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Abstract: Background: The objective was to test the generalisability of electroencephalog-
raphy (EEG) markers of future pain using two independent datasets. Methods: Datasets,
A [N = 20] and B [N = 35], were collected from participants with subacute spinal cord
injury who did not have neuropathic pain at the time of recording. In both datasets, some
participants developed pain within six months, (PDP) will others did not (PNP). EEG
features were extracted based on either band power or Higuchi fractal dimension (HFD).
Three levels of generalisability were tested: (1) classification PDP vs. PNP in datasets
A and B separately; (2) classification between groups in datasets A and B together; and
(3) classification where one dataset (A or B) was used for training and testing, and the
other for validation. A novel normalisation method was applied to HFD features. Results:
Training and testing of individual datasets achieved classification accuracies of >80% us-
ing either feature set, and classification of joint datasets (A and B) achieved a maximum
accuracy of 86.4% (HFD, support vector machine (SVM)). With normalisation and feature
reduction (principal components), the validation accuracy was 66.6%. Conclusions: An
SVM classifier with HFD features showed the best robustness, and normalisation improved
the accuracy of predicting future neuropathic pain well above the chance level.

Keywords: EEG; central neuropathic pain; spinal cord injury; biomarkers; machine learning

1. Introduction
Central neuropathic pain (CNP) is a debilitating condition that frequently follows

spinal cord injury (SCI), significantly decreasing patients’ quality of life [1–3]. Electroen-
cephalography (EEG) has large potential for identifying diagnostic and susceptibility
(future pain) [4] biomarkers for CNP given its cost-effective, portable, and non-invasive na-
ture. Various models have shown great promise in explaining pain-predictive models [5,6],
though there remains a pressing need to improve biomarkers and their classification accu-
racy. A study by our group demonstrated that SCI-related CNP could be predicted using
oscillatory EEG features with accuracies exceeding 80% [7]. Studies such as these, based
on small datasets, provide early evidence for potentially clinically useful biomarkers but
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lack validation on independent datasets, making it unclear whether models would hold on
similar datasets and leading to uncertainty regarding the generalisability of findings.

Various studies have utilised spontaneous cortical activity, using resting state EEG
spectral analysis, to compare between patients with pain relating to neurological diseases
and patients with the same disease but without pain or even healthy controls [8–16].
A review of resting-state biomarkers of chronic NP revealed that chronic neuropathic
pain was associated with EEG signal power increases in the theta and high-beta bands,
but a decrease in the high alpha–low beta band [17]. More specifically to SCI-related
CNP, studies have observed similar changes in the oscillatory activity of the brain during
spontaneous EEG that relate to pain [18–22]. The main findings of these studies indicate
that major signatures of CNP include increased power in the theta range and a decreased
frequency of the dominant alpha rhythm. These observed changes in EEG power are
widespread and not restricted to specific cortical areas. It is these markers that have
led to the conclusion that CNP may be related to thalamocortical dysrhythmia (TCD),
in which normal resonance is disrupted by changes in the behaviour of the neurons in
the thalamus [18]. This dysrhythmia in CNP is characterised as an increase in theta and
higher beta band EEG power, as well as shifted dominant alpha frequencies towards lower
values [8,21].

Non-linear methods, originating from chaos theory (e.g., fractal dimension), provide
unique insights into EEG signals by measuring signal complexity [23–25]. Higuchi’s fractal
dimension (HFD) has been widely applied to EEG studies in both healthy individuals and
those with neurological conditions, including Alzheimer’s, traumatic brain injury, and
epilepsy [25–27]. There is little evidence of studies implementing HFD to analyse cortical
changes due to pain; however, similar studies have used resting-state EEGs to confirm
decreased HFD in Alzheimer’s disease as a classifiable biomarker, with the results of one
support vector machine (SVM) classifier achieving sensitivity and specificity above 90% [28].
Notably, a recent study carried out by our group investigated the development of CNP in a
subacute SCI population, applying HFD to dynamic EEG signals and classifying between
those who did and did not develop CNP using SVM models and obtaining accuracies of
up to 88% [29].

In recent years, there has been lots of interest in applying machine learning methods
to analyse changes in brain activity, using EEG, in order to both identify pain and predict
future pain [30–34].

Chronic pain has been classified using EEG-based biomarkers for distinguishing
between people with and without hip pain [35], chronic pancreatitis [36], lower back
pain [15,32], peripheral neuropathy [37], herpes zoster neuropathy [37], chronic pain
following traumatic brain injury [38], phantom limb pain [39], migraine [40], or mixed
types of pain [41–43]. Classification accuracies ranged from 57% [41] to 92.5% [42].

While SVM has been the most popular classifier, several studies have used neural
networks (NNs) such as perceptron NNs for detecting neuropathic pain [7], convolutional
NNs for induced back pain [32], elastic net for mixed chronic pain [43], and STPA Net
for detecting the presence of pain in children [44]. For NNs, classifiers’ accuracies ranged
from 79.6 [43] to 89% [7]. Classifiers based on NNs did not provide noticeably higher
classification accuracies than simple machine learning methods, probably because all
datasets were relatively small. While NNs might provide flexibility in the sense of feature
selection, they have a large number of hyperparameters and might be prone to overfitting.

What is common for all studies is that they typically focus on diagnostic markers,
i.e., confirming the presence of existing pain, which may reveal new pain markers and
contribute to our understanding of pain mechanisms, although this is not of great relevance
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for patients. Secondly, studies typically use cross-validation to test accuracy, i.e., to test the
robustness of the classifiers.

It has been suggested that standard criteria should be identified and met to determine
markers as valid and useful for clinical practice [45]. Good biomarkers need to be gener-
alisable and interpretable, transparently follow clear standardised procedures, and have
high sensitivity and specificity [6]. The generalisability of biomarkers refers to whether
a prediction will hold when applied to different test subjects or datasets. One survey of
translational neuroimaging studies, not limited to EEG studies, found that only a small
portion (9%) of over 500 studies used prospective testing on new datasets to validate
developed classification models for various neurological disorders [46]. Studies that did
conduct independent testing often reported lower accuracies, potentially due to biased
cross-validation estimates derived from original training data where small datasets are
often described as major limitations in neuroimaging-based classification studies.

There are two novelties of this study. First, it focuses on identifying people who in
the future might develop pain and second, it validates classifiers on unseen data. Rather
than using cross-validation, we explore both linear and non-linear EEG features as can-
didate susceptibility markers, i.e., markers of the risk for developing neuropathic pain in
the future.

