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Abstract: The identification of significant gene biclusters with particular expression patterns and the
elucidation of functionally related genes within gene expression data has become a critical concern due
to the vast amount of gene expression data generated by RNA sequencing technology. In this paper,
a Conserved Gene Expression Module based on Genetic Algorithm (CGEMGA) is proposed. Breast
cancer data from the TCGA database is used as the subject of this study. The p-values from Fisher’s
exact test are used as evaluation metrics to demonstrate the significance of different algorithms,
including the Cheng and Church algorithm, CGEM algorithm, etc. In addition, the F-test is used to
investigate the difference between our method and the CGEM algorithm. The computational cost of
the different algorithms is further investigated by calculating the running time of each algorithm.
Finally, the established driver genes and cancer-related pathways are used to validate the process.
The results of 10 independent runs demonstrate that CGEMGA has a superior average p-value of
1.54 × 10−4 ± 3.06 × 10−5 compared to all other algorithms. Furthermore, our approach exhibits
consistent performance across all methods. The F-test yields a p-value of 0.039, indicating a significant
difference between our approach and the CGEM. Computational cost statistics also demonstrate that
our approach has a significantly shorter average runtime of 5.22 × 100 ± 1.65 × 10−1 s compared to
the other algorithms. Enrichment analysis indicates that the genes in our approach are significantly
enriched for driver genes. Our algorithm is fast and robust, efficiently extracting co-expressed genes
and associated co-expression condition biclusters from RNA-seq data.

Keywords: Conserved Gene Expression Module; biclustering; evolutionary mechanism; breast cancer;
Mean Squared Residue Score

1. Introduction

The quest to understand cancer at the molecular level reveals a complex landscape
where cancer cells demonstrate unique gene expression patterns diverging significantly
from their healthy counterparts. The advent of high-throughput sequencing technologies,
such as RNA sequencing (RNA-seq), has opened new vistas in cancer research by fur-
nishing an unparalleled richness of transcriptomic data [1,2]. These technologies have
catapulted us into an era where the voluminous and sophisticated nature of genomic data
presents a formidable challenge, necessitating the use of computational techniques to sift
through this extensive dataset to unearth genes that exhibit coordinated expression under
specific conditions [3,4]. Concurrently, it has become increasingly clear that cancer is not a
consequence of anomalies in single genes but emerges from complex interactions among
multiple co-expressed RNAs.

Amidst this complexity, it is crucial to identify the specific conditions under which
cancer genes are co-expressed. The specific conditions of co-expression, which leads to
the research question of biclustering. Biclustering allows us to identify clusters of genes
that exhibit coordinated expression under certain conditions, offering insights that con-
ventional clustering methods, which assume co-expression across all conditions, might
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miss [5–12]. The quest for deciphering these patterns has spurred the development of
various heuristic algorithms since the pioneering CC algorithm by Cheng and Church
in 2000 [13]. These include the Modified Cheng and Church’s algorithm (MCC) [14], the
Large Average Submatrix algorithm (LAS) [15], the Relative Density based Biclustering
Method (RelDenClu) [16], and the Connectedness-based subspace clustering (CBSC) [17],
all designed to tackle the biclustering challenge as an optimization problem, striving for
efficient extraction of meaningful genomic insights from RNA-seq data [18,19]. In the com-
parative analysis of biclustering algorithms, each method presents distinct characteristics
that allow it to be applied to specific research needs in a tailored manner. The spectral
CC method is particularly effective in identifying co-expressed gene and condition sub-
matrices, which is a valuable capability in the analysis of gene expression data. However,
its high time complexity and sensitivity to noise can act as limitations, particularly when
dealing with large datasets. MCC offers an ensemble learning approach that enhances
stability and accuracy across various data types, with robustness against noise, although
this is at the cost of higher computational requirements. LAS proposes a statistical method
that is effective in detecting numerically significant submatrices within high-dimensional
data, demonstrating strong resistance to noise and scalability to large datasets, despite
its computational intensity. Conserved Gene Expression Motif (CGEM) employs a graph-
based approach to identify conserved gene expression motifs, offering insights into gene
regulatory networks [20]. However, its utility is more suited to medium to small-scale
datasets, and its effectiveness depends on the stability of the graph structure. RelDenClu
and CBSC are density-based subspace clustering algorithms that aim to partition data
points into multiple subspaces, wherein data points within the same subspace exhibit
higher connectivity compared to those in different subspaces. RelDenClu identifies subsets
of observations exhibiting dependence between features by comparing joint and marginal
densities, and subsequently groups data points based on these features. In contrast, CBSC
leverages connectivity scores to identify subspaces. Both algorithms exhibit robustness,
although CBSC is more computationally intensive. RelDenClu is capable of uncovering
feature relationships based on nonlinear dependencies, whereas CBSC is more suited for
linear relationships. In conclusion, the selection of an appropriate biclustering algorithm
should be based on the characteristics of the data set, the specific research objectives, and
the available computational resources. Each algorithm possesses distinctive advantages in
identifying the intrinsic patterns within biological data. Table 1 provides a comparative
analysis of the aforementioned six algorithms.

