control in all stages of T2DM,
with a low risk of hypoglycemia, because they stop working when the filtered glucose
load drops below 80 g per day without interfering with metabolic counter regulation [8].
This antihyperglycemic effect is influenced by specific factors. The efficacy of these drugs
decreases progressively as blood glucose concentration falls [25]. Another factor is the
glomerular filtration rate (GFR); the lower the GFR, the smaller the glycosuria [26]. These
drugs influence glycosylated hemoglobin (HbA1c), which decreases by 7–10 mmol/mol
(0.6–0.9%) compared with the placebo [27]. In addition to their main glycosuric effect, this
class of drugs is characterized by pleiotropic actions, resulting in benefits for blood pressure,
body weight, and particularly cardiovascular and renal protection. SGLT2 inhibition
reduces body weight, initially through a diuretic effect, and subsequently by shifting
substrate utilization from carbohydrates to lipids, thereby reducing body fat, including
visceral and subcutaneous fat. The released free fatty acids are also used for the hepatic
formation of ketone bodies, which provide additional energy substrates to improve the
performance of cardiac myocytes and kidney epithelia [28,29]. By decreasing blood glucose
and body weight, SGLT2 inhibitors cause a sustained improvement in beta cell function
and insulin sensitivity [8]. The cardioprotective effect has been analyzed and demonstrated
through several clinical trials. The clinical trials EMPAREG OUTCOME, CANVAS, and
DECLARE-TIMI 58 showed that this class of drugs improved cardiovascular outcomes
in T2DM patients with atherosclerotic cardiovascular disease: they significantly reduced
the risk of myocardial infarction (MI), cardiovascular mortality, and all-cause mortality,
although they had no effect on strokes [30–32]. In addition to the primary outcomes, several
secondary or exploratory endpoints were collected from these trials, including those related
to heart failure (HF) and kidney disease [33,34]. All gliflozins significantly reduced the risk
of hospitalization for heart failure by approximately 30%, both in newly onset or recurrent
HF [35]. Moreover, evidence was also reported by several real-world studies of SGLT2
is having proven to ameliorate cardiac remodeling [36–40]. Regarding kidney disease,
several specific trials (CREDENCE, DAPA CKD, EMPA-KIDNEY) demonstrated the ability
of SGLT2 inhibitors to reduce a composite of renal outcomes by 40–70%, including the
doubling of serum creatinine, development of macroalbuminuria, need for dialysis and/or
transplantation, and kidney death, regardless of antihyperglycemic action [41–43] (Table 2).

The primary and well-recognized side effects are euglycemic diabetic ketoacidosis
(DKA) and urinary tract infections (UTIs) [44]. DKA has been reported with an incidence
rate varying from 0.16 to 0.76 events per 1000 patient-years, with recognized risk factors
including malnutrition, infectious diseases, weight loss, vomiting, or imbalanced insulin
doses [45]. Moreover, to reduce the risk of euglycemic DKA, the American Diabetes
Association Standards of Care recommends that SGLT2 inhibitors be discontinued 3–4 days
before surgery [46]. The etiopathogenesis is still not fully clear; some authors suggest
that SGLT inhibitors can stimulate lipolysis, liver ketogenesis, and a reduction in insulin
production, leading to increased ketone storage and ketonemia. Additionally, it seems
that the increased renal reabsorption of ketones and the hypovolemia induced by SGLT
inhibitors could increase this risk [47]. The risk of UTIs is associated with glycosuria, which
increases the likelihood of glucose accumulation in the urinary tract, thereby promoting
bacterial growth [48]. Patients who receive proper training in regular personal hygiene
can mitigate this risk. Furthermore, it appears that this effect does not extend to an
increased risk of pyelonephritis or upper urinary tract infections [49]. Meta-analyses
also confirmed an increased risk of genital infections, particularly among females and
those with a prior history of such infections [50–52]. These genital infections, however, are
typically non-severe and manageable without necessitating the discontinuation of treatment.
An exception is Fournier’s gangrene, a rare but life-threatening condition [53,54].

There have been concerns that SGLT2is may affect mineral metabolism, potentially
reducing bone density and increasing the risk of fractures [55,56]. Specifically, decreases
in total hip bone mineral density (BMD) have been observed after two years of treatment
with Canagliflozin. The CANVAS trial indicated a significantly higher risk of fractures
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overall with Canagliflozin compared to the placebo, though no significant difference in
low-trauma fractures was noted. In contrast, the EMPA-REG OUTCOME and DECLARE-
TIMI 58 studies did not show a significant difference in fracture risk [30,33]. Additionally,
SGLT2is may predispose patients to dehydration and an increased risk of falls, warranting
caution when prescribing these drugs, particularly to the elderly population [33].

Table 2. Summary of key clinical trials for cardiovascular and renal outcomes with diabetes medications.

Trial Drug Primary Outcome Secondary Outcomes Ref.