We hypothesise that future pain can be identified by both linear and non-linear EEG
markers and that these markers are robust when testing on unseen datasets. We test this
hypothesis on patients with subacute spinal cord injury (SCI, within 6 months post-injury),
recording their EEG prior to developing NP, and following up their pain status. The specific
group of patients was selected because 50% of people with SCI develop pain within the first
6 months [1]. Although by definition, chronic pain should be present for at least 6 months,
the specific location (under the level of injury) and responses to sensory tests allow for
CNP in SCI to be diagnosed earlier [47].

The specific objectives of the study are as follows:

• Compare the classification performance of linear (band power) and non-linear (HDF)
EEG features as markers of pain using two frequently used classifiers (LDA and SVM)
as potential makers of future NP.

• Explore the robustness of features and classifiers by gradually increasing the level
of challenge: (1) when applied for training and testing on two different datasets (A
and B separately); (2) training and testing on the combined dataset (A and B); and
(3) training and testing on one dataset (A or B) and validating on another dataset (B or
A) separately.

2. Materials and Methods
2.1. Datasets

Practical purpose classifiers should be able to classify datasets provided in different
laboratories or clinics with high accuracy. We compared classification accuracy on two inde-
pendent datasets, which were recorded 4 years apart by different experimenters under the
same experimental protocol and using the same EEG device in different environments. This
mimicked to some extent the realistic conditions limiting, in the first instance, variability of
the external factors.

2.1.1. Dataset A

A pre-existing dataset of EEG recordings was used in this study. This study was
part of a registered clinical trial (NCT021789917) [7]. The dataset includes paraplegic and
tetraplegic subacute (≤6 months post-injury) spinal cord-injured patients. Data were
recorded with a 48-channel EEG at 256 Hz and involve three groups of participants:
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• Ten able-bodied (AB) participants (three female (F), seven male (M), age 35.2 ± 7.2 years
[mean ± std.dev])

• Ten patients who eventually developed pain (PDP) within six months of EEG recording
(one F, nine M, age 46.9 ± 15.9 years).

• Ten patients who did not develop pain (PNP) within six months of EEG recording
(one F, nine M, age 42.1 ± 13.3 years)

• Eleven patients with pain (PWP) at the time of EEG recording (four F, seven M, age
44.9 ± 16.9 years)

Participants were considered to have pain if their pain level was ≥4 on the visual
numerical scale (where zero is no pain and ten corresponds to the worst pain imaginable).
The location of EEG electrodes in both datasets is shown in the Supplementary Materials
(Figure S1). Note that, in Dataset B, only electrodes present in Dataset A were used.

2.1.2. Dataset B

A dataset consisting of 75 participants with SCI and AB controls was collected, anno-
tated, and preprocessed for this study via a multi-site clinical trial (registered clinical trial
number NCT04665492). Researchers performed data collection using the same portable
EEG device at both sites, and the same device was used for recording Dataset A (g.USBamp;
Guger Technologies, Graz, Austria). Half of the participants’ data in Dataset B was recorded
in the same environment as Dataset A. The inclusion/exclusion criteria were the same as
for Dataset A. General inclusion criteria for all participants were as follows: age between
18 and 75 years old, no known other major neurological disorder or injury that would
affect EEG interpretation and the ability to understand the task. The general exclusion
criteria for all groups was the presence of any chronic (non-CNP) or acute pain at the
time of EEG recording. All SCI patients in this study were within 6 months of injury, still
hospitalised, and receiving inpatient rehabilitation for their SCI. Given that there is no
known or confirmed relation between development of NP and age, gender, and level or
completeness of injury [48], participants with SCI of any sex and incomplete injury level or
severity were included in the study, similarly to the recruitment criteria in the preceding
study that collected Dataset A [49]. There were two groups of patients: those who already
had below-level neuropathic pain at the time of recording and patients who did not have
neuropathic or any other chronic pain at the time of the EEG recording. Patients who
did not have any pain at recording were followed up after approximately six months to
identify whether they had been diagnosed with CNP. Pain status was based on patient
records and phone calls by medical professionals. In both datasets, the presence of NP
was established based on (1) a complete patient history, (2) a physical examination, and
(3) the International Spinal Cord Injury Pain (ISCIP) Classification System following best
practice for establishing the presence of NP in subacute SCI [47]. After this period, they
were further divided into a group who eventually developed neuropathic pain and a group
who did not develop pain. Participants were therefore divided into the same four groups
as in Dataset A for EEG analysis:

1. Twenty AB participants (five F, fifteen M, age 51.2 ± 12.8 years)
2. Seventeen PDP participants(five F, twelve M, age 56.9 ± 12.4 years)
3. Fifteen PNP participants (one F, fourteen M, age 57.5 ± 18.2 years)
4. Nineteen PWP participants (eight F, eleven M, age 45.9 ± 15.6 years)

Though the same methods could be applied to all combinations of groups, this study
only analyses the PDP and PNP groups where successfully distinguishing between them,
early after injury, would be of clinical significance in identifying patient susceptibility
to pain.
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Information about patients in Datasets A and B is shown in the Supplementary Ma-
terials in Table S1. In both groups A and B, PDP had more patients with completeness of
injury A and B and PNP had more patients with completeness of injury C and D. Note
that this was not known at the time of EEG recording, because patients were split post-hoc
into PNP and PDP. The flow chart in Supplementary Materials Figure S2 shows all patient
groups in Datasets A and B and the patient groups analysed in this study.

The experimental protocol (Nr GN20NE240) was approved by the Research Ethics
Committee (REC) of the National Health Services (NHS) for Scotland. Each participant
signed the informed consent form, and the study was carried out in accordance with the
Declaration of Helsinki (1964). For more details about the studies, please look at publicly
available registered trials.

2.2. EEG Recordings

During the recording of both datasets, the electrode impedance was kept under 5 kΩ.
The ground electrode was placed at the AFz electrode location in Dataset A and at FPz in
Dataset B. Both datasets were recorded using a linked-ear reference. EEG was sampled at
256 Hz, band-pass filtered during recording between 0.5–60 Hz and notch filtered at 50 Hz,
using fifth order IIR digital Butterworth filters within the g.USBamp devices.