Although these algorithms represent a significant advance in the field, they are not
without limitations. In particular, their reliance on exhaustive traversals to identify ge-
netic traits associated with cancer renders them somewhat inefficient. This process is both
time-consuming and a significant consumer of computing resources [21–23]. Furthermore,
the complex interrelationships between diverse gene combinations and cancer progres-
sion present a significant challenge to optimization, particularly when using traditional
methods [24]. However, recent advances have demonstrated the potential of evolutionary
algorithms (EAs) in overcoming these challenges. They exhibit robust global optimization
capabilities, parallel processing properties, adaptability and resilience, maintenance of
population diversity, adaptive tuning of parameters, scalability of algorithms, and a search
process that does not depend on predefined thresholds. These characteristics assist the
genetic algorithm in circumventing local optimal solutions, thereby enhancing the algo-
rithm’s efficacy in processing extensive gene expression data and offering a new paradigm
for efficient bicluster identification.
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Table 1. A comparative analysis of the characteristics of the six algorithms, namely CC, MCC, LAS, CGEM, RelDenClu, and CBSC.

Characteristics
Algorithms

CC MCC LAS CGEM RelDenClu CBSC

Core Idea

Iterative spectral method
for finding co-expressed

gene and condition
submatrices

Ensemble learning method
combining multiple base

biclustering algorithms for
improved stability

Statistical method for
finding large average

submatrices in
high-dimensional data,
focusing on numerical

features

Graph-based method for
extracting conserved

gene expression motifs

Find sets of observations
with high local density

Find subspaces with
high connectivity

Algorithm Type Spectral clustering Ensemble learning Statistical method Graph-based method Density clustering Connectivity clustering

Time Complexity High
Moderate to high

(depending on the number
and type of base algorithms)

High Moderate High High

Space Complexity Moderate
High (requires storage of
results from multiple base

algorithms)

High (requires storage of
extensive submatrix

information)
Moderate High High

Applicable Data
Type Expression data General (applicable to

various types of data)
General (applicable to
various types of data) Expression data Microarray data High-dimensional data

Robustness Moderate (sensitive to
noise)

High (ensemble methods
reduce the impact of noise)

High (statistical methods
have some resistance to

noise)

Moderate (depends on
the stability of the graph

structure)
High High

Scalability
Moderate (suitable for
medium to small-scale

data)

Good (can be scaled to
large-scale data)

Good (suitable for
large-scale data)

Moderate (suitable for
medium to small-scale

data)

Moderate (suitable for
medium to small-scale

data)
Medium

Pattern Type
Discovered Co-expression patterns Diverse patterns (depending

on the base algorithms)
Numerically significant

submatrices
Conserved expression

motifs
Nonlinear relationships

between features
Subspace structures

based on connectivity

Real-world
Applications

Gene expression analysis
in bioinformatics

Widely applied in
bioinformatics and machine

learning

Bioinformatics, image
processing, and other

fields

Gene network analysis
in bioinformatics

Gene functional
grouping in microarray

data

Gene functional
grouping in

bioinformatics
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Leveraging this insight, we introduce the Conserved Gene Expression Module al-
gorithm enhanced by a Genetic Algorithm (CGEMGA). This novel approach not only
capitalizes on the strengths of the CGEM algorithm but also harnesses the power of EAs to
navigate the optimization landscape more effectively. By incorporating the Mean Squared
Residual Score (MSR) criterion, CGEMGA stands out in its ability to efficiently identify
the most optimal gene combinations pertinent to breast cancer, as validated by rigorous
testing against breast cancer datasets, and Fisher’s exact test comparisons with other algo-
rithms. Remarkably, this approach not only enhances reliability but also drastically reduces
computational overhead, setting a new benchmark in biclustering algorithm efficiency.

2. Materials and Methods
2.1. Data Acquisition of Breast Cancer Samples

In our quest to unravel the complex genetic architecture of breast cancer, we have
procured gene expression profiles from The Cancer Genome Atlas (TCGA). This global
repository offers an extensive compendium of human cancer genomes, serving as a beacon
for researchers worldwide [25–28]. Our analysis is anchored in the rich dataset of 421 breast
cancer samples, encompassing a diverse array of 12,129 genes, carefully selected for their
relevance to our study.

To further reinforce the empirical foundation of our study, we refer to the Catalogue
of Somatic Mutations in Cancer (COSMIC) as a reference point. The Cancer Gene Cen-
sus (CGC) on the Sanger Institute’s website provides access to the comprehensive and
meticulously curated catalogue of cancer-driving genes, COSMIC. This database, which
is instrumental in both cancer genetics research and drug development initiatives, has
recently been expanded to encompass 739 genes that are crucial to the progression of
cancer [29,30]. The judicious choice of these datasets shows how seriously we’re taking the
molecular intricacies of breast cancer.

2.2. Overview of Biclustering

The concept of biclustering, a term coined by Cheng and Church in the groundbreak-
ing introduction of their CC algorithm in 2000, has evolved significantly over the years.
This pioneering contribution heralded a new era in the exploration of gene expression
dynamics across diverse conditions through the application of biclustering techniques.
These sophisticated algorithms, by framing the biclustering challenge as an optimization
problem (COP), set out to uncover patterns within the genetic matrix that elude traditional
analysis methods. At the heart of this endeavor is the quest for submatrices within the gene
expression matrix that exhibit unique patterns of interest, encapsulated in the specially
defined score functions and heuristic solutions of the COP [31,32].