EMPA-REG OUTCOME Empagliflozin Reduced risk of cardiovascular mortality
and all-cause mortality in T2DM patients

Improved heart failure outcomes,
no significant effect on stroke [30]

CANVAS Canagliflozin Reduced risk of myocardial infarction (MI)
and cardiovascular mortality

Increased risk of fractures, reduced
hospitalization for heart failure [31]

DECLARE-TIMI 58 Dapagliflozin Reduced risk of major cardiovascular
events (MACE)

Reduced risk of hospitalization for
heart failure [32]

CREDENCE Canagliflozin Reduced risk of renal outcomes
(e.g., doubling of serum creatinine)

Reduced progression to dialysis
and kidney-related death [41]

DAPA-CKD Dapagliflozin Reduced risk of renal outcomes, regardless
of diabetes status

Improved cardiovascular
outcomes in CKD patients [42]

EMPA-KIDNEY Empagliflozin Reduced risk of progression to end-stage
renal disease (ESRD)

Improved cardiovascular outcomes
in kidney disease patients [43]

LEADER Liraglutide Reduced MACE, including cardiovascular
death, non-fatal MI, and stroke

Reduced renal mortality and
macroalbuminuria [57]

SUSTAIN-6 Semaglutide Lowered risk of MACE in T2DM patients Notable reductions in HbA1c and
body weight [58]

REWIND Dulaglutide Reduced MACE in T2DM patients with
lower baseline cardiovascular risk Reduced macroalbuminuria [59]

HARMONY Albiglutide Reduced MACE in T2DM patients – [60]

PIONEER-6 Oral Semaglutide Reduced MACE – [61]

AMPLITUDE-O Efpeglenatide Cardiovascular benefits similar to other
GLP-1Ras – [62]

SELECT Semaglutide
Reduced incidence of cardiovascular death,
MI, and stroke in obese patients
without T2DM

– [63]

FLOW Semaglutide Nephroprotective effects, including
reduced progression to ESRD – [64]

STEP HFpEF Semaglutide Improved symptoms and physical
limitations in HFpEF patients

Greater weight loss, better
exercise function [65]

SURMOUNT-1 Tirzepatide Significant weight loss in obese patients Improved cardiovascular
outcomes [66]

SUMMIT Tirzepatide Ongoing trial for cardiovascular outcomes
in T2DM patients – [67]

SURPASS-CVOT Tirzepatide Reduced hazard ratio for cardiovascular
outcomes in T2DM patients – [68]

4. GLP-1 Receptor Agonists: Enhancing Glycemic Control and Beyond

The Glucagon-Like Peptide 1 Receptor (GLP-1R) belongs to the class B family of G
protein-coupled receptors [69]. It is primarily expressed in the beta cells of the pancreas
but is also found in the neurons of both the central and peripheral nervous systems, as well
as various cells in the gastrointestinal tract [70]. The natural ligand for GLP-1R is the
incretin hormone GLP-1, which is secreted by enteroendocrine L cells in response to food
intake [71]. The binding of GLP-1 to its receptor in the pancreas initiates a signaling cascade
that involves cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA), leading
to a series of pleiotropic effects crucial for glucose regulation [72].

Endogenous GLP-1 is rapidly degraded by the enzyme dipeptidyl peptidase 4 (DPP-4)
into a less active form, which is then quickly eliminated by the kidneys [73]. Due to its short
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half-life—generally around 1 or 2 min in humans—direct administration of GLP-1 as a drug
is limited [74]. This challenge is addressed by GLP-1RAs, which mimic the actions of GLP-1
and have been shown to be a significant advancement in the treatment of T2DM, offering
benefits beyond traditional glycemic control [75]. For instance, Coskun et al. developed a
GLP-1RA with a half-life of approximately five days, improving patient compliance [76].

GLP-1RAs enhance glycemic control through several mechanisms. Upon binding to
GLP-1R on pancreatic beta cells, these agonists activate adenylyl cyclase, converting ATP
into cAMP. Elevated cAMP levels activate PKA and exchange protein directly activated by
cAMP (EPAC), both of which are pivotal in insulin secretion and glucose regulation [77].
PKA phosphorylates various targets, including those that regulate calcium channels, facili-
tating calcium entry into the cell, essential for insulin release. Additionally, PKA inhibits
ATP-sensitive potassium channels, causing cell membrane depolarization and further in-
creasing calcium influx. This rise in intracellular calcium triggers the exocytosis of insulin
granules, releasing insulin into the bloodstream [78] (Figure 2).
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Figure 2. Schematic representation of the molecular pathways involved in the mechanism of action
of GLP-1RAs. Upon binding to GLP-1 receptors on pancreatic beta cells, GLP-1RAs activate the
cAMP/PKA signaling pathway, leading to the phosphorylation of the cAMP response element-binding
protein (CREB). This activation enhances insulin gene transcription and secretion. Additionally, GLP-
1RAs inhibit glucagon release from alpha cells via the same signaling pathway, thus decreasing hepatic
glucose production. Colored dots represent key molecules in insulin secretion from beta cells. Orange
dots (Na+) and red dots (Ca2+) illustrate ion flow crucial for membrane depolarization, which triggers
the release of insulin (dark pink) and amylin (pink), aiding in glucose regulation.

GLP-1RAs also act on pancreatic alpha cells to inhibit glucagon secretion, thereby
decreasing hepatic glucose production and contributing to lower blood glucose levels [79].
These agents slow gastric emptying, reducing the rate at which glucose is absorbed into the
bloodstream postprandially. This effect is mediated through neural pathways and direct
actions on the gastrointestinal tract [80]. Additionally, GLP-1RAs influence the CNS to
promote satiety and reduce food intake by activating receptors in the hypothalamus and
other brain regions involved in appetite regulation [81].

