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Abstract: Background: Hepatocellular carcinoma (HCC) is a highly heterogeneous tumor,
and distinguishing its subtypes holds significant value for diagnosis, treatment, and the
prognosis. Methods: Unsupervised clustering analysis was conducted to classify HCC
subtypes. Subtype signature genes were identified using LASSO, SVM, and logistic regres-
sion. Survival-related genes were identified using Cox regression, and their expression and
function were validated via qPCR and gene interference. GO, KEGG, GSVA, and GSEA
were used to determine enriched signaling pathways. ESTIMATE and CIBERSORT were
used to calculate the stromal score, tumor purity, and immune cell infiltration. TIDE was
employed to predict the patient response to immunotherapy. Finally, drug sensitivity was
analyzed using the oncoPredict algorithm. Results: Two HCC subtypes with different
gene expression profiles were identified, where subtype S1 exhibited a significantly shorter
survival time. A subtype scoring formula and a nomogram were constructed, both of
which showed an excellent predictive performance. COL11A1 and ACTL8 were identified
as survival-related genes among the signature genes, and the downregulation of COL11A1
could suppress the invasion and migration of HepG2 cells. Subtype S1 was characterized
by the upregulation of pathways related to collagen and the extracellular matrix, as well
as downregulation associated with the xenobiotic metabolic process and fatty acid degra-
dation. Subtype S1 showed higher stromal scores, immune scores, and ESTIMATE scores
and infiltration of macrophages M0 and plasma cells, as well as lower tumor purity and
infiltration of NK cells (resting/activated) and resting mast cells. Subtype S2 was more
likely to benefit from immunotherapy. Subtype S1 appeared to be more sensitive to BMS-
754807, JQ1, and Axitinib, while subtype S2 was more sensitive to SB505124, Pevonedistat,
and Tamoxifen. Conclusions: HCC patients can be classified into two subtypes based on
their gene expression profiles, which exhibit distinctions in terms of signaling pathways,
the immune microenvironment, and drug sensitivity.

Keywords: hepatocellular carcinoma; subtypes; diagnostic model; immune microenvironment;
drug sensitivity

1. Introduction
Hepatocellular carcinoma (HCC) is the second-leading cause of cancer-related deaths

worldwide, with known risk factors including viral infections, excessive alcohol consump-
tion, and aflatoxin exposure [1,2]. Emerging evidence has highlighted the critical role of
the tumor microenvironment in the initiation, progression, and prognosis of HCC, making
it a promising target for novel cancer therapies [3–6]. For instance, diacylglycerol kinase

Biomedicines 2025, 13, 236 https://doi.org/10.3390/biomedicines13010236

https://doi.org/10.3390/biomedicines13010236
https://doi.org/10.3390/biomedicines13010236
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0002-8533-344X
https://doi.org/10.3390/biomedicines13010236
https://www.mdpi.com/article/10.3390/biomedicines13010236?type=check_update&version=1


Biomedicines 2025, 13, 236 2 of 19

gamma (DGKG) in tumor endothelial cells (ECs) has been shown to promote HCC progres-
sion, suggesting its potential as a therapeutic target [7]. The inhibition of 3-ketoacyl-CoA
thiolase 1 (OXCT1) in tumor-associated macrophages (TAMs) has been proposed as a
promising strategy for HCC treatment [6]. Additionally, the CNEPO protein has been
linked to the infiltration of regulatory T cells (Tregs) in the tumor microenvironment and
promotes HCC progression, suggesting that targeting its function may be beneficial for
HCC patients [8]. Despite these promising findings, only Sorafenib and Regorafenib have
been approved for the treatment of advanced HCC to date [9]. Therefore, there is an urgent
need for further research into the underlying mechanisms of HCC and the development of
novel therapeutic agents.

Over the past decade, significant advancements have been made in personalized
medicine, enabling the development of tailored treatment plans for patients with diverse
characteristics, thereby maximizing therapeutic efficacy and minimizing adverse effects [10].
The rapid development of bioinformatics and various omics sequencing technologies has
greatly facilitated the advancement of personalized medicine [11–14]. Bioinformatics
analysis allows for in-depth analysis of omics data and database information, enabling the
identification of unique molecular signatures in individual patients, thus facilitating more
precise diagnosis and the development of personalized treatment plans. For instance, the
determination of gene mutations [15,16] and polymorphisms [17–19] in cancer patients has
enabled personalized drug therapy in clinical practice.