All recordings were imported to Matlab for preprocessing using the EEGLAB tool-
box [50]. Data were high-pass filtered at 1 Hz using bandpass FIR filter, which was necessary
in order to implement ICA. The EEG signal was re-referenced to an average reference. Next,
signals were visually inspected and segments with artifacts of an amplitude ≥100 µV
across all electrodes were manually removed. For further artifact removal, the remaining
data were decomposed into independent temporal components (corresponding to the
number of available EEG channels) using the Infomax ICA algorithm [51], implemented in
EEGLAB. The non-EEG components were identified visually and removed by considering
their frequency content, morphology, and spatial distribution [52].

2.3. Experimental Paradigm

Spontaneous EEG activity was recorded in the eyes-opened (EO) and eyes-closed
(EC) relaxed states for two minutes each. During the EO relaxed state, participants were
presented with a small cross on a computer screen to focus on and were instructed to stay
as still as possible during recording. Similarly, during the EC relaxed state, participants
were asked to relax. A 100 s long EEG recording was taken from the EO and EC data of
each participant, based on the shortest available EEG across both datasets for analysis.

2.4. Feature Extraction

Oscillatory and non-oscillatory features were extracted and used independently for
classification in this study, where analyses based on both have previously shown promising
classification accuracies between participant groups in Dataset A [7,29].

2.4.1. Band Power

For both datasets, EEG data were divided into 10 equal, non-overlapping, subsequent
sequences, each 10.0 s long (100.0 s in total), from which features were extracted from each
sequence independently. For every participant (N) in each group, this created 10*N training
sets for the EO and EC states seperately. All extracted features were based on the power of
the EEG signals in various frequency bands. The power spectrum density was calculated
based on Welch’s periodogram over 4 s windows with 50% overlap.

The compute_psd() function from MNE-Python (mne-1.8.0) was utilised to estimate the
power spectral density (PSD) using Welch’s method. The frequency range was specified
between 2 Hz and 30 Hz. Both absolute band power and relative band power were derived
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for each frequency band of interest in order to evaluate the PSD. The absolute power for a
given frequency band was calculated as illustrated in Equation (1):

absolute_bandpower =
∫ fhigh

flow

psd( f ) d f (1)

Here, flow and fhigh represent the low and high cut-off frequencies, respectively. To
calculate the relative band power, the absolute band power was normalised by dividing it
by the total power across all frequencies. The total power is obtained by integrating the full
PSD spectrum, as shown in Equation (2):

total_power =
∫

psd( f ) d f (2)

The relative band power can then be expressed as:

relative_bandpower =
bandpower
total_power

(3)

By normalising against the total power, the relative power highlights the proportion
of power contained within a specific frequency band relative to the overall EEG spectrum.

EEG power for both EO and EC states was calculated in the theta (4–8 Hz), alpha
(8–12 Hz), beta (13–30 Hz), and wide band (2–30 Hz) ranges. Relative power was calcu-
lated, for normalisation purposes, by dividing the power in each frequency band (theta,
alpha, beta) by the wide band power. The resulting feature vector inputs for classification
are therefore:

• EO theta, alpha, beta
• EC theta, alpha, beta

2.4.2. Higuchi Fractal Dimension

Higuchi’s fractal dimension (HFD) is also explored as a classifiable feature to under-
stand whether non-linear analysis provides discriminatory information between the two
groups [25]. The fractal dimension D is a statistical measure relating signal complexity to
the scale at which a signal is measured, with higher values of D corresponding to higher
signal complexity. For time series data, D ∈ [1, 2].

The HFD is estimated as follows. First, the length L(k) of a time series S(t),
t = 1, . . . , N is calculated using Equations (4) and (5) for exponentially increasing values of
k = 2, . . . , ≤kmax.

Lm(k) =

⌊ N−m
k ⌋

∑
i=1

|S(m + ik)− S(m + (i − 1)k)|

1
k

N − 1
⌊N−m

k ⌋
(4)

L(k) =
1
k

k−1

∑
m=0

Lm(k) (5)

Then, the fractal dimension D is estimated from the slope of the linear least squares fit
of L(k) onto k on a doubly logarithmic scale such that, for statistically self-similar curves,
L(k) ∝ k−D. We used an open source Python implementation [53] and set kmax = 7. The
choice of kmax = 7 was motivated by previous work showing a particularly accurate
estimation of the fractal dimension in EEG signals with kmax near 6 [23].

As HFD analysis is more effective and more efficient on shorter time windows [54]
we use EEG data cropped to 2.0 s, non-overlapping, subsequent windows resulting in
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50 × 2.0 s (100.0 s in total) repetitions from each of the EO and EC time series datasets
recorded for all participants.

2.4.3. Feature Extraction for Non-Oscillatory Features

A novel approach to feature extraction is proposed and implemented on non-
oscillatory HFD features. The method normalises each participant’s EO EEG signal by
using the amplitude of their corresponding EC EEG signal. The goal of this normalisa-
tion is to eliminate individual-specific differences in EEG amplitude, highlight differences
between the EO and EC states while preserving phase information, and use a ratio of
EO to EC data as a classifier input. Each signal, EO and EC, is a complex number and
expressed as follows:

XEC( f ) = AEC( f )ejϕEC( f ) (6)

XEO( f ) = AEO( f )ejϕEO( f ) (7)

where AEC( f ) and AEO( f ) are the magnitudes, and ϕEC( f ) and ϕEO( f ) are the phases at
frequency f for the EC and EO data, respectively. To normalise the EO signal by the EC
signal, the amplitude of the EC signal is defined by:

|XEC( f )| = AEC( f ) (8)

Three different normalisations were applied. The first, EON1, is normalised by dividing
EO by the amplitude of the EC signal given that EC power should always be larger than
EO, meaning the resulting amplitude ranged from 0 to 1.

