Potential of Resveratrol to Combine with Hydrogel for Photodynamic Therapy against Bacteria and Cancer—A Review
Abstract
:1. Introduction
1.1. Hydrogels
1.2. Examples of Antibacterial and Anticancer Applications
1.3. Drug-Delivery System
1.4. Reasons for Hydrogel Use in PDT
2. Principle of PDT
2.1. Mechanisms
2.2. Natural Photosensitizer (PS)
2.2.1. Resveratrol (3,5,4′-Trihydroxystilbene) (RSV)
2.2.2. Photodynamic Action of Resveratrol
3. Photodynamic Action of Hydrogel
Bacteria | |||||
---|---|---|---|---|---|
Study | Photosensitizer and Dosage | Usage of Light and Energy (J) | Consequences | Reference | |
1 | Photosensitizer-loaded hydrogels for photodynamic inactivation of multiresistant bacteria in wounds | 326 μM of tetrakis(1 methylpyridinium-4-yl)porphyrin p-toluenesulfonate (TMPyP) and 242 μM of tetrahydroporphyrin—p toluenesulfonate (THPTS) on Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, and Achromobacter xylosoxidans. | Irradiated with red light at 760 nm in 18 W/cm2, and fluence 20 J/cm2 for 36 to 90 min. | TMPyP-loaded hydrogels were more effective than those loaded with THPTS, which displayed effectivity against all investigated bacteria strains, improving the treatment of wounds infected with problematic bacterial pathogens. | [117] |
2 | An injectable dipeptide–fullerene supramolecular hydrogel for photodynamic antibacterial therapy | 200 μM of dipeptide–fullerene supramolecular hydrogel on Staphylococcus aureus in wound healing. | Irradiated with white light at 400 nm in 0.1 W/cm2, and fluence 10 J/cm2 for 10 min. | Peptide fullerene hydrogels inhibited multi-antibiotic-resistant Staphylococcus aureus and promote wound healing. | [118] |
3 | Optimization of hydrogel containing toluidine blue O for photodynamic therapy in treating acne | 0.1 μM of toluidine blue O on Propionibacterium acnes, Staphylococcus aureus, and Escherichia coli. | Irradiated with red light at 630 nm in 0.4 W/cm2, and fluence 13 J/cm2 for 15 min. | Toluidine blue O hydrogel for PDT showed effective antibacterial activity for Propionibacterium acnes, Staphylococcus aureus, and Escherichia coli. | [119] |
Cancer | |||||
Study | Photosensitizer and Dosage | Usage of Light and Energy (J) | Consequences | Reference | |
1 | Synthesis and Characterization of Temperature-sensitive and Chemically Crosslinked Poly(N-isopropylacrylamide)/Photosensitizer Hydrogels for Applications in Photodynamic Therapy | 90 μM of Pheophorbide a-poly(N-isopropylacrylamide) nanohydrogel on Human Colorectal Adenocarcinoma, HT29. | Irradiated with white light at 681 nm in 110 W/cm2 and fluence 20 J/cm2 for 18 to 24 h. | Pheophorbide a-poly(N-isopropylacrylamide) nanohydrogel with reasonable biocompatibility and acceptable photocytotoxicity in the low μM range. | [120] |
2 | Alginate-Based Microcapsules with a Molecule Recognition Linker and Photosensitizer for the Combined Cancer Treatment | 30 μM of Ca-ALG (HB-lipid), and Ca-ALG-DOX-(HB-lipid) hydrogels on Immortal cells, HeLa. | Irradiated with blue light at 488 nm in 0.5 W/cm2, and fluence 30 J/cm2 for 36 h. | Ca-ALG (HB-lipid) and Ca-ALG-DOX-(HB-lipid) hydrogels are the co-delivery carriers with high efficiency in treating PDT against Immortal cells (HeLa). | [121] |
3 | Curcumin and silver nanoparticles carried out from polysaccharide-based hydrogels improved the photodynamic properties of curcumin through metal-enhanced singlet oxygen effect | 91.5 μM of CHT/CS/CUR-AgNPs hydrogel on Human Colon Cancer cells, Caco-2. | Irradiated with green light at 525 nm in 420 W/cm2, and fluence 50 J/cm2 for 24 h. | PDT selective illumination led to the inhibition of Human Colon Cancer cells (Caco-2) by the CHT/CS/CU R-AgNPs hydrogel, and CUR can work as a diagnostic fluorescence probe in this system. | [122] |
3.1. Resveratrol Combined with Hydrogel
Mechanism of Combination
4. Conclusions
5. Future Aspects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bernier, S.P.; Surette, M.G. Concentration-dependent activity of antibiotics in natural environments. Front. Microbiol. 2013, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Friedman, N.D.; Temkin, E.; Carmeli, Y. The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 2016, 22, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Grin, M.; Suvorov, N.; Ostroverkhov, P.; Pogorilyy, V.; Kirin, N.; Popov, A.; Sazonova, A.; Filonenko, E. Advantages of combined photodynamic therapy in the treatment of oncological diseases. Biophys. Rev. 2022, 14, 941–963. [Google Scholar] [CrossRef]
- Gu, B.; Wang, B.; Li, X.; Feng, Z.; Ma, C.; Gao, L.; Yu, Y.; Zhang, J.; Zheng, P.; Wang, Y.; et al. Photodynamic therapy improves the clinical efficacy of advanced colorectal cancer and recruits immune cells into the tumor immune microenvironment. Front. Immunol. 2022, 13, 1050421. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Liu, J. Resveratrol: A review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric. 2020, 100, 1392–1404. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shi, M.; Ye, J.H.; Zheng, X.Q.; Lu, J.L.; Liang, Y.R. Photo-induced chemical reaction of trans-resveratrol. Food Chem. 2015, 171, 137–143. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, R.; Zaat, S.A.J.; Breukink, E.; Heger, M. Antibacterial photodynamic therapy: Overview of a promising approach to fight antibiotic-resistant bacterial infections. J. Clin. Transl. Res. 2015, 1, 140–167. [Google Scholar]
- Bhattacharya, D.; Mukhopadhyay, M.; Shivam, K.; Tripathy, S.; Patra, R.; Pramanik, A. Recent developments in photodynamic therapy and its application against multidrug resistant cancers. Biomed. Mater. 2023, 18, 062005. [Google Scholar] [CrossRef]
- Gan, S.; Wu, Y.; Zhang, X.; Zheng, Z.; Zhang, M.; Long, L.; Liao, J.; Chen, W. Recent Advances in Hydrogel-Based Phototherapy for Tumor Treatment. Gels 2023, 9, 286. [Google Scholar] [CrossRef]
- Liu, B.; Chen, K. Advances in Hydrogel-Based Drug Delivery Systems. Gels 2024, 10, 262. [Google Scholar] [CrossRef]
- Maitra, J.; Shukla, V.K. Cross-linking in Hydrogels—A Review. Am. J. Polym. Sci. 2014, 4, 25–31. [Google Scholar]
- Gulati, N.; Nagaich, U.; Sharma, V.K.; Khosa, R.L. Effect of Polymer and Cross Linking Agent on In Vitro Release of Quercetin from Microbeads. Asian J. Pharm. Sci. 2011, 1, 2231–4423. [Google Scholar]
- Denizli, B.K.; Can, H.K.; Rzaev, Z.M.O.; Guner, A. Preparation conditions and swelling equilibria of dextran hydrogels prepared by some crosslinked agents. Polymer 2004, 45, 6431–6435. [Google Scholar] [CrossRef]
- Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010, 31, 4639–4656. [Google Scholar] [CrossRef]
- Ramamurthi, A.; Vesely, I. Ultraviolet light-induced modification of crosslinked hyaluronan gels. J. Biomed. Mater. Res. A 2003, 66, 317–329. [Google Scholar] [CrossRef]
- Ho, T.C.; Chang, C.C.; Chan, H.P.; Chung, T.W.; Shu, C.W.; Chuang, K.P.; Duh, T.H.; Yang, M.H.; Tyan, Y.C. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27, 2902. [Google Scholar] [CrossRef]