The discovery of novel biomarkers and therapeutic targets has profound implica-
tions for the diagnosis and treatment of various diseases. Some biomarkers can serve
both diagnostic and therapeutic purposes, offering significant advantages. For instance,
MerTK has been shown to be a promising biomarker for predicting patient stratification
with respect to HCC and a potential target to overcome resistance to anti-PD-1/PD-L1
therapy in HCC [20]. Studies have demonstrated that integrin receptors [21,22], HER2 [23],
CLDN18 [24], GSH [25], and VEGF [26] can serve as personalized targets for tumors, and
nanotechnology can be employed for targeted drug delivery to reduce drug toxicity and
enhance therapeutic specificity and efficacy [27]. Moreover, some biomarkers can be used
for tumor diagnosis and therapy through molecular imaging with radiolabeled tracers [28].

For this study, we leveraged publicly available transcriptomic data, coupled with
bioinformatics analyses and experimental validation, in order to classify HCC subtypes
and investigate the underlying mechanisms and drug sensitivities associated with different
prognostic subtypes. Beyond the traditional focus on disease diagnosis, our study provides
insights into the disease-related mechanisms and potential therapeutic strategies for various
HCC subtypes, offering broader implications for pre-clinical and clinical researchers.

2. Materials and Methods
2.1. Data Collection and Processing

RNA-seq data of HCC and normal liver tissues were retrieved from The Cancer
Genome Atlas (TCGA) database (https://cancergenome.nih.gov/ (accessed on 8 May 2024)
and the NCBI Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/
geo/ (accessed on 8 May 2024). From the TCGA database, RNA sequencing data and
matching clinical information for 369 HCC patients and 110 normal liver tissues were
acquired, and the data were transformed into the Log2 (TPM + 0.001) format). From the
GEO database (GSE14520), RNA sequencing data and matching clinical information on
225 HCC patients and 220 normal tissues were collected.

https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


Biomedicines 2025, 13, 236 3 of 19

2.2. Clustering Analysis

Clustering analysis of HCC samples was conducted using the R package “Consensu-
ClusterPlus” [29]. The optimal number of clusters was determined by selecting the k value
that minimized the sum of squares within clusters, followed by 1000 repetitions to confirm
the stability of classification. Kaplan–Meier (K-M) survival analysis was performed using
SPSS, and survival curves were plotted with Prism. Principal component analysis (PCA)
and differential gene analysis were conducted using the PCA and Limma functions in R. A
cluster heatmap was employed to perform hierarchical clustering of the samples.

2.3. Identification of Subtype Signature Genes and Construction of Scoring Model

Least Absolute Shrinkage and Selection Operator (LASSO) regression and support
vector machine (SVM) were used in R to screen the signature genes. Univariate and multi-
variate logistic regression were performed using the SPSS software to identify statistically
significant (p < 0.05) subtype signature genes. A multivariate logistic regression model
was then utilized to obtain regression coefficients of the subtype signature genes in order
to construct a subtype scoring formula. Nomograms were built using functions such as
Survival, RMS, and nomogramFormula in R. The model’s reliability was assessed through
calibration and decision curve analysis (DCA) curves. Univariate and multivariate Cox
regression analyses were performed to identify survival-related genes among the subtype
signature genes. Protein–protein interaction (PPI) analysis was conducted using STRING
(http://string-db.org (accessed on 6 August 2024).

2.4. Enrichment of Signaling Pathways

Differentially expressed genes (DEGs) between subtypes were identified using the
Limma package in R [30], with screening criteria at |log FC| > 1 and adjusted p < 0.05. The
R package “clusterProfiler” was utilized for Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analyses [31]. Gene set variation analysis (GSVA) and gene
set enrichment analysis (GSEA) were performed using the GSVA and GSEA packages in R
to analyze differential pathways and enriched pathways between subtypes.

2.5. Immune Cell Infiltration

The R package “ESTIMATE” was used to analyze the stromal score, immune score,
ESTIMATE score, and tumor purity of the samples [32]. The immune cell infiltration scores
of different samples were determined using CIBERSORT [33].