Beyond the primary cAMP-PKA pathway, GLP-1RAs engage several secondary sig-
naling mechanisms. cAMP activates EPAC2, which activates proteins such as Ras-related
protein 1 (RAP1) and phospholipase C (PLC). PLC generates inositol triphosphate (IP3)
and diacylglycerol (DAG), promoting calcium release from intracellular stores. PKA also
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phosphorylates the IP3 receptor, enhancing IP3-mediated calcium release, and modu-
lates enzymes involved in metabolic pathways, increasing glucose uptake and utilization.
The combined increase in intracellular calcium and activation of downstream kinases fa-
cilitates the docking and fusion of insulin-containing vesicles with the plasma membrane,
culminating in insulin release [82].

GLP-1RAs are highly effective in improving glycemic control in T2DM, lowering
HbA1c levels by approximately 0.5 to 1.5% depending on the specific drug and patient
characteristics [83–85]. Originally developed for diabetes management, GLP-1RAs like
semaglutide and liraglutide have also been found to aid in weight reduction [86]. These
drugs work by decreasing appetite and hunger while increasing feelings of fullness, which
helps reduce overall calorie intake [87–89]. Beyond glycemic control, GLP-1RAs offer
significant cardiovascular benefits. Several large-scale cardiovascular outcomes trials
(CVOTs) have demonstrated the benefits of GLP-1 receptor agonists in both glycemic con-
trol and cardiovascular health. The LEADER trial showed that liraglutide significantly
reduced major adverse cardiovascular events (MACEs), including cardiovascular death,
non-fatal myocardial infarction, and non-fatal stroke, while also reducing renal mortality
and macroalbuminuria in patients with T2DM [57]. Similarly, the SUSTAIN-6 trial con-
firmed that semaglutide lowered the risk of MACE alongside providing notable reductions
in HbA1c and body weight [58]. The REWIND trial, which focused on dulaglutide, demon-
strated a reduction in MACEs, even in a population with a lower baseline cardiovascular
risk compared to other trials, and also showed reductions in macroalbuminuria. More
recent trials continue to highlight the broad benefits of GLP-1Ras [59]. The HARMONY
trial [60], with albiglutide, and the PIONEER-6 trial [61], with oral semaglutide, also demon-
strated reductions in MACEs. The AMPLITUDE-O trial [62] evaluated efpeglenatide and
confirmed similar cardiovascular benefits. The SELECT trial [63] and the ongoing SOUL
trial [90] are further exploring the long-term cardiovascular effects of semaglutide, with
a continued focus on MACE reduction. The SELECT trial showed that in patients with
pre-existing cardiovascular disease and overweight or obesity but without diabetes, weekly
subcutaneous semaglutide (2.4 mg) was superior to the placebo in reducing the incidence of
death from cardiovascular causes, non-fatal myocardial infarction, or non-fatal stroke [61].
Additionally, newer trials such as the FLOW trial have shown the nephroprotective ef-
fects of semaglutide, including reductions in the progression to end-stage renal disease,
renal mortality, and creatinine levels [64]. The STEP HFpEF trial demonstrated that in
patients with heart failure with preserved ejection fraction and obesity, treatment with
semaglutide (2.4 mg) led to larger reductions in symptoms and physical limitations, greater
improvements in exercise function, and greater weight loss compared to the placebo [65].

Large-scale cardiovascular outcome trials (CVOTs) have consistently demonstrated
that these medications can reduce major adverse cardiovascular events (MACEs), including
non-fatal myocardial infarction, non-fatal stroke, and cardiovascular death [91–93] (Table 2).
Additionally, they have been observed to lower systolic blood pressure modestly, improve
lipid profiles by reducing LDL cholesterol and triglycerides, and potentially offer nephro-
protective effects, such as reducing albuminuria and slowing the decline in the estimated
glomerular filtration rate (eGFR).

GLP-1RAs are generally well tolerated and are not associated with an increased risk
of hypoglycemia, thanks to the glucose-dependent activation of beta cells involving several
intracellular mediators, such as EPAC and calcium [94]. However, they do carry some
potential risks and side effects. The most common adverse effects are gastrointestinal
symptoms, such as nausea, vomiting, and diarrhea, particularly when starting therapy [95].
There have been reports of acute pancreatitis associated with these medications, though a
definitive causal relationship has not been established [96]. Additionally, an increased risk
of gallbladder-related events, including cholelithiasis and cholecystitis, has been observed.
Patients with pre-existing renal impairment should use these medications with caution,
as there is potential for worsening renal function. In rodent studies, GLP-1RAs have been
linked to an increased risk of thyroid C-cell tumors, but this risk has not been confirmed in
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humans. Injection site reactions can also occur with these drugs. Despite these potential
side effects, the benefits of GLP-1RAs in managing T2DM often outweigh these risks,
but healthcare providers should monitor patients closely [97].

5. New Frontiers: The Promise of Tirzepatide

Tirzepatide is a recently developed drug useful in the treatment of T2DM and for
weight loss. This molecule shows 80% bioavailability, binds with albumin, undergoes liver
metabolism through proteolytic cleavage and fatty acid β-oxidation, and is excreted via the
urine and feces, with a half-life of 5 days, allowing for weekly subcutaneous administration.
It is considered a long-acting molecule, with its extended activity primarily due to the
addition of two residues to its lysine-linked side chain, enabling the drug to exert its benefits
longer than its natural homologues [98].