- Foudazi, R.; Zowada, R.; Manas-Zloczower, I.; Feke, D.L. Porous Hydrogels: Present Challenges and Future Opportunities. Langmuir 2023, 39, 2092–2111. [Google Scholar] [CrossRef]
- Bouklas, N.; Huang, R. Swelling kinetics of polymer gels: Comparison of linear and nonlinear theories. Soft Matter 2012, 8, 8194–8203. [Google Scholar] [CrossRef]
- Yan, H.; Jin, B. Equilibrium swelling of a polyampholytic pH-sensitive hydrogel. Eur. Phys. J. E Soft Matter 2013, 36, 27. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Y.; Cao, Y.; Xue, B. Tough Hydrogels with Different Toughening Mechanisms and Applications. Int. J. Mol. Sci. 2024, 25, 2675. [Google Scholar] [CrossRef]
- Axpe, E.; Chan, D.; Offeddu, G.S.; Chang, Y.; Merida, D.; Hernandez, H.L.; Appel, E.A. A Multiscale Model for Solute Diffusion in Hydrogels. Macromolecules 2019, 52, 6889–6897. [Google Scholar] [CrossRef] [PubMed]
- Fasiku, V.O.; Omolo, C.A.; Devnarain, N.; Ibrahim, U.H.; Rambharose, S.; Faya, M.; Mocktar, C.; Singh, S.D.; Govender, T. Chitosan-Based Hydrogel for the Dual Delivery of Antimicrobial Agents against Bacterial Methicillin-Resistant Staphylococcus aureus Biofilm-Infected Wounds. ACS Omega 2021, 6, 21994–22010. [Google Scholar] [CrossRef] [PubMed]
- Abbasalizadeh, F.; Alizadeh, E.; Bagher Fazljou, S.M.; Torbati, M.; Akbarzadeh, A. Anticancer Effect of Alginate-chitosan Hydrogel Loaded with Curcumin and Chrysin on Lung and Breast Cancer Cell Lines. Curr. Drug Deliv. 2022, 19, 600–613. [Google Scholar] [PubMed]
- Lu, H.; Huang, Y.; Lv, F.; Liu, L.; Ma, Y.; Wang, S. Living Bacteria-Mediated Aerobic Photoinduced Radical Polymerization for in Situ Bacterial Encapsulation and Differentiation. CCS Chem. 2021, 3, 1296–1305. [Google Scholar] [CrossRef]
- Andrade, F.; Roca-Melendres, M.M.; Durán-Lara, E.F.; Rafael, D.; Schwartz, S., Jr. Stimuli-Responsive Hydrogels for Cancer Treatment: The Role of pH, Light, Ionic Strength and Magnetic Field. Cancers 2021, 13, 1164. [Google Scholar] [CrossRef]
- Nairon, K.G.; DePalma, T.; Sivakumar, H.; Skardal, A. Tunable Hydrogel Systems for Delivery and Release of Cell-Secreted and Synthetic Therapeutic Products. In Controlled Drug Delivery Systems, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020; Volume 3, pp. 29–53. [Google Scholar]
- Naahidi, S.; Jafari, M.; Logan, M.; Wang, Y.; Yuan, Y.; Bae, H.; Dixon, B.; Chen, P. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol. Adv. 2017, 35, 530–544. [Google Scholar] [CrossRef]
- Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef]
- Rahoui, N.; Jiang, B.; Taloub, N.; Huang, Y.D. Spatio-temporal control strategy of drug delivery systems based nano structures. J. Control. Release 2017, 255, 176–201. [Google Scholar] [CrossRef]
- Klotz, B.J.; Gawlitta, D.; Rosenberg, A.J.W.P.; Malda, J.; Melchels, F.P.W. Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair. Trends Biotechnol. 2016, 34, 394–407. [Google Scholar] [CrossRef]
- Chang, G.; Zhang, H.; Li, S.; Huang, F.; Shen, Y.; Xie, A. Effective photodynamic therapy of polymer hydrogel on tumor cells prepared using methylene blue sensitized mesoporous titania nanocrystal. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 1392–1398. [Google Scholar] [CrossRef]
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Wei, M.; Yang, B. Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy. Theranostics 2022, 12, 434–458. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, H.; Wang, Y.; Shiu, B.C.; Lin, J.H.; Zhang, S.; Lou, C.W.; Li, T.T. Synergistic antibacterial strategy based on photodynamic therapy: Progress and perspectives. Chem. Eng. J. 2022, 3, 138129. [Google Scholar] [CrossRef]
- Jiang, W.; Liang, M.; Lei, Q.; Li, G.; Wu, S. The Current Status of Photodynamic Therapy in Cancer Treatment. Cancers 2023, 15, 585. [Google Scholar] [CrossRef]
- Jiang, J.; Lv, X.; Cheng, H.; Yang, D.; Xu, W.; Hu, Y.; Song, Y.; Zeng, G. Type I photodynamic antimicrobial therapy: Principles, progress, and future perspectives. Acta Biomater. 2024, 177, 1–19. [Google Scholar] [CrossRef]
- Yanten, N.; Vilches, S.; Palavecino, C.E. Photodynamic therapy for the treatment of Pseudomonas aeruginosa infections: A scoping review. Photodiagnosis Photodyn. Ther. 2023, 44, 103803. [Google Scholar] [CrossRef]
- Gourlot, C.; Gosset, A.; Glattard, E.; Aisenbrey, C.; Rangasamy, S.; Rabineau, M.; Ouk, T.S.; Sol, V.; Lavalle, P.; Gourlaouen, C.; et al. Antibacterial Photodynamic Therapy in the Near-Infrared Region with a Targeting Antimicrobial Peptide Connected to a π-Extended Porphyrin. ACS Infect. Dis. 2022, 8, 1509–1520. [Google Scholar] [CrossRef]
- He, L.; Yu, X.; Li, W. Recent Progress and Trends in X-ray-Induced Photodynamic Therapy with Low Radiation Doses. ACS Nano 2022, 16, 19691–19721. [Google Scholar] [CrossRef]
- Alsaab, H.O.; Alghamdi, M.S.; Alotaibi, A.S.; Alzhrani, R.; Alwuthaynani, F.; Althobaiti, Y.S.; Almalki, A.H.; Sau, S.; Iyer, A.K. Progress in Clinical Trials of Photodynamic Therapy for Solid Tumors and the Role of Nanomedicine. Cancers 2020, 12, 2793. [Google Scholar] [CrossRef]
- Penetra, M.; Arnaut, L.G.; Gomes-da-Silva, L.C. Trial watch: An update of clinical advances in photodynamic therapy and its immunoadjuvant properties for cancer treatment. Oncoimmunology 2023, 12, 2226535. [Google Scholar] [CrossRef]
- Huang, L.; Xuan, Y.; Koide, Y.; Zhiyentayev, T.; Tanaka, M.; Hamblin, M.R. Type I and Type II mechanisms of antimicrobial photodynamic therapy: An in vitro study on gram-negative and gram-positive bacteria. Lasers Surg. Med. 2012, 44, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Foote, C.S. Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 1991, 54, 659. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, J.; Rahban, D.; Aghamiri, S.; Teymouri, A.; Bahador, A. Photosensitizers in antibacterial photodynamic therapy: An overview. Laser Ther. 2018, 27, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Wang, J.; Zhuang, A.; Liu, Q.; Li, F.; Yuan, K.; Yang, Y.; Liu, Y.; Chang, H.; Liang, Y.; et al. Metallacage-based enhanced PDT strategy for bacterial elimination via inhibiting endogenous NO production. Proc. Natl. Acad. Sci. USA 2023, 120, e2218973120. [Google Scholar] [CrossRef] [PubMed]
- Mishchenko, T.; Balalaeva, I.; Gorokhova, A.; Vedunova, M.; Dmitri, V. Krysko. Which cell death modality wins the contest for photodynamic therapy of cancer? Cell Death Dis. 2022, 13, 455. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy—Mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. [Google Scholar] [CrossRef]
- Tang, P.M.; Bui-Xuan, N.H.; Wong, C.K.; Fong, W.P.; Fung, K.P. Pheophorbide a-Mediated Photodynamic Therapy Triggers HLA Class I-Restricted Antigen Presentation in Human Hepatocellular Carcinoma. Transl. Oncol. 2010, 3, 114–122. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, C.; Li, S.; Jiao, Y.; Qi, T.; Wei, G.; Han, G. Effects of Photodynamic Therapy Using Yellow LED-light with Concomitant Hypocrellin B on Apoptotic Signaling in Keloid Fibroblasts. Int. J. Biol. Sci. 2017, 13, 319–326. [Google Scholar] [CrossRef]