2.6. Prediction of Immunotherapy Response

TPM data from TCGA-LIHC were normalized via mean sample expression, following
which immune response prediction was performed using TIDE (http://tide.dfci.harvard.
edu/ (accessed on 22 August 2024)).

2.7. Drug Sensitivity

Drug sensitivity analysis was performed using the R package oncoPredict [34,35],
based on the GDSC database.

2.8. Collection of Tumor and Normal Tissues

A total of 11 liver tissue samples were collected from patients undergoing hepatic
surgery at the First Affiliated Hospital of Zhengzhou University. These samples were di-
vided into two groups: normal liver with non-HCC diseases (n = 5) and tumor tissues from
patients with HCC (n = 6). This study was conducted in accordance with the declaration of
Helsinki, and the protocol was approved by the ethics committee of Zhengzhou University
(ZZUIRB2022-152) on 21 March 2022. Participants provided written informed consent.

http://string-db.org
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
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2.9. RT-qPCR

Total RNA was extracted using TRIzol reagent (Vazyme, Nanjing, China). Reverse
transcription was conducted using HiScript II Q RT SuperMix (Vazyme, Nanjing, China).
Gene expression levels were measured via qPCR using Taq Pro Universal SYBR qPCR
Master Mix (Vazyme, Nanjing, China) with GAPDH as an internal control. Expression
levels were calculated using the 2−∆∆CT method.

2.10. Cell Culture and Infection

HepG2 cells, purchased from the National Collection of Authenticated Cell Cultures,
were maintained in DMEM (ThermoFisher, Waltham, MA, USA) containing 10% FBS
(Cyagen, Suzhou, China) at 37 ◦C with 5% CO2. A small interfering RNA (siRNA) guide (5′-
AUACUCAUAGUCAUAUUCGAU-3′), passenger (5′-CGAAUAUGACUAUGAGUAUGG-
3′), and negative control (5′-UUCUCCGAACGUGUCACGUTT-3′) were selected to reduce
COL11A1 expression in HepG2 cells using lipofectamine 3000 transfection reagent (Invitro-
gen, Waltham, MA, USA), according to the manufacturer’s instructions.

2.11. Cell Invasion and Migration

For the scratch assay, cells were seeded in 6-well plates (Corning, Corning, NY, USA)
and cultured in serum-free medium to 80% confluence. After creating a scratch, cells were
cultured in 10% FBS-DMEM for 24 h. Cell debris was removed by washing with PBS. The
scratch width was measured from photographs taken at 0 and 48 h. The migration rate was
calculated as follows:

Migration% = (Scratch width-0h − Scratch width-48h)/Scratch width-0h (1)

For the invasion assay, trans-well filters were coated with Matrigel and seeded with
1 × 104 cells/mL in 200 µL serum-free DMEM. The lower well contained 500 µL DMEM
with 10% FBS. After incubation at 37 ◦C for 48 h, cells attached to the underside of the filter
were stained with crystal violet and counted under a microscope at 200× magnification.

2.12. Statistical Analysis

Statistical analyses were performed using R (version 4.3.2) and SPSS (version 27.0).
Differences between two groups for continuous variables were compared using Student’s
t-test (for normal distribution) or the Wilcoxon test (for non-normal distribution). Categori-
cal variables were compared using the Chi-square test. Univariate and multivariate logistic
and Cox regression analyses were conducted using SPSS. Receiver operating characteristic
(ROC) analysis was used to determine the optimal cutoff values for the predictor. Corre-
lation analysis was performed using Spearman’s correlation. The Benjamini–Hochberg
method was used to adjust p-values. p < 0.05 was considered statistically significant.

