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The current Special Issue, “Molecular and Cellular Mechanisms of CVD: Focus on
Atherosclerosis”, is dedicated to exploring the various mechanisms involved in atherogene-
sis. Modern theories of atherosclerosis offer comprehensive explanations for many of its
stages, and rather than conflicting, these theories complement one another [1–3]. In this
editorial, I aim to describe the main results of the articles in this Special Issue and discuss
some of the mechanisms of atherogenesis.

The lipid theory posits that atherosclerosis results from lipid accumulation in the
vascular wall, a process triggered by the chemical modification of circulating low-density
lipoproteins (LDL). However, oxidation alone is not sufficient to cause the accumulation
of intracellular cholesterol; the levels of oxidized LDL in the blood of atherosclerotic
patients have not been found to be significantly elevated [4,5]. Subsequent research re-
vealed that LDL from the blood of atherosclerotic patients exhibited reduced levels of
sialic acid [6]. Furthermore, in vitro desialylated LDL showed increased density, a greater
negative charge, decreased size, and a propensity for spontaneous self-association [7]. This
multiply modified LDL induced the formation of lipid-laden foam cells in vitro. The exact
agents responsible for LDL desialylation and their role in atherosclerosis remain unclear. It
is possible that neuraminidases, which possess trans-sialidase activity and can desialylate
LDL particles, may be involved in this process [8–10].

Publications proposing new theories on atherogenesis are extremely encouraging.
Sesorova et al. investigated a novel mechanism of LDL desialylation and presented an
original hypothesis [11]. Their research showed that administering large amounts of
plant lipids to the stomachs of rats led to the formation of enlarged chylomicrons within
the endolysosomes of enterocytes in their small intestines. These altered chylomicrons
were retained in the endolysosomes and came into contact with neuraminidase type I,
which is capable of cleaving sialic acid. Notably, lipid overload was associated with
increased binding of circulating LDL to the basement membrane of endothelial cells. This
suggests that high fat intake might lead to the desialylation of chylomicrons, which are then
converted into desialylated LDL. Combined with increased endothelial permeability in
areas of arterial bifurcation prone to atherosclerosis, the accumulation of lipids influenced
by desialylated LDL could potentially act as a trigger for atherosclerosis.

Thus, one potential cause of atherosclerosis may be related to the peculiarities of lipid
metabolism in individuals with a high-fat diet. Poledne et al. evaluated the role of diet
in the development of atherosclerosis [12]. They presented epidemiological data showing
a significant decline in mortality among men in the Czech Republic between 1988 and
1992. This period was unique due to a notable change in food prices in early 1991, which
halved butter consumption and increased the consumption of vegetable oils. This dietary
shift was associated with a decrease in non-high-density lipoprotein cholesterol levels
among the population. Histological examinations also revealed a reduction in the number
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of proinflammatory macrophages in adipose tissue during this time. Interestingly, the
proinflammatory phenotype of macrophages was directly related to the levels of palmitate
and palmitoleate in cell membranes and inversely correlated with the levels of n-3 fatty
acids. These findings suggest that palmitate has pro-inflammatory properties and can
induce an inflammatory response in its free form [13]. Unfortunately, palmitate is still
widely used in the food industry for thermal stabilization of products. Moreover, dietary
patterns were found to influence not only blood lipid composition but also immune cell
activity. This aligns with observations that lipid accumulation in macrophages, influenced
by modified LDL, is accompanied by significant changes in the expression of inflammatory
genes [14].

Atherosclerosis is known to be accompanied by chronic local inflammation [15].
Certain inflammatory molecules may serve as reliable markers for the early stages of
atherosclerosis. For example, Loch et al. demonstrated the prognostic value of leucine-rich
α2-glycoprotein in serum for detecting early diastolic dysfunction [16]. However, it remains
unclear why the inflammatory response in the vascular wall fails to resolve and becomes
chronic. Previous research has shown that proinflammatory macrophages associated with
unstable lesions are of hematogenous origin [17].