- Kah, G.; Chandran, R.; Abrahamse, H. Curcumin a Natural Phenol and Its Therapeutic Role in Cancer and Photodynamic Therapy: A Review. Pharmaceutics 2023, 15, 639. [Google Scholar] [CrossRef]
- Sulaiman, C.; George, B.P.; Balachandran, I.; Abrahamse, H. Photoactive Herbal Compounds: A Green Approach to Photodynamic Therapy. Molecules 2022, 27, 5084. [Google Scholar] [CrossRef]
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The Re-Emergence of Natural Products for Drug Discovery in the Genomics Era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Kubrak, T.P.; Kołodziej, P.; Sawicki, J.; Mazur, A.; Koziorowska, K.; Aebisher, D. Some Natural Photosensitizers and Their Medicinal Properties for Use in Photodynamic Therapy. Molecules 2022, 27, 1192. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Iriuchishima, T.; Aizawa, S.; Okano, T.; Goto, B.; Nagai, Y.; Horaguchi, T.; Ryu, J.; Saito, A. Bactericidal effect of photodynamic therapy using Na-pheophorbide a: Evaluation of adequate light source. Photomed. Laser Surg. 2009, 27, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Otieno, W.; Liu, C.; Deng, H.; Li, J.; Zeng, X.; Ji, Y. Hypocrellin B-Mediated Photodynamic Inactivation of Gram-Positive Antibiotic-Resistant Bacteria: An In Vitro Study. Photobiomodulation Photomed. Laser Surg. 2020, 38, 36–42. [Google Scholar] [CrossRef]
- Ribeiro, I.P.; Pinto, J.G.; Souza, B.M.N.; Miñán, A.G.; Ferreira-Strixino, J. Antimicrobial photodynamic therapy with curcumin on methicillin-resistant Staphylococcus aureus biofilm. Photodiagnosis Photodyn. Ther. 2022, 37, 102729. [Google Scholar] [CrossRef]
- Jiang, Y.; Leung, A.W.; Wang, X.; Zhang, H.; Xu, C. Effect of photodynamic therapy with hypocrellin B on apoptosis, adhesion, and migration of cancer cells. Int. J. Radiat. Biol. 2014, 90, 575–579. [Google Scholar] [CrossRef]
- Ravera, S.; Pasquale, C.; Panfoli, I.; Bozzo, M.; Agas, D.; Bruno, S.; Hamblin, M.R.; Amaroli, A. Assessing the Effects of Curcumin and 450 nm Photodynamic Therapy on Oxidative Metabolism and Cell Cycle in Head and Neck Squamous Cell Carcinoma: An In Vitro Study. Cancers 2024, 16, 1642. [Google Scholar] [CrossRef]
- Takaoka, M.J. Of the phenolic substances of white hellebore (Veratrum grandiflorum Loes. fil.) J. Fac. Sci. Hokkaido Imp. Univ. 1940, 3, 1–16. [Google Scholar] [CrossRef]
- Paul, B.; Masih, I.; Deopujari, J.; Charpentier, C. Occurrence of resveratrol and pterostilbene in age-old darakchasava, an ayurvedic medicine from India. J. Ethnopharmacol. 1999, 68, 71–76. [Google Scholar] [CrossRef]
- Elíes-Gómez, J. Efectos de los Isómeros del Resveratrol Sobre la Homeostasis del Calcio y del Óxido Nítrico en Células Vasculares. Ph.D. Thesis, Universidade de Santiago de Compostela, Santiago de Compostela, Spain, 2009. [Google Scholar]
- Soleas, G.J.; Diamandis, E.P.; Goldberg, D.M. Resveratrol: A molecule whose time has come? And gone? Clin. Biochem. 1997, 30, 91–113. [Google Scholar] [CrossRef]
- Sato, M.; Maulik, G.; Bagchi, D.; Das, D.K. Myocardial protection by protykin, a novel extract of trans-resveratrol and emodin. Free. Radic. Res. 2000, 32, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Palomino, O.; Gómez-Serranillos, M.P.; Slowing, K.; Carretero, E.; Villar, A. Study of polyphenols in grape berries by reversed-phase high-performance liquid chromatography. J. Chromatogr. A 2000, 870, 449–451. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.J.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem. 2002, 50, 3337–3340. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Xu, Y.X.; Janakiraman, N.; Chapman, R.A.; Gautam, S.C. Immunomodulatory activity of resveratrol: Suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production. Biochem. Pharmacol. 2001, 62, 1299–1308. [Google Scholar] [CrossRef] [PubMed]
- Mahjabeen, W.; Khan, D.A.; Mirza, S.A. Role of resveratrol supplementation in regulation of glucose hemostasis, inflammation and oxidative stress in patients with diabetes mellitus type 2: A randomized, placebo-controlled trial. Complement. Ther. Med. 2022, 66, 102819. [Google Scholar] [CrossRef]
- Gu, J.; Li, Z.; Chen, H.; Xu, X.; Li, Y.; Gui, Y. Neuroprotective Effect of Trans-Resveratrol in Mild to Moderate Alzheimer Disease: A Randomized, Double-Blind Trial. Neurol. Ther. 2021, 10, 905–917. [Google Scholar] [CrossRef]
- Bradamante, S.; Barenghi, L.; Villa, A. Cardiovascular protective effects of resveratrol. Cardiovasc. Drug Rev. 2004, 22, 169–188. [Google Scholar] [CrossRef]
- de la Lastra, C.A.; Villegas, I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem. Soc. Trans. 2007, 35, 1156–1160. [Google Scholar] [CrossRef]
- Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021, 26, 229. [Google Scholar] [CrossRef]
- Hwang, D.; Lim, Y.H. Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression. Sci. Rep. 2015, 5, 10029. [Google Scholar] [CrossRef]
- Cebrián, R.; Li, Q.; Peñalver, P.; Belmonte-Reche, E.; Andrés-Bilbao, M.; Lucas, R.; de Paz, M.V.; Kuipers, O.P.; Morales, J.C. Chemically Tuning Resveratrol for the Effective Killing of Gram-Positive Pathogens. J. Nat. Prod. 2022, 85, 1459–1473. [Google Scholar] [CrossRef] [PubMed]
- Karameşe, M.; Dicle, Y. The Antibacterial and Antibiofilm Activities of Resveratrol on Gram-positive and Gram-negative Bacteria. Kafkas J. Med. Sci. 2022, 12, 201–206. [Google Scholar] [CrossRef]
- Liu, L.; Yu, J.; Shen, X.; Cao, X.; Zhan, Q.; Guo, Y.; Yu, F. Resveratrol enhances the antimicrobial effect of polymyxin B on Klebsiella pneumoniae and Escherichia coli isolates with polymyxin B resistance. BMC Microbiol. 2020, 20, 306. [Google Scholar] [CrossRef] [PubMed]
- Migliaccio, A.; Stabile, M.; Bagattini, M.; Triassi, M.; Berisio, R.; De Gregorio, E.; Zarrilli, R. Resveratrol Reverts Tolerance and Restores Susceptibility to Chlorhexidine and Benzalkonium in Gram-Negative Bacteria, Gram-Positive Bacteria and Yeasts. Antibiotics 2022, 11, 961. [Google Scholar] [CrossRef] [PubMed]
- Al Azzaz, J.; Rieu, A.; Aires, V.; Delmas, D.; Chluba, J.; Winckler, P.; Bringer, M.A.; Lamarche, J.; Vervandier-Fasseur, D.; Dalle, F.; et al. Resveratrol-Induced Xenophagy Promotes Intracellular Bacteria Clearance in Intestinal Epithelial Cells and Macrophages. Front. Immunol. 2019, 9, 3149. [Google Scholar] [CrossRef]
- Zhou, M.; Niu, H.; Cui, D.; Huang, G.; Li, J.; Tian, H.; Xu, X.; Liang, F.; Chen, R. Resveratrol triggers autophagy-related apoptosis to inhibit the progression of colorectal cancer via inhibition of FOXQ1. Phytother. Res. 2024, 38, 3218–3239. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, Y.J. Synergistic anticancer activity of resveratrol in combination with docetaxel in prostate carcinoma cells. Nutr. Res. Pract. 2021, 15, 12–25. [Google Scholar] [CrossRef]
- Fatehi, R.; Rashedinia, M.; Akbarizadeh, A.R.; Zamani, M.; Firouzabadi, N. Metformin enhances anti-cancer properties of resveratrol in MCF-7 breast cancer cells via induction of apoptosis, autophagy and alteration in cell cycle distribution. Biochem. Biophys. Res. Commun. 2023, 644, 130–139. [Google Scholar] [CrossRef]