3. Result
3.1. Identification of HCC Patient Subtypes

The flowchart of this study is exhibited in Figure 1. To determine whether different
subtypes could be identified based on the overall gene expression profiles of hepatocellular
carcinoma (HCC) patients, unsupervised clustering analysis was performed. The results
indicated that, in the TCGA-LIHC dataset (training set), the highest intra-group consistency
was achieved when K = 2, effectively dividing samples into two subgroups (Figure 2A,
Supplementary Figure S1A,B), and the results for the GSE14520 dataset (validation set)
were similar (Figure 2B, Supplementary Figure S1C,D). Principal component (PCA), cluster
heatmap, and differentially expressed gene (DEG) analyses demonstrated significant dif-
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ferences between the two subtypes (Figure 2C–E). Kaplan–Meier (K-M) survival analysis
revealed significant differences in median overall survival (OS) times between the two HCC
patient subtypes in both the training and validation sets (Figure 2F, p = 0.019; Figure 2G,
p = 0.001). Specifically, the median OS time for subtype 1 (S1) was notably shorter than that
for subtype 2 (S2). In conclusion, these results suggest that HCC patients can be classified
into two subtypes, based on their overall gene expression profiles with distinct OS times.
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3.2. Construction of the Subtype Prediction System

To differentiate the two HCC subtypes, we identified characteristic genes using Least
Absolute Shrinkage and Selection Operator (LASSO) regression and the machine learning
algorithm support vector machine (SVM). LASSO regression identified 96 signature genes
(Figure 3A, Supplementary Table S1). To simplify the classification model, intersection
with the top 20 genes from the SVM analysis was conducted, resulting in 13 signature
genes (Figure 3B,C). Univariate logistic regression analysis indicated that all 13 genes were
independent factors affecting the classification. Multivariate logistic regression analysis
identified nine genes as common factors influencing the classification (Figure 3D). The
prediction formula for identifying patient subtype was as follows: Predictor = (−0.25 ×
ZFP57) + (−0.17 × ADARB2) + (−0.29 × COL11A1) + (−0.22 × RASGEF1C) + (−0.15 ×
ACTL8) + (−0.22 × CADPS) + (−0.32 × PRSS22) + (−0.36 × RBM11) + (−0.31 × GDF10)
− 12.06. Protein–protein interaction (PPI) analysis showed no interactions among the
nine signature genes, reinforcing their representativeness as a predictor for HCC subtypes
(Figure 3E).

3.3. Evaluation of the Subtype Scoring System

To assess whether the predictor could distinguish between the two subtypes of patients,
the predictor distribution among the subtypes was examined, revealing minimal overlap in
only a few patients (Figure 4A). Receiver operating characteristic (ROC) analysis illustrated
that the predictor could effectively distinguish between the two subtypes, with an AUC
of 0.976. At the optimal cutoff value of −0.154, both sensitivity and specificity were
greater than 0.91 (Figure 4B). For clinical convenience in distinguishing patient subtypes, a
nomogram was constructed (Figure 4C) and its predictive capability was assessed. In the
calibration curve, the prediction curve almost completely overlapped with the diagonal
line, indicating a good predictive performance and high consistency between the predicted
probabilities and actual results (Supplementary Figure S2A). Decision curve analysis (DCA)
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curves also demonstrated the good predictive performance of the model (Supplementary
Figure S2B). Patients were categorized based on the predictor value of -0.154, revealing that
those with lower predictor values had significantly shorter median OS times (p = 0.007)
(Figure 4D).
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Figure 2. Identification of HCC subtypes. (A) Heatmap of the consensus matrix for two clusters
in TCGA-LIHC (k = 2). (B) Heatmap of the consensus matrix for two clusters in GSE14520 (k = 2).
(C) Principal component analysis (PCA) of two subtypes. (D) Clustering heatmap of S1 and S2
subtypes. (E) Differentially expressed genes between S1 and S2 subtypes. (F,G) K-M survival analysis
of S1 and S2 subtypes based on OS (log-rank test) in the TCGA training cohort (F) and GSE14520
validation cohort (G). p-values were determined using Student’s t-test and the Wilcoxon test.
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SVM. (D) Univariate and multivariate logistic regression in S1 and S2 subtypes. (E) Protein–protein
interaction (PPI) analysis of characteristic genes.
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Figure 4. Construction and evaluation of the subtype prediction formula. (A) Distribution of predictor
in S1 and S2 subtypes. (B) ROC analysis of predictor. (C) Nomogram for the identification of S1 and
S2 subtypes. (D) K-M survival analysis between low and high predictor groups based on OS (log-rank
test). (E) Univariate and multivariate Cox regressions on the characteristic genes. (F) Expression of
COL11A1 and ACTL8 in the TCGA cohort. (G) Expression of COL11A1 and ACTL8 between normal
and HCC patients (normal n = 5, HCC n = 6).