XEO( f )
|XEC( f )| =

AEO( f )
AEC( f )

ejϕEO( f ) (9)

This may help to remove the influence of individual-specific amplitude characteristics
by scaling the EO signal with respect to the EC signal. Importantly, the phase information
of the EO signal, ϕEO( f ), is preserved. Additionally, to prevent division by zero when
AEC( f ) approaches zero, a small constant ϵ is added to the denominator, where ϵ is a small
value chosen to prevent instability in the calculation:

XEO( f )
|XEC( f )|+ ϵ

(10)

For the second method, EON2, the phase information of EO and EC is not retained.
When transforming from the frequency domain to the time domain, the phase was set to 0
for all frequencies, meaning that only the amplitude information is preserved. Therefore,
EON2 is calculated as follows:

|XEO( f )|
|XEC( f )| =

AEO( f )
AEC( f )

(11)

The third method also set the phase to zero and calculates the ratio of the square values,
EON3:

|XEO( f )|2
|XEC( f )|2 =

|AEO( f ) · ej·ϕEO( f )|2

|AEC( f ) · ej·ϕEC( f )|2
=

AEO( f )2

AEC( f )2 (12)

Normalised EO were then returned to the time domain and HFD values were extracted
from 50 × 2 s repetitions from each set of data, the original EO, EON1, EON2, and EON3.



Biomedicines 2025, 13, 213 8 of 21

2.5. Classification
2.5.1. Classifiers

We explore the potential of band power and HFD as features for classification using
two different algorithms: linear discriminant analysis (LDA) and linear support vector
machines (SVM). Due to the small amount of data available, linear classifiers were selected
given their relative simplicity compared to non-linear alternatives. Additionally, SVMs have
been shown to outperform other methods in a large number of EEG classification problems,
which is attributed, in part, to SVMs’ ability to classify relatively small datasets [55].

LDA attempts to find a linear combination of features that characterise or separate
two different classes by projecting measurements onto another axis.

h(t) = At · f (13)

where f is the original set of features, A is transformation, and h(t) is a linear discriminant
function. The method aims to maximise the ratio of between-class variance to the within-
class variance in any particular dataset in order to achieve maximal separability.

α =
σ2

between class
σ2

within class
(14)

For the best separation of classes, alpha should be maximised. Sklearn’s implemen-
tation for LDA was used [56], setting prior probabilities to ’empirical’, meaning that the
prior probability of class k is the number of training samples of class k, divided by the total
number of training samples. LDA assumes that different classes have the same variance.
Other parameters were kept constant with the following settings:

• Priors: Inferring prior probabilities from data—if not provided, the model estimates
class probabilities directly from the training data distribution.

• Solver: SVD—singular value decomposition (SVD) is used for efficient computation,
especially when the number of features is high.

• Shrinkage: None—no shrinkage is applied, meaning the model does not regularize
the covariance matrix estimates.

• store_covariance: False—the covariance matrix is not stored in the model to reduce
memory usage during training.

All LDA hyperparameters were fixed.
SVM classifier training involves representing the training data points in a multi-

dimensional vector space and finding a hyperplane that separates the data points belonging
to different classes, while maximising the distance between the hyperplane and the data
points closest to it, which are referred to as ’support vectors’ in [57]. Here, we used the
Sklearn implementation [58] of the ν-SVC classifier by Scholkopf et al. [57]. ν-SVC varied
from 0.05 to 0.90 with a step size of 0.05. Other hyperparameters were kept constant with
the following settings:

• Kernel: Linear—assumes data is linearly separable, reducing computational complexity.
• Probability: True—enables probabilistic outputs for predictions.
• tol: Default value 1 × 10−3—controls solver convergence by setting a minimum

change threshold.
• max_iter: Default value −1—no iteration limit; solver runs until convergence

is achieved.
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2.5.2. Classifier Evaluation

The following outcome measures were used to asses classification results [59]. For
both algorithms outlined above, classification accuracy, sensitivity, and specificity were
calculated as follows:

Accuracy =
TP+TN

TP+TN+FP+FN
(15)

Sensitivity =
TP

TP+FN
(16)

Speci f icity =
TN

TN+FP
(17)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.

2.5.3. Optimal Feature Selection

The input feature vectors for both classifiers were constructed from either feature
(band power or HFD) extracted from a subset of EEG channels. Optimal EEG channels
were selected via nested cross-validation on the training set, using a wrapper method for
EEG channel selection known as greedy forward feature selection [60,61]. Greedy forward
feature selection starts by estimating the cross-validation accuracy of the given machine
learning algorithm (LDA or SVM) trained on extracted features from each EEG channel
independently. The algorithm adds the channel with highest observed mean accuracy to
the initially empty selected set. In each subsequent iteration, cross-validation accuracy of
the classifier trained on each non-selected channel in conjunction with all the features in the
selected set is evaluated, and the best performing further channel is added to the selected set.
The procedure halts when there is no further channel to add without reducing classification
accuracy. For a more detailed description and a pseudo-algorithm, see Chapter 7.3 in [60].

For SVM classification, the optimal ν-SVC hyper-parameter value ν ∈ (0, 1], which
bounds the fraction of support vectors and margin errors, was determined via a grid search
and cross-validation of the training set, where the subset of channels used was re-optimised
for each parameter value.

For the classification of HFD features extracted from EO, EON1, EON2, and EON3 data,
principal component analysis (PCA) [62] is applied during the greedy channel selection
process to reduce dimensionality and use the resulting principal components as the classifier
input. In this case, the input training data consist of a matrix structured as Npatients ×
Nrepetitions × Nchannels × HFD. PCA is applied to the channels and their corresponding
HFD features and, as a result, the number of principal components is derived from this
step and used as the input for the classifier.

Once PCA is applied to the training set, the same transformation (i.e., the derived PCA
matrix) is applied to the test data. This ensures consistency, allowing the test data to be
projected into the same feature space as the training data before being evaluated by the
classifiers. This approach is applied to address potential overfitting to specific channels, and
the greedy algorithm is designed to select the number of PCA components that provides
the best cross-validation accuracy.

2.5.4. Analysis Framework

Figure 1 outlines each EEG feature utilised and their subsequent classification. To
explore whether extracted features can be used as susceptibility markers (i.e., markers of
future pain) for CNP in different datasets, for each configuration show, LDA and SVM
classifiers were first trained and tested on Dataset A to discriminate between PNP and
PDP. Classifiers were trained on examples from all but one participant and evaluated
on the held-out participant repeatedly, with each participant being held out once—also
known as leave-one-out cross-validation (LOOCV)—on Datasets A or B separately. Next,
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to test the transferability of the designed methods and the usefulness of EEG features on an
independent cohort of participants, where data were recorded under the same conditions,
classifiers were then trained and evaluated using LOOCV of participants from Dataset
A and B. Next, to understand whether optimal classifier parameters identified using one
dataset (i.e., EEG channels, ν-SVC parameter value, the number of PCA components) could
generalise to another, classifiers were trained using all available participants from Dataset
A, validated using Dataset B, and vice versa.