- Ma, L.; Li, W.; Wang, R.; Nan, Y.; Wang, Q.; Liu, W.; Jin, F. Resveratrol enhanced anticancer effects of cisplatin on non-small cell lung cancer cell lines by inducing mitochondrial dysfunction and cell apoptosis. Int. J. Oncol. 2015, 47, 1460–1468. [Google Scholar] [CrossRef]
- Ivanova, D.; Zhelev, Z.; Semkova, S.; Aoki, I.; Bakalova, R. Resveratrol Modulates the Redox-status and Cytotoxicity of Anticancer Drugs by Sensitizing Leukemic Lymphocytes and Protecting Normal Lymphocytes. Anticancer. Res. 2019, 39, 3745–3755. [Google Scholar] [CrossRef]
- ALkharashi, N.A. Efficacy of resveratrol against breast cancer and hepatocellular carcinoma cell lines. Saudi Med. J. 2023, 44, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Can, G.; Cakir, Z.; Kartal, M.; Gunduz, U.; Baran, Y. Apoptotic effects of resveratrol, a grape polyphenol, on imatinib-sensitive and resistant K562 chronic myeloid leukemia cells. Anticancer. Res. 2012, 32, 2673–2678. [Google Scholar] [PubMed]
- Du, Q.; Hu, B.; An, H.; Shen, K.; Xu, L.; Deng, S.; Wei, M. Synergistic anticancer effects of curcumin and resveratrol in Hepa1-6 hepatocellular carcinoma cells. Oncol. Rep. 2013, 29, 1851–1858. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Shin, H.; Kim, J. In vivo Anti-Cancer Effects of Resveratrol Mediated by NK Cell Activation. J. Innate Immun. 2021, 13, 94–106. [Google Scholar] [CrossRef]
- Moreira, H.; Szyjka, A.; Grzesik, J.; Pelc, K.; Żuk, M.; Kulma, A.; Emhemmed, F.; Muller, C.D.; Gąsiorowski, K.; Barg, E. Celastrol and Resveratrol Modulate SIRT Genes Expression and Exert Anticancer Activity in Colon Cancer Cells and Cancer Stem-like Cells. Cancers 2022, 14, 1372. [Google Scholar] [CrossRef]
- Subramanian, M.; Soundar, S.; Mangoli, S. DNA damage is a late event in resveratrol-mediated inhibition of Escherichia coli. Free Radic. Res. 2016, 50, 708–719. [Google Scholar] [CrossRef]
- Haranahalli, K.; Tong, S.; Ojima, I. Recent advances in the discovery and development of antibacterial agents targeting the cell-division protein FtsZ. Bioorg. Med. Chem. 2016, 24, 6354–6369. [Google Scholar] [CrossRef]
- Subramanian, M.; Goswami, M.; Chakraborty, S.; Jawali, N. Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation. Redox Biol. 2014, 2, 865–872. [Google Scholar] [CrossRef]
- Dadi, P.K.; Ahmad, M.; Ahmad, Z. Inhibition of ATPase activity of Escherichia coli ATP synthase by polyphenols. Int. J. Biol. Macromol. 2009, 45, 72–79. [Google Scholar] [CrossRef]
- Beall, B.; Lutkenhaus, J. FtsZ in Bacillus subtilis is required for vegetative septation and for asymmetric septation during sporulation. Genes. Dev. 1991, 5, 447–455. [Google Scholar] [CrossRef]
- Kursvietiene, L.; Kopustinskiene, D.M.; Staneviciene, I.; Mongirdiene, A.; Kubová, K.; Masteikova, R.; Bernatoniene, J. Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions. Antioxidants 2023, 12, 2056. [Google Scholar] [CrossRef] [PubMed]
- Danial, N.N.; Korsmeyer, S.J. Cell death: Critical control points. Cell 2004, 116, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Van Opdenbosch, N.; Lamkanfi, M. Caspases in cell death, inflammation, and disease. Immunity 2019, 50, 1352–1364. [Google Scholar] [CrossRef] [PubMed]
- Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging 2016, 8, 603–619. [Google Scholar] [CrossRef]
- Degterev, A.; Boyce, M.; Yuan, J. A decade of caspases. Oncogene 2003, 22, 8543–8567. [Google Scholar] [CrossRef]
- Kim, T.H.; Park, J.H.; Woo, J.S. Resveratrol induces cell death through ROS-dependent downregulation of Notch1/PTEN/Akt signaling in ovarian cancer cells. Mol. Med. Rep. 2019, 19, 3353–3360. [Google Scholar] [CrossRef]
- Lagunes, I.; Trigos, Á. Photo-oxidation of ergosterol: Indirect detection of antioxidants photosensitizers or quenchers of singlet oxygen. J. Photochem. Photobiol. B Biol. 2015, 145, 30–34. [Google Scholar] [CrossRef]
- Monsour, C.G.; Tadle, A.C.; Tafolla-Aguirre, B.J.; Lakshmanan, N.; Yoon, J.H.; Sabio, R.B.; Selke, M. Singlet Oxygen Quenching by Resveratrol Derivatives. Photochem. Photobiol. 2023, 99, 672–679. [Google Scholar] [CrossRef]
- Jiang, L.Y.; He, S.; Jiang, K.Z.; Sun, C.R.; Pan, Y.J. Resveratrol and its oligomers from wine grapes are selective 1O2 quenchers: Mechanistic implication by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry and theoretical calculation. J. Agric. Food Chem. 2010, 58, 9020–9027. [Google Scholar] [CrossRef]
- Angelé-Martínez, C.; Goncalves, L.C.P.; Premi, S.; Augusto, F.A.; Palmatier, M.A.; Amar, S.K.; Brash, D.E. Triplet-Energy Quenching Functions of Antioxidant Molecules. Antioxidants 2022, 11, 357. [Google Scholar] [CrossRef]
- Maisch, T.; Baier, J.; Franz, B.; Maier, M.; Landthaler, M.; Szeimies, R.M.; Bäumler, W. The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc. Natl. Acad. Sci. USA 2007, 104, 7223–7228. [Google Scholar] [CrossRef] [PubMed]
- Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med. 2020, 52, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Arihara, Y.; Takada, K.; Kamihara, Y.; Hayasaka, N.; Nakamura, H.; Murase, K.; Ikeda, H.; Iyama, S.; Sato, T.; Miyanishi, K.; et al. Small molecule CP-31398 induces reactive oxygen species-dependent apoptosis in human multiple myeloma. Oncotarget 2017, 8, 65889–65899. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, M.; Uehara, S.; Yoshida, A.; Sakagami, H.; Masuda, Y. Photodynamic Therapy with Resveratrol and an Nd:YAG Laser for Enterococcus faecalis Elimination. In Vivo 2024, 38, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.P.; Soares Lopes, D.P.; de Moraes, R.C., Jr.; Gonçalves, C.V.; Rosa, L.P.; da Silva Rosa, F.C.; da Silva, R.A.A. Photoactivated resveratrol against Staphylococcus aureus infection in mice. Photodiagnosis Photodyn. Ther. 2019, 25, 227–236. [Google Scholar] [CrossRef]
- Tosato, M.G.; Schilardi, P.L.; de Mele, M.F.L.; Thomas, A.H.; Miñán, A.; Lorente, C. Resveratrol enhancement staphylococcus aureus survival under levofloxacin and photodynamic treatments. Int. J. Antimicrob. Agents 2018, 51, 255–259. [Google Scholar] [CrossRef]
- Laszló, I.P.; Laszló, M.R.; Popescu, T.; Toma, V.; Ion, R.M.; Moldovan, R.; Filip, G.A.; Cainap, C.; Clichici, S.; Muresan, A. The comparative effects of Resveratrol and Curcumin in combination with photodynamic therapy. Med. Pharm. Rep. 2022, 95, 165–178. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Kang, S.; Liu, C.; Hao, Y. Resveratrol enhances the effects of ALA-PDT on skin squamous cells A431 through p38/MAPK signaling pathway. Cancer Biomark. 2018, 21, 797–803. [Google Scholar] [CrossRef]
- Hu, J.; Quan, Y.; Lai, Y.; Zheng, Z.; Hu, Z.; Wang, X.; Dai, T.; Zhang, Q.; Cheng, Y. A smart aminoglycoside hydrogel with tunable gel degradation, on-demand drug release, and high antibacterial activity. J. Control Release 2017, 247, 145–152. [Google Scholar] [CrossRef]
- Mensah, A.; Rodgers, A.M.; Larrañeta, E.; McMullan, L.; Tambuwala, M.; Callan, J.F.; Courtenay, A.J. Treatment of periodontal infections, the possible role of hydrogels as antibiotic drug-delivery systems. Antibiotics 2023, 12, 1073. [Google Scholar] [CrossRef]