To illustrate, let’s consider the data matrix X = {E, F}, where E = {e1, . . . eN} symbol-
izes the set of N genes and F = { f1, . . . , fM} represents the set of M conditions. Within this
framework, a bicluster B emerges as a subset, defined by B = {(EB, FB); EB ⊆ E, FB ⊆ F}.
This subset transcends to the status of a bicluster only if it adheres to specific patterns,
typically quantified by the Mean Squared Residual (MSR) score.

The MSR is defined as:

H(I, J) =
1

|I||J|∑i∈I,j∈J

(
aij − ai J − aI j + aI J

)2, (1)

where aij denotes the matrix element, with the row and column means and the overall
mean of the submatrix B calculated as follows:

ai J =
1
|J|∑j∈J aij, aI j =

1
|I|∑i∈I aij, and aI J =

1
[I][J]∑i∈I,j∈J aij =

1
[I]∑i∈I ai J =

1
[J]∑j∈J aI j. (2)

This mathematical rigor provides a robust framework to unravel the complex pat-
terns of gene expression specific to breast cancer, laying the groundwork for a deeper
understanding of the disease’s genetic architecture.
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2.3. Conserved Biclustering Algorithm

At the heart of our exploration into the genetic underpinnings of breast cancer lies
the Conserved Gene Expression Motif (CGEM), an innovative biclustering algorithm. This
method is grounded in a simple yet profound principle: if a gene maintains consistent
expression across a subset of samples, its expression level is considered conserved within
that specific subset [33]. This approach diverges markedly from traditional algorithms
such as CC, which rely heavily on scoring schemes to identify significant patterns. Instead,
CGEM seeks out conserved gene modules across the entirety of the dataset, employing
constraints to uncover these vital connections [34].

The CGEM algorithm distinguishes itself by its ability to unearth the largest xmotif,
representing a conserved gene expression pattern of paramount significance. This endeavor
involves a meticulous, iterative process composed of three fundamental steps. Initially, the
algorithm identifies the most extensive xmotif within the dataset, guided by a designated
seed s. This identification process prioritizes the discovery of motifs with a substantial
number of conserved genes. Following this, it strategically removes the samples aligning
with this motif from consideration, thereby refining the dataset. The subsequent step
involves a renewed search within this pared-down dataset, aiming to locate the next largest
motif. This iterative loop continues until the algorithm selects the submatrix with the
largest row-column size among all potential biclusters.

This iterative, constraint-based methodology sets CGEM apart, offering a novel lens
through which to view the complex landscape of gene expression in breast cancer. By
focusing on the conservation of gene expression across samples, CGEM provides invaluable
insights into the genetic consistency that may underpin this disease, offering promising
avenues for further research and potential therapeutic targets.

2.4. Evolutionary Mechanism-Based Conserved Gene Expression Biclustering Module

While the CGEM algorithm marks a significant leap forward in identifying conserved
gene modules, it harbors certain limitations that hinder its potential for global optimization.
These challenges include a predefined iteration count lacking mathematical justification, an
absence of a fitness function for optimal module evaluation, and the arbitrary selection of
the initial seed s, which compromises the pursuit of the global optimum [35]. Additionally,
despite the high accuracy of many biclustering algorithms, their extensive exploratory
capabilities contribute to increased computational demands [21,23].

To surmount these obstacles, we introduce the CGEMGA (Conserved Gene Expression
Module Genetic Algorithm), an innovative approach that incorporates an evolutionary
algorithm to navigate toward globally optimal biclustering. The genetic algorithm (GA),
inspired by Darwin’s principle of natural selection, serves as the cornerstone of our method,
utilizing population-based strategies and the survival of the fittest principle to refine
the search for optimal gene modules [36]. Unlike the CGEM algorithm, which relies on
randomly selected seed s, our approach optimizes the initial seed selection through GA
mechanisms, including population genetics, crossover, and mutation. This strategy enables
the identification of an optimal seed s by evaluating the MSR of submatrices generated
from each seed and selecting the one with the minimal MSR value, thereby ensuring the
selection of the most stable module.

Outlined in Table 2, our algorithm’s process begins with the input of genes, samples,
and their expression values, alongside intervals representing gene expression states. As-
suming distinct intervals for each gene’s states, the algorithm uniformly selects ns sample
groups from the entire sample set. In contrast to the CGEM algorithm’s random seed
generation, our method employs GA to ascertain optimal seeds through a meticulously
defined procedure:

1. Initiate with a population of n chromosomes Ci (i = 1, 2, . . . , n) as potential seeds s.
2. For each chromosome Ci, identify a subset of samples Di of size sd.
3. Include gene-sample pairs (g, s) in set Gij if gene g exists in state s across all samples

in Di, and also incorporate samples matching c across all gene states in Gij.
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4. Compute the MSR fitness value for each chromosome.
5. Apply GA’s selection, mutation, and crossover operations to optimize based on the

MSR fitness value, thereby deriving the optimal solution.
6. Exclude any Cij representing less than a fraction α of the samples.
7. Select the module with the lowest MSR from all Ci as the final choice.