To identify survival-associated genes among the nine signature genes, univariate and
multivariate Cox analyses were conducted. Both COL11A1 (collagen type XI alpha 1) and
ACTL8 (actin-like protein 8) emerged as significant factors influencing patient survival in
the univariate and multivariate analyses (Figure 4E). TCGA-LIHC (Figure 4F) and qPCR
analyses on human liver tissues (Figure 4G) confirmed that these two genes were elevated
in tumor tissues compared to normal tissues.

3.4. Effect of COL11A1 Downregulation on the Invasion and Migration of HepG2 Cells

Given the significantly higher expression of COL11A1 in tumor tissues, we further
explored its influence on cell invasion and migration. COL11A1 siRNA transfection signifi-
cantly reduced the mRNA expression of Col11a1 in HepG2 cells (Figure 5A). Trans-well
assays showed that cell invasion was significantly inhibited in HepG2 cells transfected with
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Col11a1 siRNA (Figure 5B). Additionally, scratch assays demonstrated that downregulating
COL11A1 expression significantly inhibited cell migration in HepG2 cells (Figure 5C).
Taken together, these results suggest that COL11A1 is associated with tumor cell invasion
and migration and, thus, inhibiting its expression can suppress invasion and migration in
HepG2 cells.
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3.5. Differential Signaling Pathways Between Two HCC Subtypes

To investigate the differential pathways between the two subtypes, an enrichment
analysis was conducted. Gene Ontology (GO) analysis revealed that DEGs were primarily
involved in pathways related to cell adhesion, extracellular matrix organization, collagen
fibril organization, the cellular response to retinoic acid, the chemokine-mediated signaling
pathway, and the collagen-containing extracellular matrix, with a significant involvement
in extracellular-matrix-related pathways (Figure 6A). Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis indicated that DEGs significantly participated in ECM–receptor
interaction, cytokine–cytokine receptor interaction, arachidonic acid metabolism, CYP450
metabolism, retinol metabolism, bile secretion, and the chemokine signaling pathway
(Figure 6B).
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analysis of DEGs between two subtypes. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis of DEGs between two subtypes.
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Gene set variation analysis (GSVA)–GO enrichment analysis showed that downregu-
lated pathways in subtype S1 primarily involved the steroid metabolic process, xenobiotic
metabolic process, CYP450 pathway, fatty acid metabolic process, and arachidonic acid
epoxygenase activity (Figure 7A). GSVA-KEGG enrichment analysis demonstrated that
downregulated pathways in subtype S1 were mainly related to steroid hormone biosyn-
thesis, drug metabolism by CYP450, bile acid biosynthesis and secretion, metabolism of
xenobiotics by CYP450, fatty acid degradation and biosynthesis, and cholesterol metabolism
(Figure 7B).
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The gene set enrichment analysis (GSEA) results revealed that the most significantly
upregulated pathways in subtype S1 included the collagen-activated tyrosine kinase recep-
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tor signaling pathway, fatty acid synthase activity, and positive regulation of epidermal
growth factor receptor activity (Figure 7C). Downregulated pathways predominantly con-
sisted of the omega hydroxylase P450 pathway, arachidonic acid monooxygenase activity,
xenobiotic catabolic process, and fatty acid β-oxidation using acyl-CoA dehydrogenase
(Figure 7C).

In summary, the upregulated pathways in subtype S1 mainly involve collagen and
the extracellular matrix, while the downregulated pathways primarily include xenobiotic
metabolism, fatty acids, arachidonic acid, steroids, retinol, retinoic acid, CYP450, bile
secretion, and urea-related.

3.6. Immune Microenvironment in Two HCC Subtypes

To examine the differences in immune microenvironments between the two subtypes,
ESTIMATE, CIBERSORT, and Tumor Immune Dysfunction and Exclusion (TIDE) analyses
were conducted. The ESTIMATE results revealed that subtype S1 exhibited higher stromal
scores, immune scores, and ESTIMATE scores and lower tumor purity (Figure 8A). Corre-
lation analysis indicated that the predictor was negatively correlated with stromal scores,
immune scores, and ESTIMATE scores, while it was positively correlated with tumor purity
(Figure 8B).