EEG�resting�state�data

Pre-processing�1 Pre-processing�2

ECEO

Normalization

EO

EO_N1

EO_N2

EO_N3

EO

PSD

β

α

θ

EC

PSD

β

α

θFeature�
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Figure 1. Schematic outlining all performed classification analyses in the study. Acronyms: EO, eyes
opened; EC, eyes closed; EON1, EON2, EON3, different normalisation methods; SVM, support vector
machine; LDA, linear discriminant analysis; PSD, power spectrum density; HFD, Higuchi fractal
dimensions; PCA, principal component analysis.

3. Results
3.1. Classification Results

The classification with power band features is presented first, followed by the classifi-
cation results with HFD.

3.1.1. Band power Feature Classification

Table 1 outlines the classification performance of both the LDA and SVM models,
evaluated across Dataset A and Dataset B under EO and EC conditions. For LDA, the
highest accuracy was observed in Dataset A under EO conditions, achieving 80.0% ± 26.4%
with a sensitivity of 79.0% ± 43.6% and specificity of 81.0% ± 44.7%, respectively. For
SVM, the highest classification accuracy was observed in Dataset B under EO conditions,
achieving 79.7 ± 25.8% with a sensitivity of 86.0 ± 45.50% and specificity of 73.0 ± 41.8%.
Consistent performance was observed for both classifiers, although sensitivity and speci-
ficity varied more across datasets and conditions. When examining the channels selected
during classification, no clear patterns emerged that would indicate any strong spatial
preferences for either classifier across the different conditions. For both LDA and SVM, the
selected channels are distributed across various regions of the scalp, covering the frontal,
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central, temporal, and occipital regions. Classification accuracy was better for EO than for
EC for both datasets classified with LDA and for Dataset B classified with LDA.

The performance of the LDA and SVM classifiers assessed using combined Datasets A
and B, focusing on the common set of 47 channels with LOOCV, can be seen in Table 2. These
results are relatively lower than those observed in individual datasets, but performance
is comparable between different classifiers and different features, with sensitivity and
specificity having comparable values to accuracy. Frontal electrodes were most frequently
selected. The best performance was achieved for SVM under EC conditions, reaching
72.4 ± 31.1% accuracy, 76.8 ± 43.5% sensitivity, and 68.0 ± 41.1% specificity. Three EEG
electrodes were selected: one right frontal, one left parietal, and one right parietal. For
LDA, marginally better classification was achieved under EO conditions, with 70.4 ± 31.4,
66.8 ± 39.8, and 74.0 ± 43.2% for accuracy, sensitivity, and specificity, respectively.

Table 1. Classification performance of Linear Discriminant Analysis (LDA) and Support Vector
Machine (SVM) models on individual datasets under both EO and EC conditions using theta, al-
pha and beta band power features. The results are presented as mean accuracy, sensitivity, and
specificity ± st.dev (%), along with the optimal channels selected for each classifier and the ν param-
eter value where applicable.

Dataset State Accuracy (%) Sensitivity (%) Specificity (%) Channels ν

LDA

A EO 80.0 ± 26.4 79.0 ± 43.6 81.0 ± 44.7 Fpz, F8, T7, T8, C5, C6, CP1 -
EC 70.0 ± 28.9 60.0 ± 37.7 78.0 ± 41.5 FC5, C6, Cz, CP3 -

B EO 76.7 ± 29.1 76.0 ± 43.0 77.3 ± 44.0 CP1, CP2, CP4, CP5 -
EC 72.8 ± 28.2 72.9 ± 43.7 72.7 ± 39.0 Oz, F3, C5, T8, T7, FC5, CP1 -

SVM

A EO 75.5 ± 28.9 87.0 ± 45.1 64.0 ± 39.8 FC3, P6 0.15
EC 78.9 ± 20.5 75.0 ± 39.0 82.0 ± 43.9 Fp1, C1, P6 0.05

B EO 79.7 ± 25.8 86.0 ± 45.5 73.3 ± 41.8 CP6, T7, FC6, F8, O1, F1, F7, CPz, C4 0.05
EC 70.9 ± 28.9 74.7 ± 41.5 66.7 ± 39.9 FC2, T8, FC3, C5, P6, C2 0.50

Table 2. Classification performance of both linear discriminant analysis (LDA) and support vector
machine (SVM) models using combined Datasets A and B with a common set of 47 channels and
theta, alpha, and beta band power features extracted from both EO and EC states. The results are
presented as mean accuracy, sensitivity, and specificity ± st.dev (%), along with the optimal channels
selected for each classifier and the ν parameter value for SVM classifiers, where applicable.

Dataset State Accuracy (%) Sensitivity (%) Specificity (%) Channels ν

LDA A & B EO 70.4 ± 31.4 66.8 ± 39.8 74.0 ± 43.2 F2, F4, F7, FC3, T7, CP5, P8 -
EC 69.2 ± 30.6 68.4 ± 40.9 70.0 ± 40.8 FC3, C6, P6, P8 -

SVM A & B EO 69.6 ± 33.4 80.0 ± 44.8 59.2 ± 38.5 C4, P4 0.45
EC 72.4 ± 31.1 76.8 ± 43.5 68.0 ± 41.1 F2, P5, P6 0.15

Table 3 presents the generalisability of classifiers trained on Dataset A by testing them
using participant data from Dataset B, and vice versa. Validation metrics, and their respec-
tive st.dev, were calculated on a per-participant basis and averaged to obtain displayed
performance. Classification accuracy was above chance (60.6 ± 33.4%) only for LDA classi-
fier of EC features trained on Dataset A and tested on Dataset B. This is surprising given
that dataset B was almost twice as large as Dataset A.
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Table 3. Classification performance of linear discriminant analysis (LDA) and support vector machine
(SVM) models trained on either Dataset A or B and tested on the other validation dataset. Optimal
channels and ν values (for SVM) were identified using the training dataset. Theta, alpha, and beta
band power features were extracted from both EO and EC conditions. The results are presented as
mean accuracy, sensitivity, and specificity ± st.dev (%).