- Su, J.; Lu, S.; Jiang, S.; Li, B.; Liu, B.; Sun, Q.; Li, J.; Wang, F.; Wei, Y. Engineered Protein Photo-Thermal Hydrogels for Outstanding In Situ Tongue Cancer Therapy. Adv. Mater. 2021, 33, e2100619. [Google Scholar] [CrossRef] [PubMed]
- Kass, L.E.; Nguyen, J. Nanocarrier-hydrogel composite delivery systems for precision drug release. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1756. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, Y.; Li, Q.; Yu, C.; Chu, W. Natural polymer-based stimuli-responsive hydrogels. Curr. Med. Chem. 2020, 27, 2631–2657. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, S.; Huang, L.; Li, Y.; Lu, Y.; Li, H.; Chen, G.; Meng, F.; Liu, G.L.; Yang, X.; et al. Reactive oxygen species-responsive and Raman-traceable hydrogel combining photodynamic and immune therapy for postsurgical cancer treatment. Nat. Commun. 2022, 13, 4553. [Google Scholar] [CrossRef] [PubMed]
- Glass, S.; Kühnert, M.; Lippmann, N.; Zimmer, J.; Werdehausen, R.; Abel, B.; Eulenburg, V.; Schulze, A. Photosensitizer-loaded hydrogels for photodynamic inactivation of multirestistant bacteria in wounds. RSC Adv. 2021, 11, 7600–7609. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, H.; Zou, Q.; Xing, R.; Jiao, T.; Yan, X. An injectable dipeptide-fullerene supramolecular hydrogel for photodynamic antibacterial therapy. J. Mater. Chem. B 2018, 6, 7335–7342. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, E.; Weng, Q.; Zhou, L.; Li, Q. Optimization of hydrogel containing toluidine blue O for photodynamic therapy in treating acne. Lasers Med. Sci. 2019, 34, 1535–1545. [Google Scholar] [CrossRef]
- Belali, S.; Savoie, H.; O’Brien, J.M.; Cafolla, A.A.; O’Connell, B.; Karimi, A.R.; Boyle, R.W.; Senge, M.O. Synthesis and Characterization of Temperature-Sensitive and Chemically Cross-Linked Poly( N-isopropylacrylamide)/Photosensitizer Hydrogels for Applications in Photodynamic Therapy. Biomacromolecules 2018, 19, 1592–1601. [Google Scholar] [CrossRef]
- Du, C.; Zhao, J.; Fei, J.; Gao, L.; Cui, W.; Yang, Y.; Li, J. Alginate-Based Microcapsules with a Molecule Recognition Linker and Photosensitizer for the Combined Cancer Treatment. Chem. Asian J. 2013, 8, 736–742. [Google Scholar] [CrossRef]
- de Freitas, C.F.; Kimura, E.; Rubira, A.F.; Muniz, E.C. Curcumin and silver nanoparticles carried out from polysaccharide-based hydrogels improved the photodynamic properties of curcumin through metal-enhanced singlet oxygen effect. Mater. Sci. Eng. C 2020, 112, 110853. [Google Scholar] [CrossRef]
- Lorenzo, D.; Giorgio, C.; Giulia, B.; Francesco Paolo, B.; Giulio, D.; Alessandra, G.; Cristiana, I.; Matteo, N.; Enrico, T.; Chiara, T.; et al. Certainty and uncertainty in the biological activities of resveratrol. Food Front. 2024, 5, 849–854. [Google Scholar]
- Vivero-Lopez, M.; Muras, A.; Silva, D.; Serro, A.P.; Otero, A.; Concheiro, A.; Alvarez-Lorenzo, C. Resveratrol-Loaded Hydrogel Contact Lenses with Antioxidant and Antibiofilm Performance. Pharmaceutics 2021, 13, 532. [Google Scholar] [CrossRef] [PubMed]
- Jøraholmen, M.W.; Johannessen, M.; Gravningen, K.; Puolakkainen, M.; Acharya, G.; Basnet, P.; Škalko-Basnet, N. Liposomes-In-Hydrogel Delivery System Enhances the Potential of Resveratrol in Combating Vaginal Chlamydia Infection. Pharmaceutics 2020, 12, 1203. [Google Scholar] [CrossRef] [PubMed]
- Radeva, L.; Yordanov, Y.; Spassova, I.; Kovacheva, D.; Tibi, I.P.; Zaharieva, M.M.; Kaleva, M.; Najdenski, H.; Petrov, P.D.; Tzankova, V.; et al. Incorporation of Resveratrol-Hydroxypropyl-β-Cyclodextrin Complexes into Hydrogel Formulation for Wound Treatment. Gels 2024, 10, 346. [Google Scholar] [CrossRef] [PubMed]
- Comotto, M.; Saghazadeh, S.; Bagherifard, S.; Aliakbarian, B.; Kazemzadeh-Narbat, M.; Sharifi, F.; Mousavi Shaegh, S.A.; Arab-Tehrany, E.; Annabi, N.; Perego, P.; et al. Breathable hydrogel dressings containing natural antioxidants for management of skin disorders. J. Biomater. Appl. 2019, 33, 1265–1276. [Google Scholar] [CrossRef]
- Euba, B.; López-López, N.; Rodríguez-Arce, I.; Fernández-Calvet, A.; Barberán, M.; Caturla, N.; Martí, S.; Díez-Martínez, R.; Garmendia, J. Resveratrol therapeutics combines both antimicrobial and immunomodulatory properties against respiratory infection by nontypeable Haemophilus influenzae. Sci. Rep. 2017, 7, 12860. [Google Scholar] [CrossRef]
- Shin, G.R.; Kim, H.E.; Ju, H.J.; Kim, J.H.; Choi, S.; Choi, H.S.; Kim, M.S. Injectable click-crosslinked hydrogel containing resveratrol to improve the therapeutic effect in triple negative breast cancer. Mater. Today Bio 2022, 16, 100386. [Google Scholar] [CrossRef]
- Bruna, L.; Melo, R.; Cátia, G.A.; André, F.; Moreira, I.J.; Correia, I.J.; de Melo-Diogo, D. Chitosan-based injectable in situ forming hydrogels containing dopamine-reduced graphene oxide and resveratrol for breast cancer chemo-photothermal therapy. Biochem. Eng. J. 2022, 185, 108529. [Google Scholar]
- Kotta, S.; Aldawsari, H.M.; Badr-Eldin, S.M.; Nair, A.B.; Kaleem, M.; Dalhat, M.H. Thermosensitive Hydrogels Loaded with Resveratrol Nanoemulsion: Formulation Optimization by Central Composite Design and Evaluation in MCF-7 Human Breast Cancer Cell Lines. Gels 2022, 8, 450. [Google Scholar] [CrossRef]
- Hung, C.F.; Lin, Y.K.; Huang, Z.R.; Fang, J.Y. Delivery of resveratrol, a red wine polyphenol, from solutions and hydrogels via the skin. Biol. Pharm. Bull. 2008, 31, 955–962. [Google Scholar] [CrossRef]
- Paulo, L.; Ferreira, S.; Gallardo, E.; Queiroz, J.A.; Domingues, F. Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. World J. Microbiol. Biotechnol. 2010, 26, 1533–1538. [Google Scholar] [CrossRef]
- Zykova, T.A.; Zhu, F.; Zhai, X.; Ma, W.Y.; Ermakova, S.P.; Lee, K.W.; Bode, A.M.; Dong, Z. Resveratrol directly targets COX-2 to inhibit carcinogenesis. Mol. Carcinog. 2008, 47, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. Anticancer molecular mechanisms of resveratrol. Front. Nutr. 2016, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Pezzuto, J.M. Resveratrol as an inhibitor of carcinogenesis. Pharm. Biol. 2008, 46, 443–573. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H.; Zhao, C.; Qin, G.; Xi, G.; Li, T.; Wang, X.; Chen, T. One-step reduction and PEGylation of graphene oxide for photothermally controlled drug delivery. Biomaterials 2014, 35, 4986–4995. [Google Scholar] [CrossRef]
- Yang, T.; Ren, H.; Zhang, W.; Rong, L.; Zhang, D. Resveratrol-Coated Gold Nanoflowers for CT Imaging and Apoptosis/Photothermal Synergistic Therapy of Malignant Melanoma. ACS Omega 2023, 8, 34629–34639. [Google Scholar] [CrossRef]
- Xiang, S.; Zhang, K.; Yang, G.; Gao, D.; Zeng, C.; He, M. Mitochondria-Targeted and Resveratrol-Loaded Dual-Function Titanium Disulfide Nanosheets for Photothermal-Triggered Tumor Chemotherapy. Nanoscale Res. Lett. 2019, 14, 211. [Google Scholar] [CrossRef]