Tirzepatide is a unimolecular dual agonist that acts as an analogue of gastric inhibitory
polypeptide (GIP) and as a receptor agonist for glucagon-like peptide 1 (GLP-1). Its structure
is a linear synthetic peptide comprising 39 amino acids, 19 of which are similar to those in
GIP. Pharmaceutical modifications include a residue in the DPP4-binding site, making this
molecule resistant to DPP4 enzymatic action; additionally, a fatty acid side chain linked to
a lysine residue promotes a high-affinity bond with albumin, extending its half-life to up to
5 days. GIP and GLP-1 are involved in blood sugar homeostasis; they are secreted by cells
in the human gut after food intake and regulate insulin release by pancreatic β-cells. GIP
is produced by K cells in the duodenum after nutrient intake, with receptors mainly in the
pancreas but also in the heart, adrenal cortex, and fat tissue. GLP-1 is secreted by L cells in
the bowel, with receptors predominantly in pancreatic β-cells and, to a lesser degree, in the
liver, kidneys, gastric mucosa, and brain (where it regulates satiety and food intake) [98,99]
(Figure 3).
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Figure 3. Schematic representation of the molecular pathways involved in the mechanism of action
of tirzepatide in pancreatic beta cells. Tirzepatide acts on the GIPR/GLP-1R receptors, leading to
the activation of adenylate cyclase (AC) and an increase in cyclic AMP (cAMP) levels. This activates
protein kinase A (PKA), which in turn promotes glycolysis, ATP production, and gene transcription.
The increase in ATP levels causes membrane depolarization by closing potassium (K+) channels,
and opening sodium (Na+) and calcium (Ca2+) channels, resulting in Ca2+ influx. The elevated
intracellular Ca2+ concentration stimulates insulin (dark pink) and amylin (pink) secretion.

GIP is the most effective incretin-acting polypeptide in humans, and its action is
triggered by increased blood glucose levels, linked with rising levels of cyclic adenosine
monophosphate (cAMP). Hyperglycemia stimulates GIP secretion and promotes an in-
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crease in GIP receptor expression, enhancing cAMP levels to optimize incretin secretion.
Tirzepatide’s affinity for both receptors varies; it binds more strongly to GIP receptors
compared to GLP-1 receptors. This dual pathway activation significantly increases in-
sulin secretion. Additionally, studies show that this drug improves circulating levels of
adiponectin, a protein known for its role in lipid and glucose metabolism [99].

Tirzepatide’s health benefits extend to cardiovascular protection and renoprotection.
Its cardiovascular benefits are closely related to enhanced GIP effectiveness, promoting
anti-atherogenic effects on endothelial cells, activating endothelial nitric oxide synthase
(eNOS) for vasodilation, and suppressing advanced glycation end-products (AGEs) and
other atherogenic molecules. Furthermore, studies suggest potential therapeutic efficacy in
lowering CD36 levels—a membrane protein involved in fatty acid import and acting as a
scavenger receptor expressed mostly in abdominal fat, jejunal mucosa, and monocytes—
and in suppressing inflammatory responses in macrophage foam cells [100]. A mechanism
involving the reduction in triglyceride-rich lipoproteins has been postulated, contributing to
the stabilization of atherosclerotic plaques. Three significant studies (SURMOUNT-1, SUM-
MIT [an ongoing multicentric trial], and SURPASS-CVOT) have evaluated improvements
in cardiovascular outcomes in patients with obesity, heart failure, and T2DM, respectively,
showing a significant reduction in the hazard ratio [66–68] (Table 2).

In terms of renoprotection, tirzepatide was evaluated in patients with cardiovascular
disease, showing a significant reduction in kidney-worsening events, such as renal-related
mortality, progression of kidney function decline to end-stage renal disease (ESRD), and
new onset of macroalbuminuria, compared with treatment with insulin glargine [68]. Addi-
tionally, it is known that increased cAMP levels trigger PKA activation and inhibit oxidative
stress-related kidney damage, preventing the progression of diabetic nephropathy [101].
Tirzepatide also appears to stimulate renin-secreting cells in the juxtaglomerular apparatus,
enhancing natriuresis and nitric oxide levels (via decreased angiotensin II levels), thereby
preventing chronic kidney injury [102].

For these reasons, tirzepatide is a promising therapeutic option for patients with T2DM
and those needing significant weight loss, regardless of T2DM status. Comparative studies
between standard and innovative T2DM treatments underscore the superiority of this
new molecule over both placebo and active comparators (degludec [SURPASS-3], glargine
[SURPASS-4], and semaglutide [SURPASS-2]), with significant reductions in HbA1c levels
after 40 and 52 weeks, particularly at doses up to 15 mg/week. The same studies, following
the same dosage regimen, also reported significant body weight loss [101,103,104].

Tirzepatide is generally well tolerated, with the most adverse effects being gastroin-
testinal symptoms, such as nausea, vomiting, and diarrhea, occurring within the first month
of treatment. More serious adverse events, such as pancreatitis (3%) and cell proliferation in
thyroid and pancreatic tissues, which could lead to neoplasms, are rarer [105–107]. The link
between tirzepatide administration and endocrine cancers is currently unclear.