Train Dataset State Accuracy (%) Sensitivity (%) Specificity (%)

LDA

A EO 46.7 ± 36.3 39.3 ± 30.8 54.0 ± 37.8
EC 60.6 ± 33.4 55.3 ± 38.2 52.0 ± 36.9

B EO 49.5 ± 38.1 65.0 ± 44.0 34.0 ± 24.9
EC 43.9 ± 36.5 31.3 ± 24.3 54.0 ± 39.7

SVM

A EO 49.3 ± 42.3 72.7 ± 44.1 26.0 ± 28.2
EC 52.2 ± 40.9 24.7 ± 27.0 83.3 ± 44.4

B EO 52.0 ± 33.7 62.0 ± 38.1 42.0 ± 31.4
EC 46.7 ± 40.0 67.5 ± 42.6 30.0 ± 28.1

3.1.2. HFD Feature Classification

The results obtained when classifying HFD features across individual datasets can
be seen in Table 4. The LDA classifier achieved the highest accuracy of 72.7% ± 42.5%
under EO conditions for Dataset A and 72.3% ± 22.8% under EC conditions for Dataset
B. In contrast, SVM classifiers showed greater performance across both datasets, with
accuracies reaching 85.0% ± 26.0% for Dataset A under EC conditions and 80.0% ± 31.0%
for Dataset B under EO conditions. It is noteworthy that sensitivity and specificity were
also higher on average for SVM than for LDA. Overall, using SVM for HFD feature
classification outperformed LDA across the two datasets and conditions. Additionally, the
SVM algorithm consistently selected one or two channels for classification where LDA
classification required more channels to successfully distinguish between PDP and PNP.
No clear localisation pattern emerges for the selected electrodes.

Table 4. Classification performance of linear discriminant analysis (LDA) and support vector machine
(SVM) models on individual datasets under both EO and EC conditions using features based on
Higuchi fractal dimension (HFD) analysis. The results are presented as mean accuracy, sensitivity,
and specificity ± st.dev (%), along with the optimal channels selected for each classifier and the ν

parameter value, where applicable.

State Train Dataset Accuracy (%) Sensitivity (%) Specificity (%) Channels ν

LDA EO A 72.7 ± 42.5 67.0 ± 38.0 77.0 ± 42.0 Fp1, F7, F2, F8, FC3, T8, CPz, P3, Oz -
B 67.0 ± 27.6 68.0 ± 38.0 66.0 ± 40.0 F8, FC6, C5, T8, P2, P4, P8, O2 -

EC A 60.9 ± 35.0 44.0 ± 33.0 74.0 ± 42.0 CP4 -
B 72.3 ± 22.8 75.0 ± 39.0 70.0 ± 40.0 C6, P6, PO4

SVM EO A 88.6 ± 23.3 94.0 ± 47.9 84.3 ± 46.5 CP4 0.15
B 76.3 ± 29.6 70.7 ± 43.3 81.8 ± 43.6 CP3, CP4 0.40

EC A 80.2 ± 33.1 67.3 ± 43.3 90.5 ± 47.2 F4 0.20
B 77.4 ± 39.7 68.2 ± 45.6 86.7 ± 49.6 FC5 0.15

Table 5 shows the performance of classifiers assessed on Datasets A and B combined
when using HFD features extracted from EO or EC states. Similarly to the results obtained
on each dataset separately, the SVM classifier demonstrates significantly better performance,
achieving 77.9% accuracy under EO conditions based on one EEG channel only, or 86.4%
accuracy on the same dataset based on PCA derived from EEG electrodes. The LDA
classifier achieved much lower accuracies of up to 66.2%.
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Table 5. Classification performance of both linear discriminant analysis (LDA) and support vector
machine (SVM) models using combined Datasets A and B with a common set of 47 channels and
Higuchi fractal dimension (HFD) features extracted from both EO and EC states. The results are
presented as mean accuracy, sensitivity, and specificity ± st.dev (%), along with the optimal channels
selected for each classifier and the ν parameter value, where applicable.

State Train Dataset Accuracy (%) Sensitivity (%) Specificity (%) Channels ν

LDA EO A & B 60.7 ± 26.4 56.0 ± 34.4 65.0 ± 36.4 Fp1, CP1, P1, P2, PO4, O2 -
EC A & B 66.2 ± 33.0 64.0 ± 39.0 68.0 ± 41.0 F2, F4, FC2, T7, C3, T8, P4, FC5 -

SVM EO A & B 77.9 ± 37.8 87.8 ± 48.2 68.7 ± 46.0 P2 0.85
EC A & B 77.0 ± 35.4 70.7 ± 42.1 82.9 ± 49.1 Pz 0.80

3.1.3. Normalisation and Ratio-Based Feature Classification (HFD)

SVM outperformed LDA in previous classifications; therefore, only SVM was consid-
ered in this section. Table 6 presents the performance of SVM classifiers trained using EO
as well as normalised fetaures: EON1, EON2, and EON3. Note that the whole Dataset A
was tested, rather than individual participants; therefore, the standard deviation is missing.
Sensitivity (Sen) and specificity (Spe) are also provided for each configuration.

The results show that all classifiers achieved a high leave-one-out testing accuracy
between 76% and 100% for the training set, with as little as one EEG channel, with or
without feature reduction using PCA. However, this high accuracy came at the cost of low
generalisability, with most classifiers reaching chance levels.

The highest classification accuracy was achieved for EON3 (square amplitude normali-
sation without phase) with PCA. This classifier used the largest number of EEG channels
and related PCA that might reduce its overfitting to the training set. It is of interest to note
that this classifier also achieved one of the highest leave-one-out testing accuracies on both
Datasets A and B. Training on Dataset A and validation on Dataset B resulted in 66.6%
validation and 100% test accuracy. Equally important from the overfitting perspective is
the classifier for training Dataset A and testing on Dataset B, which achieved comparably
high values for sensitivity (73%) and specificity (60.1%).