CIBERSORT analysis showed that subtype S1 had higher infiltration levels of
macrophages M0, plasma cells, activated memory CD4 T cells, and activated dendritic
cells, while it had lower infiltration levels of resting NK cells, activated NK cells, resting
mast cells, and naïve B cells (Figure 8C). There was a positive correlation between the
predictor and the infiltration levels of resting mast cells, monocytes, and resting NK cells,
while a negative correlation was observed between the predictor and the infiltration lev-
els of macrophages M0, resting dendritic cells, resting memory CD4 T cells, neutrophils,
regulatory T cells, plasma cells, and memory B cells (Table 1, Supplementary Figure S3).

Table 1. Correlation of immune cell infiltration and the subtype predictor.

Immune Cell Correlation with
Predictor(r) p-Value

Mast cells resting 0.37 0.000
Monocytes 0.31 0.000

NK cells resting 0.24 0.000
T cells CD8 0.07 0.199
B cells naive 0.06 0.210

Macrophages M1 0.04 0.427
NK cells activated 0.04 0.497

T cells follicular helper 0.02 0.762
Macrophages M2 0.02 0.655

Plasma cells −0.12 0.025
B cells memory −0.12 0.031

T cells regulatory −0.13 0.007
Neutrophils −0.14 0.011

T cells CD4 memory
resting −0.18 0.001

Dendritic cells resting −0.21 0.000
Macrophages M0 −0.25 0.000
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Figure 8. Immune microenvironment characteristics in S1 and S2 subtypes. (A,B) Stromal score,
immune score, ESTIMATE score, and tumor purity (A) and their correlation with the subtype
predictor (B). (C) Immune cell infiltration characteristics of two subgroups. (D) TIDE scores of S1 and
S2 subtypes. p-values were determined via Student’s t-test and the Wilcoxon test; correlation analysis
was performed via Spearman analysis.

Next, we evaluated the difference in the clinical response to immunotherapy between
the two subtypes using the Tumor Immune Dysfunction and Exclusion (TIDE) score. The
results indicated that subtype S1 had higher TIDE scores, suggesting that subtype S1 was
more likely to evade immune responses and had limited benefit from immunotherapy,
while subtype S2 might benefit more (Figure 8D).

Overall, these results demonstrate significant differences in stromal scores, immune
scores, ESTIMATE scores, tumor purity, immune cell infiltration levels, and TIDE scores
between the two subtypes, which may be crucial factors contributing to the differences in
patient prognosis.

3.7. Drug Sensitivity Analysis

To explore potential therapeutic differences between the two HCC subtypes, drug sen-
sitivity analysis was performed. The results indicate that subtype S1 may be more sensitive
to BMS.754807, JQ1, Axitinib, KU.55933, Tozasertib, PF.4708671, Navitoclax, ABT737, and
Ibrutinib (Table 2, Supplementary Figure S4A–I), while subtype S2 may be more sensitive
to SB505124, Pevonedistat, Tamoxifen, AT13148, Rapamycin, BMS.536924, BMS.345541,
Dactolisib, and Sorafenib (Table 2, Supplementary Figure S5A–I). Based on our previous
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results demonstrating that inhibiting COL11A1 expression could suppress invasion and
migration in HepG2 cells, the correlation between COL11A1 expression and sensitivity
to subtype S1-sensitive drugs was analyzed. Our results revealed a significant correla-
tion (Table 2, Supplementary Figure S6A–I), suggesting that these drugs may represent a
promising therapeutic strategy for HCC, particularly for tumors with the S1 subtype.

Table 2. Drug sensitivity (IC50) and correlation with the expression of COL11A1.

Drug
IC50 Median (Quartile)

p-Value Correlation with
COL11A1 (r) p-Value

Subtype 1 Subtype 2

BMS-754807_2171 0.15
(0.04–0.35)

2.56
(1.2–4.53) 2.90 × 10−52 −0.78 4.64 × 10−75

JQ1_2172 5.94
(4.19–8.28)

17.42
(12.07–24.05) 7.80 × 10−46 −0.68 3.85 × 10−51

Axitinib_1021 11.43
(8.63–14.71)

25.24
(18.89–34.76) 3.50 × 10−43 −0.69 1.73 × 10−52

KU-55933_1030 77.72
(72.06–83.68)