- Shaito, A.; Posadino, A.M.; Younes, N.; Hasan, H.; Halabi, S.; Alhababi, D.; Al-Mohannadi, A.; Abdel-Rahman, W.M.; Eid, A.H.; Nasrallah, G.K.; et al. Potential Adverse Effects of Resveratrol: A Literature Review. Int. J. Mol. Sci. 2020, 21, 2084. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Huang, M.; Zeng, S.; Zheng, J.; Peng, S.; Wang, Y.; Cheng, H.; Li, S. Innovative strategies for photodynamic therapy against hypoxic tumor. Asian J. Pharm. Sci. 2023, 18, 100775. [Google Scholar] [CrossRef]
- Olszowy, M.; Nowak-Perlak, M.; Woźniak, M. Current Strategies in Photodynamic Therapy (PDT) and Photodynamic Diagnostics (PDD) and the Future Potential of Nanotechnology in Cancer Treatment. Pharmaceutics 2023, 15, 1712. [Google Scholar] [CrossRef]
- Li, R.T.; Zhu, Y.D.; Li, W.Y.; Hou, Y.K.; Zou, Y.M.; Zhao, Y.H.; Zou, Q.; Zhang, W.H.; Chen, J.X. Synergistic photothermal-photodynamic-chemotherapy toward breast cancer based on a liposome-coated core-shell AuNS@NMOFs nanocomposite encapsulated with gambogic acid. J. Nanobiotechnology 2022, 20, 212. [Google Scholar] [CrossRef]
- Overchuk, M.; Weersink, R.A.; Wilson, B.C.; Zheng, G. Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine. ACS Nano 2023, 17, 7979–8003. [Google Scholar] [CrossRef]
Crosslinking Methods | Physical crosslinking | Hydrogen bonding |
Electrostatic interaction | ||
Van der Waals forces | ||
Host-guest interactions | ||
Crystallization | ||
Chemical crosslinking | Free radical reaction | |
Carbodiimide chemistry | ||
Click chemistry | ||
Enzyme-mediated reaction | ||
Condensation polymerization |
Bacteria | |||
---|---|---|---|
Study | Consequences | References | |
1 | Type-I photodynamic antimicrobial therapy: Principles, progress, and future perspectives | The fundamental principles of Type-I PDT were discussed, including its physicochemical properties and the generation of ROS, as well as explored several specific antimicrobial mechanisms utilized by Type-I PDT and summarized the recent applications of Type-I PDT in antimicrobial treatment. | [36] |
2 | Photodynamic therapy for the treatment of Pseudomonas aeruginosa infections: A scoping review | PDT was an effective adjunct to antimicrobial therapy against Pseudomonas aeruginosa, according to the usage of PS and the infection location, but the evidence was supported significantly by in vitro than the in vivo studies. | [37] |
3 | Antibacterial Photodynamic Therapy in the Near-Infrared Region with a Targeting Antimicrobial Peptide Connected to a π-Extended Porphyrin | Antimicrobial PDT upon irradiation at 720 nm for the conjugation consisted of an antimicrobial peptide linked to a π-extended porphyrin photosensitizer, which was at micromole concentration with a strong effect on both Gram-positive and Gram-negative bacteria. | [38] |
Cancer | |||
Study | Consequences | References | |
4 | Recent Progress and Trends in X-ray-Induced Photodynamic Therapy with Low Radiation Doses | The concept of X-PDT and its relationships with radiodynamic therapy and radiotherapy, as well as the mechanism of X-ray absorption and conversion by scintillating materials, ROS evaluation for low dosage X-PDT, radiation side effects, and clinical concerns on X-ray radiation, were discussed. | [39] |
5 | Progress in Clinical Trials of Photodynamic Therapy for Solid Tumors and the Role of Nanomedicine | The latest clinical studies and preclinical in vivo studies on the use of PDT and its progress on nano-therapeutics as delivery tools for PS, which improved their cancer cellular uptake and their toxic properties | [40] |
6 | Trial watch: an update of clinical advances in photodynamic therapy and its immunoadjuvant properties for cancer treatment | Trial Watch provided recent clinical information on the immunomodulatory properties of PDT and ongoing clinical trials using PDT to treat cancer patients. | [41] |
Bacteria | |||||
---|---|---|---|---|---|
Study | Natural Photosensitizer and Dosage | Usage of Light and Energy (J) | Consequences | Reference | |
1 | Bactericidal Effect of Photodynamic Therapy Using Na-Pheophorbide a: Evaluation of Adequate Light Source | 280 μM of Na-Pheophorbide a on Staphylococcus aureus. | Irradiated with red light at 670 nm in 300 W/cm2, and fluence 27 J/cm2 for 30 min. | PDT with Na-Pheophorbide a possessed a better anti-bactericidal function that was useful for the treatment of septic arthritis and soft tissue infection. | [54] |
2 | Hypocrellin B-Mediated Photodynamic Inactivation of Gram-Positive Antibiotic-Resistant Bacteria: An in vitro Study | 100 μM of Hypocrellin B on Staphylococcus aureus, Enterococcus faecalis, Streptococcus pneumonia, Escherichia coli, and Klebsiella pneumoniae. | Irradiated with red light at 660 nm in 0.5 W/cm2, and fluence 72 J/cm2 for 30 min. | PDT with Hypocrellin B was effective in inactivating the Gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Streptococcus pneumonia bacteria. | [55] |
3 | Antimicrobial photodynamic therapy with curcumin on methicillin-resistant Staphylococcus aureus biofilm | 80 μM of Curcumin on Staphylococcus aureus | Irradiated with blue light at 450 nm in 110 W/cm2, and fluence 50 J/cm2 for 455 s. | PDT with curcumin reduced the biofilm viability of Staphylococcus aureus, attesting to the efficiency of the therapy, which was internalized by bacterial cells even in biofilm aggregates, | [56] |
Cancer | |||||
Study | Natural Photosensitizer and Dosage | Usage of Light and Energy (J) | Consequences | Reference | |
1 | Pheophorbide a-Mediated Photodynamic Therapy Triggers HLA Class I-Restricted Antigen Presentation in Human Hepatocellular Carcinoma | 0.35 μM of Pheophorbide a on Human Hepatocellular Carcinoma, HepG2. | Irradiated with red light at 670 nm in 70 W/cm2, and fluence 84 J/cm2 for 20 min. | PDT with Pheophorbide a triggered phagocytic capture by human macrophages, causing apoptosis and cancer immunity in the tumor host. | [48] |
2 | Effect of photodynamic therapy with Hypocrellin B on apoptosis, adhesion, and migration of cancer cells | 2.5 μM of Hypocrellin B on Human ovarian cancer, HO-8910. | Irradiated with red light at 660 nm in 0.5 W/cm2, and fluence 72 J/cm2 for 5 h. | PDT with Hypocrellin B induced apoptosis and inhibited adhesion and migration of cancer cells in vitro. | [57] |
3 | Assessing the Effects of Curcumin and 450 nm Photodynamic Therapy on Oxidative Metabolism and Cell Cycle in Head and Neck Squamous Cell Carcinoma: An in vitro Study | 0.1 to 10 μM of Curcumin on Human Head and Neck Squamous Cell Carcinoma, HNSCC. | Irradiated with blue light at 450 nm in 0.25 W/cm2, and fluence 60 J/cm2 for 1 h. | PDT with Curcumin increased oxidative damage, reduced cellular growth, and a cell cycle block in the G1 phase for Human Head and Neck Squamous Cell Carcinoma. | [58] |
Bacteria | |||||
---|---|---|---|---|---|
Study | Models | Dosage and Time | Consequences | Reference | |
1 | Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression | lacZ+ gene of an SOS-inducible sulA promoter on Escherichia coli. | 456 μM of Resveratrol for 6 h. | Resveratrol increased DNA fragmentation and the expression level of SOS response-related genes in a dose-dependent manner, which inhibits bacterial cell growth by suppressing FtsZ expression and Z-ring formation. | [72] |