In conclusion, this new drug has made significant advancements in therapeutic strate-
gies for T2DM and weight loss. Its potential to treat other metabolic conditions, such as
obstructive sleep apnea syndrome (OSAS) and steatohepatitis, highlights its versatility, as
demonstrated by recent studies [105,108].

6. Future Perspectives in Diabetes Management

The landscape of diabetes management is rapidly evolving, with promising advance-
ments in therapies and technologies, updated guidelines, and new standards of care.

6.1. Glimins

Among the emerging therapies, glimins represent a new class of oral glucose-lowering
drugs with mechanisms distinct from traditional medications. These molecules primarily
act within the mitochondria, targeting the mitochondrial respiratory chain complex to
reduce the production of reactive oxygen species (ROS) and prevent mitochondrial per-
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meability transition pore opening, thereby protecting cells from death. They achieve this
through partial inhibition of Complex I and correction of deficient Complex III activity [109].

Glimins increase glucose-stimulated insulin secretion (GSIS), a defective process in
diabetic patients, involving an NAD+–cyclic ADP-ribose–Ca2+ signaling pathway. ATP
and NAD+ production is increased through the “salvage pathway”, with an induction of
nicotinamide phosphoribosyltransferase (NAMPT) and an increase in the glucose-induced
ATP pool [109] (Figure 4).

Biomedicines 2024, 12, 2039 22 of 27 
 

 
Figure 4. Schematic representation of the mechanism of action of Imeglimin in pancreatic β-cells. 
Imeglimin acts by inhibiting mitochondrial pyruvate uptake, leading to a reduction in the ATP/ADP 
ratio. This decrease triggers downstream effects, including the activation of nicotinamide phos-
phoribosyltransferase (NAMPT), which enhances the salvage pathway, converting nicotinamide 
into nicotinamide mononucleotide (NMN) and subsequently into nicotinamide adenine dinucleo-
tide (NAD+) through the action of nicotinamide mononucleotide adenylyltransferase (NMNAT). 
NAD+ serves as a substrate for CD38, which catalyzes the formation of cyclic ADP-ribose (cADPR) 
and nicotinic acid adenine dinucleotide phosphate (NAADP). These molecules facilitate calcium 
(Ca2+) release from the endoplasmic reticulum (ER) and lysosomes through the ryanodine receptors 
(RyR) and two-pore channels (TPCs), respectively. The resulting increase in intracellular Ca2+ con-
centration contributes to membrane depolarization and promotes insulin secretion. 

6.2. GK Activators 
Another promising therapy involves glucokinase activators (GKAs), which address 

the increased hepatic glucose production fundamental to the pathophysiology of T2DM. 
Glucokinase (GK) is the key enzyme for gluconeogenesis in hepatocytes, converting glu-
cose into glucose-6-phosphate [114]. GK is also expressed in various other tissues, partic-
ularly in the pancreas, where it functions as a glucose sensor in beta cells, regulating in-
sulin secretion [115]. Although there is no established correlation between pancreatic GK 
function and T2DM [116], GK remains inactive in the liver during fasting, forming a com-
plex with glucokinase regulatory protein (GKRP) in the nucleus. Postprandial increases 
in glucose levels dissociate this complex, allowing GK to become active in the cytoplasm 
[117]. 

While mutations in the GCK gene cause maturity-onset diabetes of the young type 2 
(MODY2), no GCK mutations have been clearly identified in the etiology of typical T2DM. 
However, Haeusler et al. discovered that in diabetic patients with high HbA1c levels 
(>7.0), GK expression was suppressed by more than 60%, likely due to transcriptional or 
post-translational effects on the enzyme [118]. 

In this context, GKAs are a promising class of antidiabetic drugs that regulate glyce-
mia and enhance beta cell function in T2DM patients [119]. Two recent molecules have 
shown great potential in terms of efficacy and safety. Dorzagliatin, also known as HMS-
5552, is a dual-acting GKA that has completed two phase III trials. It targets both the liver 
and pancreas, working as an allosteric activator to stabilize a high-affinity conformation 
of the enzyme, thus increasing glucose phosphorylation activity. In the liver, Dorzagliatin 
activates GK, leading to the dissociation of the GK-GKRP complex. In the pancreas, the 

Figure 4. Schematic representation of the mechanism of action of Imeglimin in pancreatic β-cells.
Imeglimin acts by inhibiting mitochondrial pyruvate uptake, leading to a reduction in the ATP/ADP
ratio. This decrease triggers downstream effects, including the activation of nicotinamide phospho-
ribosyltransferase (NAMPT), which enhances the salvage pathway, converting nicotinamide into
nicotinamide mononucleotide (NMN) and subsequently into nicotinamide adenine dinucleotide
(NAD+) through the action of nicotinamide mononucleotide adenylyltransferase (NMNAT). NAD+

serves as a substrate for CD38, which catalyzes the formation of cyclic ADP-ribose (cADPR) and
nicotinic acid adenine dinucleotide phosphate (NAADP). These molecules facilitate calcium (Ca2+)
release from the endoplasmic reticulum (ER) and lysosomes through the ryanodine receptors (RyR)
and two-pore channels (TPCs), respectively. The resulting increase in intracellular Ca2+ concentration
contributes to membrane depolarization and promotes insulin secretion.