On one hand, the infiltration of immune cells and lipids from the bloodstream into
the vascular wall may result from endothelial dysfunction [18]. Endothelial dysfunction is
characterized by increased permeability, reduced proliferative potential, and heightened
secretion of cytokines and chemokines. Ponasenko et al. identified polymorphisms in
genes related to vitamin D metabolism and endothelial homeostasis in patients with
coronary artery disease [19]. Additionally, Poston et al. observed increased levels of
malondialdehyde (MDA) adducts and heat shock protein 60 (HSP60) on the endothelium
of atherosclerotic plaques, which may promote monocyte adhesion [20]. Endothelial cell
injury and/or dysfunction appears to be one of the initial events in atherogenesis.

On the other hand, increased immune cell infiltration into the vascular wall may
result not only from endothelial dysfunction but also from changes within the immune
cells themselves. Notably, proinflammatory alterations in blood monocytes associated
with atherosclerosis can occur while the cells are still in circulation [21]. We have pre-
viously shown that circulating monocytes from patients with preclinical atherosclerosis
exhibit impaired tolerance to lipopolysaccharide (LPS), evidenced by increased secretion of
monocyte chemoattractant protein 1 (MCP-1) [22]. Monocyte tolerance to LPS is a normal
defense mechanism against hyperinflammation, and its impairment may contribute to the
chronicity of inflammation. Continuous elevated secretion of MCP-1, a chemoattractant
for monocytes, may further exacerbate inflammation by attracting additional immune
cells [23].

Moreover, atherosclerosis is associated with changes not only in monocyte function
but also in the composition of their subpopulations. Kologrivova et al. demonstrated an
increase in the intermediate monocyte subpopulation (CD14++CD16+) in patients with
coronary artery disease and type 2 diabetes mellitus [24,25]. These findings suggest that
alterations in monocyte subpopulation composition may contribute to the observed proin-
flammatory state of these cells. Earlier research by Ong et al. identified signs of cellular
senescence in CD16+ monocytes [26]. Conversely, CD16+ monocytes have also been shown
to roll along the endothelium, possibly participating in endothelial repair [27]. These obser-
vations may not be contradictory, suggesting that CD16+ monocytes (whether non-classical
or intermediate) play a significant role in the chronicity of inflammation and exhibit in-
creased adhesion to the endothelium. However, the underlying mechanisms responsible
for the shift in monocyte subpopulation ratios in the blood remain unclear. It is known
that increased proinflammatory activity of monocytes in atherosclerosis can originate at
the level of progenitor cells in the bone marrow [28]. It is likely that these changes also
influence the differentiation of monocytes into various subpopulations.

This Special Issue features two reviews. It is well established that cardiovascular
complications arising from the development of atherosclerosis are the leading cause of
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death in individuals with type 2 diabetes mellitus. In their review, Nedosugova et al.
explore the critical roles of oxidative stress and chronic inflammation in the progression of
atherosclerosis associated with type 2 diabetes mellitus [29]. Meanwhile, Ng et al. discuss
emerging biomarkers of oxidative stress and inflammation in their new review [30].

Despite significant advances in extending life expectancy and improving quality of life
in old age, effective methods for inducing regression of atherosclerosis remain elusive. The
publications in this Special Issue address various facets of atherogenesis, including lipid
metabolism disorders, LDL modifications, endothelial dysfunction, and changes in immune
cell function. It is now evident that these aspects are interconnected in complex ways.
Endothelial dysfunction not only increases permeability but also enhances proinflammatory
signaling and monocyte adhesion. Unbalanced nutrition can lead to desialylation and
subsequent modifications of LDL particles, such as increased density, decreased size,
increased negative charge, and self-association. Monocytes and macrophages attracted to
the inflammation site engage in the uptake of LDL particles infiltrated into the vascular
wall, transforming into foam cells. Notably, monocytes in circulation already exhibit a
pro-inflammatory status and tend to secrete excess MCP-1, attracting additional monocytes
to the inflammation site. Furthermore, changes in the expression of inflammatory genes
can be observed at the precursor level in the bone marrow. The reasons and mechanisms
behind pro-inflammatory changes in circulating monocytes, LDL particle modifications,
and endothelial dysfunction remain unclear. Continued research is essential to develop a
unified theory of atherosclerosis that accounts for its multifactorial nature.

I am pleased that this Special Issue features such remarkable research. I would like to
thank the authors for their invaluable contributions, which bring us closer to overcoming
atherosclerosis. Many thanks also to the reviewers and the Biomedicines team.

Funding: This work was supported by grant 075-15-2019-1661 from the Ministry of Science and
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