Table 2. Pseudo-code of CGEMGA algorithm.

Algorithm 1 FINDMODULE(): algorithm for computing the largest module.

1. for i = 1 to ns do
2. GA begin
3. Create an initial population of n chromosomes Ci (i = 1, 2, . . ., n) as seeds
4. Set iteration counter t = 0
5. Choose a subset Di of the samples with size sd
6. For every gene g in Di, include the pair (g, s) in the set Gij if g is in the state s in c and all Di
samples
7. Cij = set of samples that agree with c in all the gene-states in Gij
8. Calculate the MSR fitness value for each chromosome
9. while (t < MAX)
10. Select a pair of chromosomes form initial population based on MSR fitness
11. Apply crossover operation on selected pair with crossover probability
12. Apply mutation on the offspring with mutation probability
13. Replace old population with newly generated population
14. Increment the current iteration t by 1.
15. end while
16. Discard (Cij, Gij) if Cij contains less than αn samples.
17. returen the best solution, Ci with min MSR
18. GA end
19. return the module (C*, G*) that maximises |Gij|, 1 ≤ i ≤ ns

Employing GA to refine the initial seed s and evaluating modules via MSR during each
iteration not only circumvents the fixed iteration constraint of the CGEM algorithm but
also significantly reduces computational time, showcasing the efficacy of our evolutionary
approach. Figure 1 illustrates the flowchart of our algorithm.
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2.5. Evaluation Metrics

In the complex process of validating our evolutionary mechanism-based conserved
gene expression biclustering module, precision in detecting breast cancer genes stands
paramount. To achieve this, we juxtapose our method against both the CGEM algorithm
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and other prevailing algorithms through a series of ten meticulously conducted indepen-
dent runs. Post each execution, the generated results undergo a rigorous comparison with
the breast cancer gene data cataloged in COSMIC. This comparative analysis serves not
only as a validation of our method’s effectiveness but also as a critical link that bridges
theoretical advancement with empirical confirmation.

The cornerstone of our evaluation lies in the application of Fisher’s exact test, a
statistical method renowned for its precision in assessing the association between the
outcomes of our algorithm and the presence of breast cancer genes. The Fisher exact test
embarks on this task by meticulously calculating p values, predicated on the analysis of
all conceivable configurations of 2 × 2 contingency tables that manifest marginal totals
equivalent to or surpassing those observed. The test’s foundation is built upon a sample
drawn from a population of size N, with m objects exhibiting trait A (a within the sample
and c outside the sample) and n objects not exhibiting trait A (b within the sample and
d outside the sample). Here, the aggregates of a and b form r, while those of c and
d constitute s. The calculation of the p-value unfurls through the following formula:

p =
m!n!r!s!

a!b!c!d!N!
. (3)

Delving deeper into the specifics, our application of Fisher’s exact test involves the
enumeration of genes identified by the biclustering algorithm and present in the CGC
dataset as a, juxtaposed with genes identified by the algorithm but absent in the CGC
dataset as b. Concurrently, we account for genes present in the CGC dataset yet overlooked
by the biclustering algorithm as c, and genes neither detected by the algorithm nor listed
in the CGC dataset as d. A threshold of p < 0.05 delineates the boundary for statistical
significance, guiding us in discerning meaningful associations.

The essence of our study is encapsulated within the realm of unsupervised learning
models, which inherently operate without the crutch of predefined labels, thus obviating
the hurdles of data partitioning. This attribute, while liberating, mandates the necessity
for external validation through third-party corroborations. In our quest for validation, we
anchor our trust in established cancer driver genes and related pathways, leveraging these
benchmarks not just as a means of validation but as a beacon guiding our exploratory
voyage through the genomic landscape of breast cancer.

3. Results
3.1. Experiment Setup

To examine the effectiveness of biclustering data searching of our CGEMGA algorithm,
we conducted several experiments to analyze our approach from multiple perspectives:
(1) investigating the superiority between our approach and CGEM algorithms by comparing
the p-values of Fisher’s test with the MSR values [37–39]; (2) comparing our approach with
widely-used existing biclustering approaches; (3) testing the computational cost of the entire
algorithm’s runtime; (4) studying the quantitative differences between our approach and the
CGEM algorithm by the F-test [40]; (5) unscrambling gene functions by enrichment analysis.

The experimental apparatus was manufactured by Lenovo in Shenzhen, China, and
was powered by an Intel Xeon(R) CPU E3-1225 v6 @ 3.30 GHz × 2 processors, backed by
32 GB of RAM. The datasets comprised 421 breast cancer samples, intricately mapped out
across 12,129 genes. Leveraging unsupervised methods, we plunged directly into the data,
eschewing any division between training, testing, or validation datasets, thus ensuring an
unadulterated analysis.