Additionally, glimins preserve β-cell mass and increase the number of insulin gran-
ules [110], while simultaneously reducing insulin resistance in insulin-sensitive tissues [111].
Glimins also exhibit a protective effect on human endothelial cells by modulating mito-
chondrial permeability in hyperglycemia-induced oxidative stress environments, without
inhibiting mitochondrial respiration, suggesting a potential role in preventing diabetic
macrovascular and microvascular complications [112].

Imeglimin, the first molecule of this new class of oral antidiabetic drugs, has shown
substantial improvement in glycemic control, safety, and tolerability, even as a monother-
apy [113].

6.2. GK Activators

Another promising therapy involves glucokinase activators (GKAs), which address
the increased hepatic glucose production fundamental to the pathophysiology of T2DM.
Glucokinase (GK) is the key enzyme for gluconeogenesis in hepatocytes, converting glucose
into glucose-6-phosphate [114]. GK is also expressed in various other tissues, particularly
in the pancreas, where it functions as a glucose sensor in beta cells, regulating insulin
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secretion [115]. Although there is no established correlation between pancreatic GK function
and T2DM [116], GK remains inactive in the liver during fasting, forming a complex with
glucokinase regulatory protein (GKRP) in the nucleus. Postprandial increases in glucose
levels dissociate this complex, allowing GK to become active in the cytoplasm [117].

While mutations in the GCK gene cause maturity-onset diabetes of the young type 2
(MODY2), no GCK mutations have been clearly identified in the etiology of typical T2DM.
However, Haeusler et al. discovered that in diabetic patients with high HbA1c levels
(>7.0), GK expression was suppressed by more than 60%, likely due to transcriptional or
post-translational effects on the enzyme [118].

In this context, GKAs are a promising class of antidiabetic drugs that regulate glycemia
and enhance beta cell function in T2DM patients [119]. Two recent molecules have shown
great potential in terms of efficacy and safety. Dorzagliatin, also known as HMS-5552, is
a dual-acting GKA that has completed two phase III trials. It targets both the liver and
pancreas, working as an allosteric activator to stabilize a high-affinity conformation of
the enzyme, thus increasing glucose phosphorylation activity. In the liver, Dorzagliatin
activates GK, leading to the dissociation of the GK-GKRP complex. In the pancreas,
the drug-activated GK inhibits insulin resistance and increases insulin sensitivity [120]
(Figure 5).

TTP399, or Cadisegliatin, is a liver-specific GKA that has completed a phase II trial.
Although its structural interaction with GK is still partially unclear, preclinical studies have
shown that it binds to the allosteric site of GK, expanding its kinase binding cavity and
increasing its catalytic activity without interfering with GK-GKRP interaction [121].
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Figure 5. Schematic representation of the mechanism of action of glucokinase (GK) activators.
The figure illustrates two distinct mechanisms by which GK activity is modulated in hepatocytes.
Dorzagliatin (DORZA) promotes the dissociation of the glucokinase regulatory protein (GKRP)-
GK complex within the nucleus, resulting in the release of active GK into the cytosol. This active
GK facilitates the phosphorylation of glucose (Glc) to glucose-6-phosphate (Glc-6-P), a key step in
glycolysis. In contrast, TTP399 activates GK directly without disrupting the GK-GKRP complex,
enhancing the enzyme’s catalytic activity. Both mechanisms increase the conversion of glucose to
glucose-6-phosphate, thus promoting glycolysis and enhancing glucose utilization. The figure also
shows glucose entering the cell through GLUT2 transporters, emphasizing the coordinated regulation
of glucose metabolism.

6.3. Retatrutide

Finally, among new drugs for diabetes treatment, retatrutide stands out as a GIP, GLP-1,
and glucagon receptor triple agonist. It is a single peptide that interacts with these three
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different receptors. Compared to the already known tirzepatide (a GLP-1/GIP receptor
agonist), retatrutide also acts on the glucagon receptor, increasing energy expenditure in
mice [122].

It has been demonstrated that glucagon decreases hunger through the activation of
the central nervous system via the vagus nerve. Weight loss induced by glucagon is due
to increased energy expenditure, thermogenesis, and fatty acid oxidation, suggesting that
this hormone impacts body weight through both feeding-dependent and -independent
mechanisms [123]. In 2023, Sanyal et al. studied the effect of a 24-week treatment with
retatrutide on liver fat reduction, finding that at least 80% of participants achieved >70%
relative reduction in liver fat, and more than 85% achieved resolution of steatosis, defined as
<5% total liver fat content. This outcome is superior to that seen with SGLT2is, dulaglutide,
tirzepatide, and even semaglutide [124,125].

7. Evolving Guidelines and Standards of Care

In many studies, a decline in diabetes complications has been reported; various factors
may be responsible for this change, but one of the most significant reasons is the improved
management of risk factors [126]. According to ESC guidelines, it is recommended to screen
patients with diabetes for the presence of severe target organ damage (TOD) [127,128] and
for symptoms suggestive of atherosclerotic cardiovascular disease (ASCVD) [129,130].
In patients with T2DM without symptomatic ASCVD or severe TOD, it is recommended
to estimate cardiovascular (CV) risk [131], considering various factors such as clinical
and family history, laboratory tests, and other examinations. The 2023 ESC guidelines
introduced the SCORE2-Diabetes tool to calculate the 10-year CV risk in diabetic patients,
considering multiple risk factors, including the patient’s country of origin. This tool
classifies 10-year CV risk into four categories: low risk (<5%), moderate risk (5–10%), high
risk (10–20%), and very high risk (>20%) [131].