95.49
(88.61–102.31) 7.90 × 10−40 −0.76 1.84 × 10−71

Tozasertib_1096 12.17
(8.93–16.84)

25.38
(19.96–35.67) 3.20 × 10−38 −0.66 3.13 × 10−47

PF-4708671_1129 30.52
(25.04–41.5)

59.8
(46.95–76.3) 3.40 × 10−38 −0.58 1.29 × 10−34

Navitoclax_1011 3.77
(2.03–5.73)

11.24
(7.07–17.8) 1.30 × 10−37 −0.61 1.37 × 10−38

ABT737_1910 4.8
(2.31–7.34)

13.97
(8.93–21.27) 9.00 × 10−36 −0.63 2.37 × 10−41

Ibrutinib_1799 56.36
(36.25–80.62)

131.2
(90.93–204.32) 2.10 × 10−34 −0.58 4.17 × 10−34

SB505124_1194 11
(10.57–11.72)

9.54
(9.01–10.04) 2.40 × 10−44 0.76 3.42 × 10−71

Pevonedistat_1529 3.89
(2.42–6.98)

1.11
(0.69–1.64) 9.10 × 10−41 0.65 1.87 × 10−45

Tamoxifen_1199 45.62
(37.54–57.41)

28.32
(23.17–33.12) 3.30 × 10−38 0.55 1.74 × 10−30

AT13148_2170 60.19
(42.77–96.63)

25.19
(18.22–35.66) 1.10 × 10−38 0.61 2.19 × 10−37

Rapamycin_1084 0.18
(0.12–0.25)

0.08
(0.06–0.11) 3.30 × 10−37 0.57 1.09 × 10−33

BMS-536924_1091 12.14
(8.78–15.78)

6.04
(4.57–8) 8.00 × 10−37 0.46 1.09 × 10−33

BMS-345541_1249 43.99
(31.66–67.61)

19.16
(15.18–25.24) 9.00 × 10−37 0.65 1.09 × 10−33

Dactolisib_1057 0.28
(0.21–0.43)

0.14
(0.11–0.19) 2.10 × 10−36 0.48 1.09 × 10−33

Sorafenib_1085 19.89
(15.41–26.78)

10.82
(8.29–13.44) 1.10 × 10−35 0.67 6.75 × 10−50
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4. Discussion
The results of this study revealed that HCC patients can be classified into two subtypes,

based on their gene expression profiles, using unsupervised clustering analysis. This
classification is consistent with other studies that have identified two subtypes of HCC
patients (proliferation and non-proliferation) [36–39]. Survival analysis indicated significant
prognostic differences between the two subtypes, suggesting distinct mechanisms of disease
progression—and, therefore, different therapeutic strategies—for each subtype. Drug
sensitivity analysis further demonstrated differences in drug responsiveness between
the subtypes.

K-M survival analysis of the HCC subtype-specific genes identified COL11A1 and
ACTL8 as both signature and survival-related genes. COL11A1 is a fibrillar collagen preva-
lent in the basement membrane, which is a major component of the extracellular matrix. It
is significantly upregulated in various types of tumors. Studies have shown that COL11A1
promotes tumor cell invasion through multiple mechanisms, leading to a poor prognosis
in diseases such as ovarian cancer, head and neck squamous cell carcinoma [40,41], pan-
creatic cancer [42], gastric cancer [43], colorectal cancer [44], and certain sarcomas [45].
Additionally, COL11A1 is associated with breast cancer metastasis and has been used as a
diagnostic marker to distinguish between invasive and non-invasive breast cancer [46–48].
ACTL8 is a member of the cancer/testis antigens (CTA) family. Research has indicated that
ACTL8 is linked to a poor prognosis in glioblastoma and breast cancer [49,50]. Positive
associations between ACTL8 and the progression of colorectal cancer (CRC) [51], head and
neck squamous cell carcinoma (HNSCC) [49], and non-small-cell lung cancer (NSCLC) [52]
have also been reported. Several studies have suggested that ACTL8 is immune-related
and could be a potential target for tumor immunotherapy [53].