3.2. Ablation Study
3.2.1. Evolutionary Effect

To showcase our method’s superiority, we pitted it against the CGEM algorithm in ten
independent trials, comparing their statistical significance and MSR values. Table 3 reveals a
striking contrast: while the CGEM algorithm’s p-values fluctuate significantly, ours remain
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remarkably stable, underscoring the robustness of our approach. Specifically, CGEM’s p-
values span from 9.62 × 10−6 to 9.71 × 10−2 averaging at 1.18 × 10−2 ± 3.01 × 10−2. The
MSR variations mirror this volatility. In stark contrast, our method consistently delivers
p values with minimal variance, showcasing not only our algorithm’s precision but also its
reliability, a testament to the evolutionary mechanics at its core.

Table 3. Comparison of Fisher’s test p-values and MSR values of CGEM with our approach on
10 independent runs.

No.

Method

CGEM CGEMGA

p Value MSR Value p Value MSR Value

1 9.62 × 10−6 4.71 × 10−2 1.13 × 10−4 9.37 × 10−2

2 2.47 × 10−5 1.27 × 10−1 1.19 × 10−4 9.37 × 10−2

3 1.73 × 10−4 1.29 × 100 1.25 × 10−4 9.37 × 10−2

4 1.84 × 10−4 1.44 × 100 1.28 × 10−4 9.37 × 10−2

5 6.54 × 10−4 5.44 × 100 1.55 × 10−4 9.37 × 10−2

6 1.20 × 10−3 6.89 × 100 1.63 × 10−4 9.37 × 10−2

7 1.90 × 10−3 1.15 × 10 1.75 × 10−4 9.37 × 10−2

8 6.00 × 10−3 2.95 × 10 1.81 × 10−4 9.37 × 10−2

9 1.08 × 10−2 5.78 × 10 1.91 × 10−4 9.37 × 10−2

10 9.71 × 10−2 7.12 × 102 1.91 × 10−4 9.37 × 10−2

Mean ± SD 1.18 × 10−2 ± 3.01 × 10−2 8.26 × 10 ± 2.21 × 102 1.54 × 10−4 ± 3.06 × 10−5 9.37 × 10−2 ± 0

3.2.2. Stability Analysis

Venturing further, we employed the F-test to quantitatively assess the differences
between our algorithm and CGEM, seeking to cement the stability and reliability of our
findings. The F-test, executed with SPSS, yields an F-value of 4.940, decisively surpassing
the threshold of 3.18. This, coupled with a p-value of 0.039, significantly below the conven-
tional benchmark of 0.05, unequivocally confirms the superior performance and stability of
our approach over CGEM.

3.2.3. Computational Cost

In the realm of computational efficiency, our method shines bright, dramatically
outpacing CGEM and other evaluated algorithms. An analysis of runtimes across ten trials
showcased CGEM’s considerably longer durations, with an average runtime dwarfing
ours. Our method clocked in at an astonishingly low average of 5.22 ± 1.65 × 10−1 s
(Figures 2 and S1 and Table 4), a mere fraction of CGEM’s, thus not only illustrating our
approach’s swiftness but its unparalleled efficiency and stability in the face of complex
genomic data.

Table 4. Runtime of CGEM and our approach in seconds.

Method
Times (n = 10)

Mean ± SD
1 2 3 4 5 6 7 8 9 10

CGEM 1.89 × 103 1.79 × 103 1.77 × 103 1.23 × 103 1.21 × 103 1.16 × 103 1.13 × 103 1.01 × 103 9.59 × 102 9.32 × 102
1.31 × 103

±
3.66 × 102

CGEMGA 4.94 × 100 5.02 × 100 5.11 × 100 5.13 × 100 5.25 × 100 5.29 × 100 5.30 × 100 5.33 × 100 5.39 × 100 5.45 × 100
5.22 × 100

±
1.65 × 10−1
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3.3. Comparison Study

In order to obtain a comprehensive assessment of the identification performance, an
analysis of the most widely used biclustering approaches is conducted, with a comparison
to our approach made using Fisher’s exact test p-values. Through meticulous analysis,
juxtaposed against the rigorous benchmarks set by Fisher’s exact test p-values, we sought
to illuminate the distinctive prowess of our approach. The tableau of results, as detailed
in Table 5, unveils a panorama of statistical variance across the algorithms. Notably,
the MCC algorithm’s p-values oscillated broadly, marking a contrast against the more
consistent yet equally varied performance of the CC and LAS algorithms. The RelDenClu
and CBSC algorithms yield p-values that are relatively consistent and demonstrate superior
performance compared to the MCC, CC, LAS, and CGEM algorithms. Amidst these
statistical results, our CGEMGA algorithm emerged as a beacon of stability and precision,
boasting the lowest average p-value with unparalleled consistency.

Table 5. Fisher’s test p-values for 10 independent runs of the seven methods.