Once this parameter is calculated, efforts should focus on reducing CV risk through
various means. Primarily, improving the patient’s lifestyle [2,132] through a balanced
low-carb diet and regular exercise can induce weight loss, significantly reducing HbA1c
and blood pressure [133]. Smoking cessation is also crucial, as it is associated with a 36%
reduction in mortality in cardiovascular disease patients [134–137]. Kim et al. showed
that smoking cessation and initiation of exercise after diabetes diagnosis are associated
with a 46% reduced risk of cardiovascular disease [136]. Recent research highlights that
smoking cessation, rather than reduction, is associated with reduced cardiovascular disease
risk [137]. If lifestyle changes are not enough to improve glycemia and other risk factors
(such as high blood pressure, lipid abnormalities, and obesity), medication should be used
to reduce CV risk [138].

Defining glycemic targets in diabetes management is complex. Tight glycemic control
(HbA1c < 7%) decreases the risk of microvascular complications, but there is a U-shaped
relationship between HbA1c levels and clinical outcomes, with increased mortality asso-
ciated with excessively tight control. Hence, lower HbA1c is not always better [139–150].
Individualized glycemic targets should consider life expectancy, comorbidities, and dia-
betes duration. For patients with a short life expectancy, softer glycemic targets (HbA1c
< 8.5%) may be appropriate, whereas tighter targets (HbA1c < 7%) are suitable for those
with longer life expectancy, prioritizing agents with proven cardiovascular benefits and
low hypoglycemic risk. It is crucial to avoid hypoglycemia, as it is associated with an
increased risk of vascular events [151,152]. Figure 6 illustrates the FDA approval timeline
for medications used in the treatment of type 2 diabetes. This timeline highlights key
milestones in the evolution of therapeutic options, reflecting the continuous advancements
in diabetes management [153]. Figure 7 complements this by presenting the chemical
structures of these key medications, visually depicting the molecular innovations that
underlie their therapeutic effects. As new drugs are developed and approved, they shape
clinical guidelines and standards of care, offering healthcare professionals an expanding
range of tools to better manage this chronic condition.
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T2DM [167]. These findings have shown that in addition to glycemic control, targeting
other modifiable cardiovascular risk factors, such as blood pressure, cholesterol, lifestyle,
and obesity, can prevent micro- and macrovascular complications [167–169].

Some hypotheses have been proposed to explain the pathophysiological mechanisms
underlying the protective effects observed in subjects undergoing multifactorial inter-
ventional treatment. According to some studies, an additive protective effect is due to
multifactorial intervention on cardiovascular and endothelial inflammatory damage. The
effects of blood pressure-lowering treatment with RAS inhibition, the “legacy effect” on
AGEs due to glucose-lowering therapy, the impact of statins on LDL and inflammatory
cytokines, and the inhibition of platelet adhesion may reduce leukocyte activation and thus
atherosclerosis [170,171].

The most up-to-date guidelines have highlighted the fundamental role of “tailored”
therapy and the control of cardiovascular risk factors in preventing the development and
progression of diabetic disease and its complications [172–174].

8.2. Role in Multifactorial Diabetes Care of New Drug Treatments

For optimal glycemic control, achieving an HbA1c of less than 7% is recommended to
reduce the risk of microvascular complications while avoiding hypoglycemic events. For
multifactorial intervention, guidelines suggest achieving a target systolic blood pressure
of 130 mmHg and LDL-C levels of less than 100 mg/dL for individuals at moderate
cardiovascular risk, less than 70 mg/dL for those at high risk, and less than 55 mg/dL for
those at very high risk [172].

Currently, no single drug can address and control all cardiovascular risk factors [175].
Metformin, in the absence of contraindications, remains the first-line treatment at the time
of diabetes diagnosis [176]. However, recent scientific evidence has shown that new drugs
for the treatment of T2DM (GLP1-RAs and SGLT2 inhibitors) may have pleiotropic effects.
Besides helping achieve glycemic targets, these drugs can prevent the progression of ma-
jor cardiovascular risk factors, such as reducing blood pressure, having diuretic effects,
lowering body mass index, and reducing heart filling pressures and volumes [125,176,177].
Therefore, the history and clinical characteristics of each patient should guide the best
choice of tailored therapy, especially in addition to metformin [174,178–180]. Results
from randomized placebo-controlled trials have demonstrated that in subjects with T2DM
and atherosclerotic cardiovascular disease, both SGLT2 inhibitors and GLP1-RAs showed
proven cardiovascular benefits, including reduced hospitalization and mortality risk. Specif-
ically, in subjects with diabetes and heart failure with reduced ejection fraction, SGLT2
inhibitors are recommended (class I, level A evidence), with specific recommendations for
empagliflozin or dapagliflozin in subjects with left ventricular ejection fraction over 40% [6].
Moreover, recent evidence has shown that chronic kidney disease (CKD) is strongly asso-
ciated with the risk of developing heart failure and major adverse cardiovascular events
(MACEs), especially in individuals with T2DM [180,181]. In such conditions, both SGLT2 in-
hibitors and GLP1-RAs are useful in reducing cardiovascular risk. For subjects with stage IV
or V CKD (eGFR < 30 mL/min per 1.73 m2), GLP1-RAs are primarily recommended [174].