Various pathway enrichment analyses indicated that the upregulated pathways in
subtype S1 (with a worse prognosis) primarily involve the extracellular matrix, collagen,
and angiogenesis. In the analysis of survival-related genes, COL11A1 emerged as both a
subtype-specific and survival-related gene, suggesting that the upregulation of collagen-
related pathways might be a critical factor for the worse prognosis associated with subtype
S1. ESTIMATE analysis revealed the relationships between the stromal score, immune
score, ESTIMATE score, tumor purity, and the malignant progression of HCC, consistent
with other types of tumors. For example, higher stromal scores were correlated with
higher tumor stages in stomach adenocarcinoma patients [54]. In prostate cancer patients,
low tumor purity was associated with shorter survival times and faster recurrence [55].
Traditional views hold that immune activation suppresses tumors, whereas immune sup-
pression promotes them. Therefore, based on patient survival times, the predictor, and their
relationships with immune cells, it is speculated that resting mast cells, monocytes, and
resting NK cells may have immune-activating functions, while macrophages M0, resting
dendritic cells, neutrophils, regulatory T cells, plasma cells, and memory B cells may have
immune-suppressive roles. These findings suggest that collagen- and immune-related
characteristics might play a vital role in determining the differences in survival between
the two subtypes.

We selected sensitive drugs based on the inter-group significance (p-value) rather than
the IC50. This is because some drugs with lower IC50 values may have been extensively
studied, while drugs that are sensitive to specific subtypes may still demonstrate efficacy in
those subtypes even if the overall IC50 is relatively high. We observed a strong negative
correlation between the IC50 of sensitive drugs to the S1 subtype and COL11A1 expression,
suggesting that the sensitivity of these drugs may be associated with COL11A1. In contrast,
the IC50 of sensitive drugs to the S2 subtype showed a positive correlation with COL11A1
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expression, indicating that the sensitivity of these drugs may be associated with other
targets or mechanisms besides COL11A1.

While our study provides a foundation for elucidating the progression mechanisms of
HCC and developing treatment strategies, some limitations must be acknowledged. First,
the analysis was based on retrospective data from public datasets, which may introduce
selection bias and limit the generalizability of our findings. Furthermore, our study was
primarily conducted through the use of bioinformatics approaches, necessitating more
experimental validation to confirm the results.

5. Conclusions
In summary, we developed a method to classify HCC patients into two subtypes based

on their overall gene expression profiles, which show differences in enriched pathways,
the immune microenvironment, and drug sensitivity. This provides a basis for developing
more personalized HCC therapeutic strategies.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/biomedicines13010236/s1, Figure S1: Identification of HCC subtypes in
TCGA-LIHC and GSE14520. (A) The consensus matrix’s CDF plot from k = 2–9 on TCGA-LIHC.
(B) Relative change in the area under the CDF curve for k = 2 to 9 on TCGA-LIHC. (C) The consensus
matrix’s CDF plot from k = 2–9 on GSE14520. (D) Relative change in the area under the CDF curve
for k = 2 to 9 on GSE14520. Figure S2: The evaluation of predictive performance using scoring
formulas. (A) Calibration curves for the prediction formula. (B) DCA curves of characteristic genes.
Figure S3: Correlation of immune cell infiltration and subtype predictor. (A–P) are B cells naive, B
cells memory, Plasma cells, T cells CD8, T cells CD4, T cells helper, Tregs, NK cells resting, NK cells
activated, Monocytes, Macrophages M0, Macrophages M1, Macrophages M2, Dendritic cells resting,
Mast cells resting, Neutrophils, respectively. Correlation analyses were performed via Spearman
analysis. Figure S4: Sensitive drug in S1 subtype. (A–I) are BMS.754807, JQ1, Axitinib, KU.55933,
Tozasertib, PF.4708671, Navitoclax, ABT737, and Ibrutinib, respectively. p-values were determined via
Wilcoxon test. Figure S5: Sensitive drug in S2 subtype. (A–I) are SB505124, Pevonedistat, Tamoxifen,
AT13148, Rapamycin, BMS.536924, BMS.345541, Dactolisib, and Sorafenib, respectively. p-values were
determined via Wilcoxon test. Figure S6: Correlation between IC50 of sensitive drugs in S1 subtype
and COL11A1. (A–I) are BMS.754807, JQ1, Axitinib, KU.55933, Tozasertib, PF.4708671, Navitoclax,
ABT737, and Ibrutinib, respectively. Correlation analyses were performed via Spearman analysis.
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