2 | Chemically Tuning Resveratrol for the Effective Killing of Gram-Positive Pathogens | Bacillus cereus, Clostridium strains, Clostridioides difficile, Enterococcus faecalis, Streptococcus aureus | 40 to 160 μM of Resveratrol and its derivatives for 8 h. | Resveratrol and its derivatives with bactericidal activity against Gram-positive bacteria in the same low micromolar range of traditional antibiotics for disturbing the membrane permeability. | [73] |
3 | The Antibacterial and Antibiofilm Activities of Resveratrol on Gram-positive and Gram-negative Bacteria | Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. | 0.5 to 16 μM of Resveratrol for 24 h. | Resveratrol with antibacterial effect on Gram-positive and Gram-negative bacteria reduced the toxin production and inhibited biofilm formation. | [74] |
4 | Resveratrol enhances the antimicrobial effect of polymyxin B on Klebsiella pneumoniae and Escherichia coli isolates with polymyxin B resistance | 6 strains of Klebsiella pneumoniae and 24 strains of Escherichia coli. | 4 μM and 2 μM of polymyxin B for 6 strains of Klebsiella pneumoniae and 24 strains of Escherichia coli with an additional 32 to 128 μM Resveratrol for 24 h. | Resveratrol has increased the sensitivity of bacterial strains to polymyxin B, which is suitable for the treatment of bacterial infections. | [75] |
5 | Resveratrol Reverts Tolerance and Restores Susceptibility to Chlorhexidine and Benzalkonium in Gram-Negative Bacteria, Gram-Positive Bacteria, and Yeasts | Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. | 32 to 256 μM of Resveratrol with 0.06 to 1024 μM of chlorhexidine and benzalkonium for 18 to 24 h. | Resveratrol reduced the dosage of chlorhexidine and benzalkonium, which was useful for biocides in several nosocomial pathogens. | [76] |
6 | Resveratrol-Induced Xenophagy Promotes Intracellular Bacteria Clearance in Intestinal Epithelial Cells and Macrophages | Life-threatening diseases, Salmonella Typhimurium and Crohn’s disease-associated Adherent-Invasive Escherichia coli. | 10 μM of Resveratrol for 20 h | Resveratrol stimulated xenophagy and enhanced the clearance of two invasive bacteria, including Salmonella Typhimurium and Escherichia coli. | [77] |
Cancer | |||||
Study | Models | Dosage and Time | Consequences | Reference | |
1 | Resveratrol triggers autophagy-related apoptosis to inhibit the progression of colorectal cancer via inhibition of FOXQ1 | Female BALB/c nude mice and C57BL/6 mice aged 6–8 weeks, or SW480-derived cancer cells. | Concentration between 50 and 80 μM for 48 h. | Resveratrol enhanced autophagy-related cell apoptosis in colorectal cancer cells through the SIRT1/FOXQ1/ATG16L pathway | [78] |
2 | Synergistic anticancer activity of Resveratrol in combination with docetaxel in prostate carcinoma cells | Prostate carcinoma LNCaP cells. | 20 μM and 2 μM docetaxel for 24, 48, and 72 h. | Resveratrol improved the docetaxel therapy, targeting apoptosis and necroptosis simultaneously in the treatment of cancer | [79] |
3 | Metformin enhances anticancer properties of Resveratrol in MCF-7 breast cancer cells via induction of apoptosis, autophagy, and alteration in cell cycle distribution | Breast cancer cells, MCF-7. | 2.5, 10, 25 mM of metformin, 70, 144, 287, 383, 575 μM of Resveratrol, and 20, 40 μM of cisplatin for 48 h. | Synergistic anticancer effects of metformin in a triple combination with cisplatin and Resveratrol were attributed to induction of autophagy-mediated cell death and apoptosis along cell cycle arrest | [80] |
4 | Resveratrol enhanced the anticancer effects of cisplatin on non-small cell lung cancer cell lines by inducing mitochondrial dysfunction and cell apoptosis | Human Lung cancer cells, H838 and H520. | 40 μM and 55 μM of Resveratrol with 5 μM in H838 and H520 for 24 h. | Resveratrol exhibited its anticancer effects on non-small cell lung cancer H838 and H520 cell lines and enhanced the antitumor effects of cisplatin by regulating the mitochondrial apoptotic pathway. | [81] |
5 | Resveratrol Modulates the Redox-status and Cytotoxicity of Anticancer Drugs by Sensitizing Leukemic Lymphocytes and Protecting Normal Lymphocytes | Human Leukemic cells, U937 and HL-60. | 12.5 μM of Resveratrol with 0.05 μM or 0.01 μM of barasertib, and 5 μM of everolimus. | In leukemic lymphocytes treated with barasertib and everolimus in the presence of Resveratrol, synergistic cytotoxicity was accompanied by strong induction of apoptosis, increased levels of hydroperoxides, and insignificant changes in protein-carbonyl products. | [82] |
6 | Efficacy of Resveratrol against breast cancer and hepatocellular carcinoma cell lines | Breast cancer cells MCF-7, and Hepatoblastoma cells, HepG2. | 100 μM of Resveratrol h in MCF-7 and HepG2 for 24 h. | Resveratrol had a significant cytotoxic effect on MCF-7 and HepG2, which elevated caspase-3, caspase-8, caspase-9, Bax, p53, and p21 and reduced Bcl-2 and Bcl-xL mRNA levels in treating breast and liver cancers. | [83] |
7 | Apoptotic effects of Resveratrol, a grape polyphenol, on imatinib-sensitive and resistant K562 chronic myeloid leukemia cells | Chronic myeloid leukemia cells K562 and K562/IMA-3 cells. | 85 μM and 122 μM of Resveratrol in K562 and K562/IMA-3 cells for 72 h. | Resveratrol with antiproliferative and apoptotic effects on K562 cells, as well as increased more 100-folds in K562/IMA-3 cells. | [84] |
8 | Synergistic anticancer effects of curcumin and Resveratrol in Hepa1-6 hepatocellular carcinoma cells | Hepatocellular carcinoma cells, Hepa1-6. | 40 μM and 10 μM of Resveratrol and curcumin for 48 h. | Resveratrol and curcumin induced the apoptosis of Hepa1-6 cells through the caspase-3, -8, and -9 activation, upregulated intracellular ROS levels, downregulated X-Linked Inhibitor of Apoptosis Protein (XIAP) and surviving expression. | [85] |
9 | In vivo Anticancer Effects of Resveratrol Mediated by NK Cell Activation | Natural killer cells, NK. | 20 μM of Resveratrol and 5 μM of IL-2 for 36 h. | Resveratrol activated NK cells and synergistically increased IFN-γ secretion and NK cell cytotoxicity with interleukin-2 (IL-2), which inhibited tumor growth and metastasis in mice. | [86] |
10 | Celastrol and Resveratrol Modulate SIRT Genes Expression and Exert Anticancer Activity in Colon Cancer Cells and Cancer Stem-like Cells | Metastatic colon cancer LoVo cells and cancer stem-like cells LoVo/DX. | 1.0 to 5.0 μM of Resveratrol and 1.0 to 5.0 μM of celastrol for 24 h. | Resveratrol and celastrol exerted an antitumor activity against metastatic LoVo cells and cancer stem-like LoVo/DX cells, while Resveratrol with a greater effect on colon cancer cells and less aggressive forms of the disease than celastrol. | [87] |
Bacteria | |||||
---|---|---|---|---|---|
Study | Natural Photosensitizer and Dosage | Usage of Light and Energy (J) | Consequences | Reference | |