8.3. Addressing Patient Adherence and Lifestyle Modifications

The treatment of T2DM should always begin with lifestyle modifications. The chal-
lenge for clinicians often lies in encouraging patients to make lifestyle changes, considering
their physical, social, and economic characteristics. Here again, the concept of tailored
therapy is crucial in guiding clinicians toward the best choice [6].

In at least 90% of cases, T2DM is associated with overweight or obesity, which in turn
often results from an unbalanced lifestyle rich in refined carbohydrates and marked by
physical inactivity. Several studies have shown that a lifestyle characterized by moderate
weekly physical exercise and a healthy diet can significantly reduce the risk of metabolic
diseases and cardiovascular complications (RR: 0.84; 95% CI: 0.77, 0.91) [182,183]. Accord-
ing to guidelines, a Mediterranean diet and 180 min per week of moderate physical activity
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form the basis of a healthy lifestyle. However, other dietary approaches have also shown
promise in reducing cardiovascular risk, though further evidence is needed to confirm
these benefits [184–189].

8.4. Coordinating Care among Healthcare Providers

Clinicians, whether working alone or as part of a multidisciplinary team, play a central
role in applying the most appropriate therapeutic strategies to address each cardiovascular
risk factor. As noted earlier, some trials have demonstrated how multifactorial intervention
can reduce the risk of major cardiovascular events (MACEs) and mortality [190].

The Steno-2 study was the first to address this issue. In this trial, subjects with
microalbuminuria were randomly assigned to either intensive treatment or conventional
therapy. The intensive treatment group aimed for stricter multifactorial treatment targets
and, at the end of the study, showed a significant reduction in their risk of nephropathy (HR,
0.39; 95% CI, 0.17 to 0.87), retinopathy (HR, 0.42; 95% CI, 0.21 to 0.86), autonomic neuropathy
(HR, 0.37; 95% CI, 0.18 to 0.79), stroke, and mortality (HR, 0.54; 95% CI, 0.32 to 0.89) [191,192].
In another trial, the Japan Diabetes Outcome Intervention Trial (J-DOIT3), individuals with
T2DM in the intensive therapy group experienced a significant reduction in their risk of
cerebrovascular events (HR, 0.42; 95% CI, 0.24 to 0.74), nephropathic events (HR, 0.68; 95%
CI, 0.56 to 0.82), and retinopathic events (HR, 0.86; 95% CI, 0.74 to 1.00) [193]. More recently,
the NID-2 study, a trial conducted on subjects with T2DM and high cardiovascular risk,
demonstrated the efficacy of multifactorial treatment [170]. The intensive arm showed a
53% lower risk of MACEs (adjusted HR 0.47, 95% CI 0.30–0.74, p = 0.001) and a reduced all-
cause death risk (adjusted HR 0.53, 95% CI 0.29–0.93, p = 0.027). Furthermore, a subsequent
post hoc analysis revealed that individuals with a higher number of risk factors at target
had better cardiovascular prognoses [155].

9. Limitations and Perspectives

This review provides a comprehensive overview of recent advancements in Type 2
diabetes management, focusing on novel pharmacological therapies. However, several
limitations should be acknowledged for proper data interpretation. First, the scope of the
literature covered was limited by the availability and selection of published studies, poten-
tially introducing publication bias and restricting the inclusion of emerging but less widely
reported treatments. Additionally, the heterogeneity of the included studies—varying
in methodology, population, and outcome measures—may challenge the generalizability
of the findings. Future research should aim to address these limitations through more
systematic, interdisciplinary approaches. Moving forward, the integration of novel treat-
ments into multifactorial care should consider individual patient variability and long-term
outcomes [194]. Further exploration of emerging therapies, such as retatrutide, and the
development of personalized treatment plans will be critical to advancing Type 2 diabetes
care [195]. Incorporating a broader range of studies, including those that evaluate the
combination of pharmacological interventions with lifestyle modifications, will be essen-
tial to optimizing patient outcomes and addressing the complexities of Type 2 diabetes
management [196].

10. Conclusions

The management of T2DM has evolved significantly, with new therapeutic agents
and a broader focus on multiple cardiovascular risk factors. This shift from a glucocentric
approach has been crucial in reducing both microvascular and macrovascular complications
in diabetic patients [197,198].

Medications like GLP-1 receptor agonists, SGLT2 inhibitors, tirzepatide, and glimins
not only enhance glycemic control but also provide cardiovascular and renal benefits,
underscoring the importance of personalized treatment plans based on individual patient
characteristics [197]. Lifestyle modifications, including diet and exercise, remain founda-
tional in T2DM management, highlighting the role of healthcare providers in coordinating
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comprehensive care [198]. Multidisciplinary approaches, validated in trials such as Steno-2,
J-DOIT3, and NID-2, have been effective in reducing major adverse cardiovascular events
(MACEs) and improving patient outcomes. These advancements emphasize the need for a
holistic treatment strategy that combines emerging therapies with lifestyle interventions
and thorough monitoring of cardiovascular and metabolic health [199]. As diabetes man-
agement continues to advance, a focus on individualized care and comprehensive risk
factor management will be key to optimizing patient outcomes.
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