Method
Fisher’ Test p Values (n = 10)

Mean ± SD
1 2 3 4 5 6 7 8 9 10

MCC
1.50 ×
10−3

7.30 ×
10−3

9.20 ×
10−3

1.03 ×
10−1

1.75 ×
10−1

4.31 ×
10−1

5.09 ×
10−1

6.67 ×
10−1

8.98 ×
10−1

9.03 ×
10−1

3.70 × 10−1 ±
3.62 × 10−1

CC
1.50 ×
10−3

7.30 ×
10−3

4.99 ×
10−2

1.74 ×
10−1

1.78 ×
10−1

1.95 ×
10−1

4.12 ×
10−1

5.59 ×
10−1

6.73 ×
10−1

8.54 ×
10−1

3.10 × 10−1 ±
3.00 × 10−1

LAS
6.68 ×
10−5

6.44 ×
10−4

6.44 ×
10−4

1.70 ×
10−3

6.70 ×
10−3

3.04 ×
10−2

6.65 ×
10−2

7.56 ×
10−2

5.44 ×
10−1

6.26 ×
10−1

1.35 × 10−1 ±
2.40 × 10−1

CGEM
9.62 ×
10−6

2.47 ×
10−5

1.73 ×
10−4

1.84 ×
10−4

6.54 ×
10−4

1.20 ×
10−3

1.90 ×
10−3

6.00 ×
10−3

1.08 ×
10−2

9.71 ×
10−2

1.18 × 10−2 ±
3.01 × 10−2

RelDenClu
1.40 ×
10−68

1.43 ×
10−67

1.34 ×
10−34

1.35 ×
10−34

6.33 ×
10−34

3.05 ×
10−13

7.49 ×
10−13

1.44 ×
10−8

1.45 ×
10−2

2.01 ×
10−2

3.46 × 10−3 ±
6.98 × 10−3

CBSC
1.54 ×
10−13

1.57 ×
10−13

1.48 ×
10−12

3.35 ×
10−11

1.48 ×
10−10

6.97 ×
10−10

8.23 ×
10−6

1.58 ×
10−4

1.60 ×
10−4

2.21 ×
10−2

2.24 × 10−3 ±
7.41 × 10−3

CGEMGA
1.13 ×
10−4

1.19 ×
10−4

1.25 ×
10−4

1.28 ×
10−4

1.55 ×
10−4

1.63 ×
10−4

1.75 ×
10−4

1.81 ×
10−4

1.91 ×
10−4

1.91 ×
10−4

1.54 × 10−4 ±
3.06 × 10−5



Biomedicines 2024, 12, 2086 10 of 17

To visually articulate these findings, Figure 3 unfolds in a duo of plots, each casting
our algorithm in a comparative light against both the CGEM algorithm and the ensemble
of established biclustering methods. Further enriched by plots C and D, which trans-
form these p-values into a more visually impactful negative log10 scale, our narrative of
superiority is vividly underscored. Figure 4, echoing this theme, presents a compelling
graphical representation of our method’s statistical dominance, showcasing the smallest
p-values amidst a backdrop of high stability and consistency, significantly outshining the
comparative algorithms.

Moreover, in order to examine the convergence of the GA proposed by our approach,
we undertake an analysis of the number of iterations required for convergence. The
algorithm is designed to generate, on average, two modules per iteration. As illustrated in
Figure 5, both modules converge to the global optimal solution value of 9.37 × 10−2 in less
than five iterations, indicating a rapid convergence rate.
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3.4. Functional Enrichment Analysis

While our algorithm’s prowess in navigating the complex genomic landscape of breast
cancer is undeniably impressive, the true essence of this journey lies in unraveling the
biological narratives of the genes thus identified. Functional enrichment analysis emerges
as a vital tool in this quest, bridging the gap between gene clusters and their biological
functions. By leveraging the DAVID platform, a beacon in the bioinformatics realm, we
not only validate the biological significance of the identified genes but also illuminate the
pathways they orchestrate. Our analysis, capturing forty-five genes within the TCGA breast
cancer dataset (Table 6), reveals a rich tapestry of functional associations, underscoring the
enriched biological relevance of these gene modules (Table 7).
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Table 6. The gene find by our approach form the TCGA breast cancer data.

No. Gene
Symbol Name Cytogenetic

Band No. Gene
Symbol Name Cytogenetic

Band

1 MTOR mechanistic target of rapamycin 1p36.22 24 SDHAF2 succinate dehydrogenase complex assembly
factor 2 11q12.2

2 SF3B1 splicing factor 3b, subunit 1, 155 kDa 2q33.1 25 KDM5A lysine (K)-specific demethylase 5A, JARID1A 12p13.33
3 POLQ DNA polymerase theta 3q13.33 26 PRPF40B pre-mRNA processing factor 40 homolog B 12q13.12
4 MECOM MDS1 and EVI1 complex locus 3q26.2 27 NCOR2 nuclear receptor corepressor 2 12q24.31
5 TET2 tet oncogene family member 2 4q24 28 RAD51B RAD51 paralog B 14q24.1
6 FAT1 FAT atypical cadherin 1 4q35.2 29 TCL1A T-cell leukemia/lymphoma 1A 14q32.13
7 TLX3 T-cell leukemia, homeobox 3 (HOX11L2) 5q35.1 30 DROSHA drosha ribonuclease III 15p13.3
8 SRSF3 serine/arginine-rich splicing factor 3 6p21.31 31 CHD2 chromodomain helicase DNA binding protein 2 15q26.1
9 DEK DEK oncogene (DNA binding) 6p22.3 32 PRKCB protein kinase C beta 16p12.2