1 | Photodynamic Therapy with Resveratrol and an Nd:YAG Laser for Enterococcus faecalis Elimination | 357 μM of Resveratrol and Nd:YAG on Enterococcus faecalis. | Irradiated with red light at 635 nm in 3.5 W/cm2, and fluence 14 J/cm2 for 48 h. | PDT with Resveratrol and Nd:YAG as the PS with pigment was efficacious for Enterococcus faecalis elimination without inducing any toxic effects on osteoblasts. | [106] |
2 | Photoactivated Resveratrol against Staphylococcus aureus infection in mice | No report of the Resveratrol use on Staphylococcus aureus | Irradiated with blue light at 450–495 nm in 75 W/cm2, and fluence 54 J/cm2 for 24 h. | PDT with Resveratrol generated singlet oxygen effects on the immune system, triggering TNF-α and IL-17A production to the clearance of Staphylococcus aureus. | [107] |
3 | Photoactivated Resveratrol controls intradermal infection by Staphylococcus aureus in mice: a pilot study | 2 μM of Resveratrol on Staphylococcus aureus | Irradiated with blue light at 450 nm in 75 W/cm2, and fluence 22.5 J/cm2 for 5 min. | PDT with Resveratrol induced the expression of myeloperoxidase, greater bacterial clearance, and infection control by IL-10 production. | [108] |
Cancer | |||||
Study | Natural Photosensitizer and Dosage | Usage of Light and Energy (J) | Consequences | Reference | |
1 | The comparative effects of Resveratrol and Curcumin in combination with photodynamic therapy | 10 mg/kg body weight of Resveratrol and 50 mg/kg body weight of Curcumin dissolved in 0.5% of carboxymethyl cellulose through oral gavage for 7 days, respectively, on walker carcinosarcoma in 66 Wistar Male Rats. | Irradiated with laser light at 685 nm in 25 W/cm2, and fluence 50 J/cm2 for 15 min. | PDT with Resveratrol and Curcumin decreased oxidative stress, diminished the Cyclooxygenase-2 and Nitric oxide synthase 2 expressions, and increased cell death by positively influencing the necrotic rate and apoptotic index. | [109] |
2 | Resveratrol enhances the effects of ALA-PDT on skin squamous cells A431 through the p38/MAPK signaling pathway | 0.5 mM of Aminolevulinic Acid as PS and 58 μM of Resveratrol is an adjuvant on Skin Squamous Cells, A431. | Irradiated with red light at 635 nm in 50 W/cm2, and fluence 37 J/cm2 for 3 h. | Resveratrol enhanced the effect of ALA-PDT against skin squamous cells A431 through the p38/MAPK pathway. | [110] |
Bacteria | |||||
---|---|---|---|---|---|
Study | Models | Dosage and Time | Consequences | Reference | |
1 | Resveratrol-Loaded Hydrogel Contact Lenses with Antioxidant and Antibiofilm Performance | Pseudomonas aeruginosa, and Staphylococcus aureus | 100 and 200 μM of Resveratrol for 24 h. | Resveratrol released from the hydrogels readily accumulated in tissues and was effective against Pseudomonas aeruginosa, and Staphylococcus aureus. | [124] |
2 | Liposomes-In-Hydrogel Delivery System Enhances the Potential of Resveratrol in Combating Vaginal Chlamydia Infection | Chlamydia trachomatis | 1.5 and 3 μM of Resveratrol for 48 h. | The anti-chlamydial effect of RES was enhanced when incorporated into a liposomes-in-hydrogel delivery system, which was a promising option for the localized treatment of Chlamydia trachomatis infection. | [125] |
3 | Incorporation of Resveratrol–Hydroxypropyl-β-Cyclodextrin Complexes into Hydrogel Formulation for Wound Treatment | Staphylococcus aureus, Escherichia coli, and Candida albicans | 0.35 and 0.175 μM of Resveratrol–Hydroxypropyl-β-Cyclodextrin Complexes. | Resveratrol–Hydroxypropyl-β-Cyclodextrin Complexes were included in Pluronic hydrogel, which provided efficient drug release and appropriate viscoelastic properties for wound treatment. | [126] |
4 | Breathable hydrogel dressings containing natural antioxidants for the management of skin disorders | Staphylococcus aureus | 15 and 30 μM of Resveratrol. | The developed hydrogel patch was breathable and able to maintain excellent mechanical properties with Resveratrol for 72 h against bacterial growth. | [127] |
5 | Resveratrol therapeutics combines both antimicrobial and immunomodulatory properties against respiratory infection by nontypeable Haemophilus influenzae | Escherichia coli, and Bacillus subtilis | 112.5 and 56.25 μM of Resveratrol. | Resveratrol was therapeutic in targeting chronic obstructive pulmonary disease airway infections. | [128] |
Cancer | |||||
Study | Models | Dosage and Time | Consequences | Reference | |
1 | Injectable click-crosslinked hydrogel containing Resveratrol to improve the therapeutic effect in triple-negative breast cancer | Breast cancer cells, MDA-MB-231. | 0.5 μM of Resveratrol and Resveratrol with hyaluronic acid for 24 h. | Resveratrol with hyaluronic acid significantly reduced negative tumor growth rates coupled with large apoptotic cells and limited angiogenesis in tumors. | [129] |
2 | Chitosan-based injectable in situ forming hydrogels containing dopamine-reduced graphene oxide and Resveratrol for breast cancer chemo-photothermal therapy | Breast cancer cells, MCF-7. | 66 μM of Dopamine-reduced graphene oxide with Resveratrol for 24 h. | Resveratrol-formulated hydrogels displayed injectability and in situ gelation, as well as suitable physicochemical properties and good cytocompatibility, which was an enormous potential for the chemo-photothermal therapy of breast cancer cells. | [130] |
3 | Thermosensitive Hydrogels Loaded with Resveratrol Nanoemulsion: Formulation Optimization by Central Composite Design and Evaluation in MCF-7 Human Breast Cancer Cell Lines. | Breast cancer cells, MCF-7. | 25 μM of Resveratrol with hydrogel for 6 h. | The developed Resveratrol with hydrogel was an effective delivery of breast cancer, and the in vitro release profile demonstrated a release rate of 80%. | [131] |
4 | Delivery of Resveratrol, a Red Wine Polyphenol, from Solutions and Hydrogels via the Skin | Female nude mice (ca. 8 weeks old) on skin erythema. | 0.6 mL aliquot of Resveratrol hydrogel for 24 h. | Resveratrol with the hydrogel caused no stratum corneum disruption or skin erythema, and it was a therapeutic skin route of administration. | [132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Law, S.K.; Liu, C.W.C.; Tong, C.W.S.; Au, D.C.T. Potential of Resveratrol to Combine with Hydrogel for Photodynamic Therapy against Bacteria and Cancer—A Review. Biomedicines 2024, 12, 2095. https://doi.org/10.3390/biomedicines12092095
Law SK, Liu CWC, Tong CWS, Au DCT. Potential of Resveratrol to Combine with Hydrogel for Photodynamic Therapy against Bacteria and Cancer—A Review. Biomedicines. 2024; 12(9):2095. https://doi.org/10.3390/biomedicines12092095
Chicago/Turabian StyleLaw, Siu Kan, Cris Wai Ching Liu, Christy Wing Sum Tong, and Dawn Ching Tung Au. 2024. "Potential of Resveratrol to Combine with Hydrogel for Photodynamic Therapy against Bacteria and Cancer—A Review" Biomedicines 12, no. 9: 2095. https://doi.org/10.3390/biomedicines12092095
APA StyleLaw, S. K., Liu, C. W. C., Tong, C. W. S., & Au, D. C. T. (2024). Potential of Resveratrol to Combine with Hydrogel for Photodynamic Therapy against Bacteria and Cancer—A Review. Biomedicines, 12(9), 2095. https://doi.org/10.3390/biomedicines12092095