Validation of Dataset A, trained on Dataset B, also achieved an above-chance classifi-
cation accuracy (59.5%), but sensitivity was low (37.5%). It is of interest that, for both band
power and HFD features, better results were achieved for training and testing on Dataset
A and validating on Dataset B, although Dataset B was larger. The reason might be that
Dataset A has better separability of features. Supplementary Figure S3 shows the separa-
bility of band power features while Figure S4 shows the separability of HFD features in
EO. For band power features, the uniform manifold approximation and projection method
was used in order to combine multiple features, while HFD was presented in the form of a
histogram. For Dataset A, HFD had slightly higher values (histogram shifted to the right),
while for Dataset B, PDP had a binomial distribution with two peaks, one with lower and
the other with higher HFD values than PNP. Lower separability between PNP and PDP
in group B indicates less homogeneous grouping, which might be caused by recording in
two different hospitals, i.e., in the presence of two different environmental noise levels, in
contrast to Dataset A, which was all recorded in the same environment.
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Table 6. Performance of the support vector machine (SVM) classifier trained on either Dataset A or B
and tested using participants in the alternate dataset. The results are shown for the Higuchi fractal
dimension (HFD) extracted from the EO feature set and normalised EON1, EON2, and EON3 features.
Training and validation accuracies are provided for each configuration, and with and without use
of principal component analysis (PCA). Train-acc, training accuracy obtained using leave-one-out
cross-validation (LOOCV) on specified dataset; Val-acc, mean accuracy obtained when testing on
participant data within the validation dataset. Channel selections, the number of PCA components,
and the ν parameter value informed during training using the specified training dataset. All results
are presented as mean ± st.dev.

Dataset PCA Comps Train-acc (%) Val-acc (%) Sen (%) Spe (%) Channels ν

EO A None 88.6 ± 23.3 48.3 51.1 45.5 CP4 0.15
B 76.3 ± 29.6 43.7 98.0 0.02 CP3, CP4 0.40
A 1 89.1 ± 21.4 45.2 73.5 16.8 Fp1, FC5 0.75
B 1 80.8 ± 32.2 52.8 34.7 67.3 FC4, PO3 0.25

EON1 A None 81.9 ± 36.8 49.4 71.8 30.0 T7 0.05
B 89.4 ± 30.0 45.3 98.6 2.7 PO4 0.80
A 1 91.9 ± 18.6 50.0 0.0 100.0 C1, O1 0.70
B 1 83.3 ± 32.8 54.3 17.0 84.1 Fp2, P4 0.80

EON2 A None 87.9 ± 31.3 47.7 93.1 2.1 Fp1, P2 0.25
B 84.0 ± 30.0 44.4 100.0 0.0 CP6 0.20
A 1 93.4 ± 23.0 50.9 87.9 13.9 F7, F4, P4 0.70
B 1 90.3 ± 27.4 44.4 100.0 0.0 FC2, C1, O1 0.85

EON3 A None 94.3 ± 22.9 50.0 100.0 0.0 CP4 0.15
B 83.3 ± 37.2 45.8 37.5 52.5 F4 0.05
A 8 100.0 ± 0.0 66.6 73.0 60.1 F3, FC2, T7, C2, CP4, Pz, P2, O2 0.20
B 9 93.3 ± 24.9 59.5 37.5 77.0 Fp1, F3, Fz, FC1, C4, T8, CP4, P7, P5 0.45

4. Discussion
In this study, we systematically analysed the generalisability of classifiers and EEG

markers of future pain for people with subacute SCI. In our previous study, we achieved
accuracies of 86 ± 10% (LDA) on the old Dataset A used in this study. By repeating
the experiment with nearly double the number of participants and keeping experimental
conditions as similar as possible, we created three levels of challenge:

• Classifying separately new and old datasets with the same type of EEG features
and the same type of classifiers, but allowing the selection of optimal electrodes and
network parameters for each set separately.

• Jointly classifying both datasets.
• Training and testing classifiers based on one dataset and validating on another.

We did not identify a single study in the recent published literature that tested
the repeatability of chronic pain markers, i.e., all cross-sectional studies only addressed
Challenge 1.

Most studies used simple classifiers due to smaller datasets, such as LDA, SVM, k
nearest neighbours, naïve Bayesian, and random forest, though perceptron NNs [7] and con-
volutional neural networks [32] were also applied. EEG has been used to identify different
types of chronic pain, including hip pain with an accuracy of 65% [35], chronic pancreatitis
with an accuracy of 87.5% [36], lower back pain with accuracies up to 83% [15,32], and
peripheral neuropathy with an accuracy of 80% [37]. Studies aimed at classifying mixed
types of chronic pain based on EEG achieved variable accuracies ranging from 57% [41] to
92.5% [42]. Most frequent features were based on band power, but entropy, connectivity,
and derived PCA were also used.
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The main difference between the previous studies and the current study is that none
of the groups in this study actually had pain at the time of EEG recording. Still, our study
achieved comparable accuracies to those of other studies, even when new and old datasets
were combined.

To create susceptibility markers, three aspects had to be considered: features (PSD
and HFD), classifiers (LDA, SVM), and resting state conditions (EO and EC). We will first
comment on general results common to all three levels of challenge.

Two sets of features were derived in two different domains: linear features based on
band power were calculated in the frequency domain and non-linear HFD features were
calculated in the time domain. The other relevant difference between linear and non-linear
features was that the former were calculated based on 10 s segments to improve the signal-
to-noise ratio, while the latter were calculated on 2 s segments, as recommended in the
literature [63]. That resulted in effectively 5 times more HFD features, albeit potentially
at the cost of a lower signal-to-noise ratio. This could partially explain the better results
obtained with HFD features.

We looked at the feature distribution (HFD) of both datasets that we presented in the
Supplementary Materials. Band power features seem to be better separated in Dataset
A than in Dataset B. In addition, for HFD of Dataset B, the PDP group had a bimodal
distribution. This might explain the slightly lower classification accuracy and the fact that
training on Dataset B resulted in poor validation on Dataset A.

Recently, Zollezi et al. [64] compared linear (band power) and non-linear (entropy)
EEG features, both calculated over different frequency bands. Although they did not
perform classification, statistical analysis showed that non-linear features were able to
better predict different levels (low, medium, and high) of pain severity. In the current
study, better classification was achieved with non-linear features, even when PCA was
not derived.

In the literature, most studies use simple classifiers due to smaller datasets, such
as LDA, SVM, k nearest neighbours, naïve Bayesian, and random forest [65]. Classifiers
selected in this study were relatively simple and recommended for the classification of
smaller datasets. While SVM is more widely used for EEG classification of pain [6,17,45,48],
its disadvantage is that it contains hyperparameter ν, which critically affects the perfor-
mance of the classifier. In this study, and in particular for HFD features, SVM outperformed
the LDA. After normalisation, accuracy higher than 90% was achieved, indicating that for
this problem, simple classifiers have a comparable performance to that of classifiers based
on NN. We achieved classification accuracies between PNP and PDP in Dataset A of up to
89% using the perceptron network, although classification accuracies of up to 86% were
achieved with LDA [7]. In other studies, NNs such as convolutional NNs [32] (accuracy
83%), elastic net [43] (accuracy 79.6%), or STPA net [44] (accuracy 87.8%) were used to detect
different types of chronic pain. Results from the literature show that simpler and NN-based
classifiers achieve comparable accuracies. However, more complex NN classifiers might be
more prone to overfitting due to small sizes of datasets. For larger datasets, deep NN-based
classifiers would have multiple advantages such as sensor or feature fusion [66], integration
of feature selection with classification [67], or feature agnostic classification [68].