10 SGK1 serum/glucocorticoid regulated kinase 1 6q23.2 33 RMI2 RecQ mediated genome instability 2 16p13.13

11 EZR ezrin 6q25.3 34 CDH1 cadherin 1, type 1, E-cadherin (epithelial)
(ECAD) 16q22.1

12 MACC1 MET transcriptional regulator MACC1 7p21.1 35 TP53 tumor protein p53 17p13.1
13 SBDS Shwachman-Bodian-Diamond syndrome protein 7q11.21 36 KAT7 lysine acetyltransferase 7 17q21.33
14 CUX1 cut-like homeobox 1 7q22.1 37 SRSF2 serine/arginine-rich splicing factor 2 17q25.2
15 KAT6A K(lysine) acetyltransferase 6A 8p11.21 38 KDSR 3-ketodihydrosphingosine reductase 18q21.33

16 GNAQ guanine nucleotide binding protein (Gprotein), q
polypeptide 9q21.2 39 CEP89 centrosomal protein 89 kDa 19q13.11

17 CNTRL centriolin 9q33.2 40 ARHGAP35 Rho GTPase activating protein 35 19q13.32
18 LARP4B La ribonucleoprotein domain family member 4B 10p15.3 41 TOP1 topoisomerase (DNA) I 20q12
19 A1CF APOBEC1 complementation factor 10q11.23 42 KDM5C lysine (K)-specific demethylase 5C (JARID1C) Xp11.22
20 KAT6B K(lysine) acetyltransferase 6B 10q22.2 43 KDM6A lysine (K)-specific demethylase 6A, UTX Xp11.3
21 NUP98 nucleoporin 98kDa 11p15.4 44 TMSB4X Thymosin Beta 4 X-Linked Xp22.2
22 CLP1 cleavage and polyadenylation factor I subunit 1 11q12.1 45 CRLF2 cytokine receptor-like factor 2 Xp22.33
23 FEN1 flap structure-specific endonuclease 1 11q12.2
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Table 7. The functional enrichment analysis results of the discovered drivers of our approach.

Term Percentage p-Value FDR

hsa05205:Proteoglycans in cancer 11.1 3.8 × 10−3 5.98 × 10−1

hsa05214:Glioma 6.7 2.4 × 10−2 7.75 × 10−1

hsa04971:Gastric acid secretion 6.7 2.4 × 10−2 7.75 × 10−1

hsa05200:Pathways in cancer 13.3 2.4 × 10−2 7.75 × 10−1

h_pkcPathway:Activation of PKC through G protein coupled receptor 4.4 3.0 × 10−2 7.53 × 10−1

hsa03040:Spliceosome 8.9 3.1 × 10−2 7.75 × 10−1

hsa05163:Human cytomegalovirus infection 8.9 3.4 × 10−2 7.75 × 10−1

hsa04670:Leukocyte transendothelial migration 6.7 5.1 × 10−2 7.75 × 10−1

hsa04935:Growth hormone synthesis, secretion and action 6.7 5.6 × 10−2 7.75 × 10−1

hsa04071:Sphingolipid signaling pathway 6.7 5.6 × 10−2 7.75 × 10−1

hsa04919:Thyroid hormone signaling pathway 6.7 5.6 × 10−2 7.75 × 10−1

h_myosinPathway:PKC-catalyzed phosphorylation of inhibitory
phosphoprotein of myosin phosphatase 4.4 5.9 × 10−2 7.53 × 10−1

h_ccr5Pathway:Pertussis toxin-insensitive CCR5 Signaling in Macrophage 4.4 7.1 × 10−2 7.53 × 10−1

hsa04371:Apelin signaling pathway 6.7 7.2 × 10−2 7.75 × 10−1

hsa05206:MicroRNAs in cancer 8.9 7.4 × 10−2 7.75 × 10−1

hsa05017:Spinocerebellar ataxia 6.7 7.6 × 10−2 7.75 × 10−1

h_calcineurinPathway:Effects of calcineurin in Keratinocyte Differentiation 4.4 7.9 × 10−2 7.53 × 10−1

hsa05226:Gastric cancer 6.7 8.1 × 10−2 7.75 × 10−1

hsa04150:mTOR signaling pathway 6.7 8.8 × 10−2 7.75 × 10−1

h_par1pathway:Thrombin signaling and protease-activated receptors 4.4 9.1 × 10−2 7.53 × 10−1

h_chemicalPathway:Apoptotic Signaling in Response to DNA Damage 4.4 9.1 × 10−2 7.53 × 10−1

h_ccr3Pathway:CCR3 signaling in Eosinophils 4.4 9.5 × 10−2 7.53 × 10−1

h_eif4Pathway:Regulation of eIF4e and p70 S6 Kinase 4.4 9.9 × 10−2 7.53 × 10−1

h_cxcr4Pathway:CXCR4 Signaling Pathway 4.4 9.9 × 10−2 7.53 × 10−1

hsa05225:Hepatocellular carcinoma 6.7 1.0 × 10−1 7.75 × 10−1

A closer examination reveals further fascinating insights. For instance, the role of
the CDH1 gene in lobular breast cancer is well documented [41,42], while the FEN1 gene
is associated with poor prognoses [43]. Additionally, the complex interactions between
POLQ and TP53 have been extensively studied [44,45]. These accounts, substantiated by
meticulous research, not only corroborate the accuracy of our approach but also illuminate
the complex interplay between genetics and cancer pathology.