When addressing the first challenge, all combinations of features, classifiers, and rest-
ing state conditions resulted in comparable high performances on both datasets, showing
that future NP pain indeed creates changes in EEG that could be identified in both the
time and frequency domains. The lack of any preferable spatial location indicates the
widespread nature of these changes.

When addressing the second challenge, classification accuracy dropped only slightly,
reaching a maximum of 72% for band power and 77.9% for HFD features. These results
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show that, despite the stochastic nature of EEG, the features that characterise future pain
are robust and could also be identified in both time and frequency. Non-linear features
outperformed linear features, and SVM clearly outperformed LDA for non-linear features,
because it allowed an additional level of flexibility compared to LDA. The EO state, as
hypothesised, provided more informative features than EC, resulting in a 12% higher clas-
sification accuracy. While a small number of selected channels indicates potentially simpler
setups for future clinical applications, it might also increase the chances of overfitting. The
third challenge was designed to test for this. Unfortunately, when using EO or EC features
separately, only band power with LDA reached an accuracy above the chance level. This
indicates the tendency of overfitting, which had to be addressed by introducing variability
and also increasing separability between different classes. A novel normalisation procedure
introduced in this study served several purposes. Knowing that EC EEG amplitude is
typically larger than EO amplitude, by dividing EO with EC we, reduced the range of
EEG signal amplitudes, which may vary considerably between individuals. This might not
be the most critical step, considering that HFD are derived features, although there is a
link between FFT amplitude and frequency and HFD [63]. Secondly, because there is no
direct 1:1 link between EO and EC segments, this allows the creation of multiple surrogate
data, a feature that should be exploited more in future studies. Thirdly, and possibly most
relevant for these datasets, by introducing the EO/EC ratio rather than considering each
state separately, it is likely that we increased the separability of features between PDP and
PNP. This is because the reactivity to eyes opening (and consequently the EO/EC ratio) is
reduced in the presence of current or future pain.

Three different normalisation procedures were introduced. It is of interest that normal-
isation with square amplitude and removing the phase information superseded the testing
accuracy of the normalisation with the preserved phase information. Subsequent feature
reduction with PCA improved the validation accuracy. While classification was well above
the chance level (66.6%), there is clearly room for improvement to make it suitable for
practical use.

In the future, normalisation could also be applied to frequency domain features. In our
previous study [7], we used the EEG EO/EC power ratio as one of the features alongside
EEG power in different frequency bands. Varying the duration of EEG sequences or
creating overlapping segments might, in the case of PSD, increase the number of training
sets. In that case, more complex classifiers based on NN could be applied. Feature fusion
(oscillatory and non-oscillatory) could be another avenue to improve the generalisability
of classification. Alternatively, combining EO and EC features might also lead to better
accuracy. Ultimately, the best way to improve classification performance would be to
collect a larger dataset and to use an NN, which would enable combined classification
and feature selection and also allow for testing whether creating synthetic EEG from
the existing Datasets A and B would lead to a larger dataset suitable for NN classifiers.
The main purpose of an NN would be to improve validation accuracy, considering that
SVM already provided very high training and testing accuracy. From a data collection
perspective, ideally, each participant should be reassessed by the experimenter in person
to establish whether they developed NP, and an EEG should be recorded again on that
occasion. In that way, it would be possible to determine the EEG features that changed the
most due to NP. Currently, the best approximation of this would be to compare EEGs in
PDP with those of patients who already had pain at the time of recording, as demonstrated
for Dataset A [7]. This comparison showed that these two groups could be separated.

A limitation of the study is the size of the datasets, although together they are among
the larger datasets in the literature (N = 52). A larger dataset would be more suitable for
NN classifiers, which might result in better validation performance. Another limitation is
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that we determined pain based on patient records combined with phone calls rather than
on in-person assessments by experimenters, which might provide better patient profiling
but would be logistically challenging, given the large catchment areas of the hospitals (e.g.,
one hospital for the whole Scotland). Participants were initially recruited while they were
still hospitalised. A realistic challenge that might have affected the separability of Dataset
B features was the different environmental noise levels present at the two hospitals from
which the patients were recruited (one in England and the other in Scotland), although the
same portable EEG was used to avoid issues that might arise due to different performances
of EEG datasets from two manufacturers or slightly different amplifications of two EEG
devices from the same manufacturer. Finally, although we followed the same procedures
for collecting Dataset B and Dataset A, different experimenters collected them; therefore,
some variation in the experimental protocol was inevitable.

As mentioned above, we recorded EEGs in four different groups and selected two of
the most challenging groups. In the future, generalisability should be tested between other
groups, like patients who had pain and able-bodied people without pain or patients who
had pain during EEG recording and those who later developed pain.

5. Conclusions
Repeated experiments confirmed that susceptibility markers of future pain exist and

that they can be identified based on both linear and non-linear EEG features. Classification
of the combined Datasets A and B further confirmed the robustness of future pain features
that could be identified despite the presence of different environmental noise in the two
datasets. Utilising inherent differences between the EO and EC states between the no pain
and future pain groups ultimately improved the generalisability of the classifier based on
time domain features. Normalising EO with EC features opened the pathway to creating
surrogate data and applying more complex classifiers. Future research should focus on
improving validation performance as a prerequisite for real life applications.

Supplementary Materials: The following supporting information can be downloaded at: www.
mdpi.com/xxx/s1, Table S1: Demographic information of SCI patients from all groups; Figure S1: (a)
Electrode locations for dataset A, (b) Electrode locations for dataset B; Figure S2: Flow chart showing
all patient groups in datasets A and B and patients groups analysed in this study; Figure S3: UMAP
Visualisations of EO/EC alpha bandpower features extracted from PDP and PNP groups from (a)
Dataset A. (b) Dataset; Figure S4: HDF histograms with PnP and PdP data: (a) group A of EO data.
(b) group B of EO data.
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