4. Discussion and Conclusion

In the complex field of breast cancer genomics, we propose a state-of-the-art biclus-
tering algorithm that draws inspiration from the adaptive power of genetic algorithms
(GA). At the core of our exploration, utilizing the robust analytical frameworks of Fisher’s
exact test and the F-test, we meticulously scrutinized the performance of various algo-
rithms against a backdrop of TCGA breast cancer data. This rigorous examination not only
confirmed the superior significance of our method but also highlighted its computational
agility and the depth of biological insights it unveils through functional enrichment analy-
sis. With the F-test result (F = 4.940, p = 0.039) underscoring significant distinctions from
the CGEM algorithm and a swift convergence within a mere five iterations, our method’s
computational efficiency shines brightly, clocking an average processing time of just 5.22 s.

Elevating the foundational CGEM algorithm, our CGEMGA incarnation introduces a
strategic optimization of the initial seed s through GA, coupled with the Mean Squared
Residual (MSR) serving as a continual benchmark for each iteration. This innovation
ensures not only a globally optimal output but also a refined selection of candidate gene
modules, adeptly navigating the vast seas of RNA-seq data to pinpoint co-expressed
genomes and their co-expression conditions with unprecedented efficiency and stability.
The development of CGEMGA is shown to be superior to CGEM in terms of speed and its
ability to link driver genes with breast cancer.
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However, our voyage is not without its navigational buoys and potential horizons for
expansion. The reliance on TCGA as the sole data harbor introduces a need for broader
validation across diverse genomic databases. Moreover, the exclusive use of MSR as the
guiding criterion beckons the exploration of additional metrics to enrich our bicluster-
ing search compass. Historical beacons, such as the scaling MSR (SMSR) introduced by
Mukhopadhyay et al. in 2009 [46], and the biclustering with iterative sorting of weighted
coefficients (BISWC) approach employed by Teng and Chan in 2008 [47], which meticu-
lously prioritize and filter features based on their significance, hint at the vast potential of
integrating multiple criteria to further refine our algorithm’s accuracy and relevance.

Furthermore, in their foundational work, Gunnar Carlsson and colleagues introduced
the concept of topological data analysis (TDA), which offers insights into the underlying
data structures and key learning processes, thereby facilitating improvements in deep-
learning performance and generalization [48]. Tianyu Zhang and colleagues have proposed
a multimodal deep-learning model that fuses mammography and ultrasound images with
the objective of enhancing the precision of breast cancer molecular subtype prediction [49].
This approach focuses on the most pertinent features for the prediction task through an
attention mechanism. Paul Gamble has developed a deep-learning system for the direct
prediction of biomarker status in breast cancer tissues [50]. Moreover, he presents a method-
ology for enhancing the efficacy and precision of biomarker detection by elucidating the
correlation between the morphological characteristics discerned by the model and the
biomarker status through interpretable analysis. Xinmin Zhang provides a comprehensive
overview of the current status and future direction of molecular classification in breast can-
cer, emphasizing the crucial role of molecular classification in individualized therapy [51].
Moreover, he presents the development of more accurate, reliable, and straightforward
molecular classification methods. Lehmann examines two variants of the rs12976445 poly-
morphism of the miR-125a gene in breast cancer patients, investigating their correlation
with breast cancer [52]. Furthermore, he elucidates the mechanism by which the U variant
may diminish the expression level of miR-125a through online simulation. The findings of
this research will provide new insights and ideas for the diagnosis and treatment of breast
cancer. In their review, Yasmin Cura and colleagues considered the clinical relevance of
genetic polymorphisms affecting the efficacy and safety of breast cancer treatments [53].
Moreover, they emphasized the importance of pharmacogenetic guidelines based on these
polymorphisms and explored the development of more precise predictive models for in-
dividuals. The aforementioned methods illustrate that breast cancer prediction research
is exploring innovative avenues that integrate bioinformatics concepts, including multi-
modal information fusion, deep-learning models, interpretability analysis, and molecular
marker discovery, with bioinformatics techniques such as data mining, machine learning,
network analysis, and computational biology. This represents the central focus of our future
research endeavors.

In essence, the introduced CGEMGA algorithm serves not only as a model of efficiency
and robustness in the pursuit of deciphering the genomic landscape of breast cancer but
also as a validation of the transformative power of evolutionary algorithms in deciphering
the intricate harmonies of gene expression patterns. In the future, our research will focus
on incorporating a range of fitness functions as criteria for bicluster identification. This
will allow us to refine the accuracy and enhance the pragmatic utility of our computational
methodology. As we pursue this course of research, the practical implications of our
findings encourage further investigation, suggesting a multitude of potential applications
in the ongoing fight against breast cancer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines12092086/s1. Figure S1: Runtime of CGEM and
CGEMGA in seconds.

https://www.mdpi.com/article/10.3390/biomedicines12092086/s1
https://www.mdpi.com/article/10.3390/biomedicines12092086/s1
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