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Abstract: Ferroptosis, characterized by iron dependency and lipid peroxidation, has
emerged as a key mechanism underlying neurodegeneration in rare neurological disorders.
These conditions, often marked by significant therapeutic gaps and high unmet medical
needs, present unique challenges for intervention development. This review examines
the involvement of ferroptosis in rare neurological disease pathogenesis, focusing on its
role in oxidative damage and neuronal dysfunction. We explore recent pharmacological
advancements, including iron chelators, lipid peroxidation blockers, and antioxidant-based
strategies, designed to target ferroptosis. While these approaches show promise, chal-
lenges such as disease heterogeneity, limited diagnostic tools, and small patient cohorts
hinder progress. Furthermore, we discuss the translational and regulatory barriers to imple-
menting ferroptosis-based therapies in clinical practice. By addressing these obstacles and
fostering innovative solutions, this review underscores the potential of ferroptosis-targeting
strategies to revolutionize treatment paradigms for rare neurological disorders.
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1. Introduction
1.1. Overview of Rare Neurological Disorders

Rare neurological disorders are extremely complex, low-prevalence, and extremely
varied conditions that can be fatal or chronically incapacitating. There are about 600 human
diseases that impact the neurological system. Among them, neurodegenerative diseases
are frequently identified by their late adult onset, progressive clinical history, and localized
loss of neurons in their nervous system [1,2]. These diseases focus on the neurological
system, which includes the brain, spinal cord, and all of the nerves that run throughout
the body. Uncommon neurological illnesses include Leigh’s syndrome, Battens disease,
Huntington’s disease, Alexander disease, Duchenne muscular dystrophy, Amyotrophic
lateral sclerosis (ALS), and Creutzfeldt–Jakob disease (CJD), a rare, degenerative, and fatal
brain disorder [2,3]. Every year, it impacts around one million people across the globe.
The identification of numerous neurological conditions that start in childhood is difficult
because of the disease’s extremely rare nature or frequently vague clinical presentation.
An uncommon disease is thought to afflict 6–8% of the general population, with 80% of
cases being primarily genetic and 50% showing up in childhood. Muscle weakness, poor
coordination, progressive degeneration, and, in certain situations, a reduced life expectancy
are typical symptoms [1,3].

Because of their unfamiliarity, lack of available treatments, and diagnostic hurdles,
these illnesses frequently pose particular difficulties. Diagnosing rare diseases is one of the
main difficulties they present. Rare diseases are commonly misdiagnosed or go undetected
because of their rarity and frequently complex clinical manifestations. Patients and their
families might face psychological and financial hardship as a result of this diagnostic battle,
which could cause delays in receiving the proper care and treatment. When it comes to
treating neurological disorders, there is no one-size-fits-all method. The patient and the
particular ailment determine the best course of action. Nonetheless, neurology frequently
employs a few broad types of medicines and treatments.

The development of therapeutic approaches that could be helpful in the treatment of
uncommon neurological illnesses is necessary. Novel therapeutic approaches, including
gene targeting, stem cells, immunotherapy, antisense, and medication targeting using
nanomaterials, may be used to treat rare neurological conditions. Therapeutics are therefore
essential for reducing the symptoms of illness [4,5]. Currently used in neurology are the
following tools and therapies: Occupational therapy, speech therapy, physical therapy, and
other types of rehabilitation occur in this category. Wheelchairs, walkers, communication
devices, and adapted computer hardware and software are examples of assistive devices.
Self-care includes things like diet, exercise, stress reduction, and mental health maintenance.
In order to assist people, live more independently, and address neurological problems, new
technologies are being created. These consist of home automation systems, communication
assistance, and assistive technology.

1.2. Ferroptosis: A Novel Cell Death Mechanism in Neurology
1.2.1. Basics of Ferroptosis

Apoptosis, pyroptosis, autophagy, necroptosis, and ferroptosis are the several types
of programmed cell death that are distinguished by their unique molecular processes and
morphological traits [6,7]. Ferroptosis was first hypothesized in 2012 as a novel kind of
programmed cell death brought on by reduced glutathione (GSH) production and ferrous
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ion accumulation [8,9]. The burst outer membrane of the mitochondria, increased density
of the mitochondrial membrane, diminished or absent mitochondrial cristae, markedly
smaller mitochondria, normal nucleus size, and absence of chromatin agglutination are
all features of cell ferroptosis. Numerous neurological conditions result in iron buildup in
the central nervous system. The fact that iron is a redox-active metal that can produce free
radicals may lead to neuropathology.

Iron accumulation in various situations can be caused by a variety of dysregulated
components of iron influx, efflux, or sequestration that support iron homeostasis. In situa-
tions when glutathione-dependent antioxidant defense is lacking, iron has recently been
demonstrated to cause cell death and damage through lipid peroxidation. We refer to this
type of cell death as ferroptosis [10]. Nervous system disorders, lung disorders, cardiovas-
cular disorders, liver disorders, and renal disorders are among the many illnesses [Figure 1]
in which ferroptosis is implicated [11,12]. The two main mechanisms of ferroptosis are
divalent ferroptosis, which causes cell death, and the catalysis of lipid peroxidation of
unsaturated fatty acids that are present in high concentrations on the cell membrane in the
presence of ester oxygenase [13].
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The CNS is an ideal site for ferroptosis because of the high levels of PUFAs (25–30%),
the increased iron present in many neurological disorders, and the fact that AA accounts
for roughly 10% of all fatty acids in the brain. Additionally, a number of neurological
conditions have been linked to impaired glutathione antioxidant defense mechanisms,
which strongly suggests that ferroptosis is likely to play a significant pathogenic role. Fe-
dependent phospholipid peroxidation drives this unique method of cell death, which is
regulated by several cellular metabolic processes such as redox homeostasis, Fe metabolism,
mitochondrial activity, and the metabolism of amino acids, lipids, and carbohydrates. In
general, ferroptosis is believed to be caused by lipid peroxidation; however, the precise
mechanism of ferroptosis depends on the pathophysiology of the neurological illness [14].
Therefore, a full understanding of ferroptosis could lead to the development of prevention
and treatment strategies for neurodegenerative diseases [13,15].
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1.2.2. Discovery

In 2003, erastin was found to cause ferroptosis in human foreskin fibroblasts (BJeLR)
that carried the transgenic mutant Ras oncogene, but not in their isogenic primary counter-
parts [Figure 2]. This finding demonstrated that erastin was synthetically lethal. Another
highthroughput small molecule screening study in 2008 identified two proteins, Ras-
selective lethal small molecule (RSL)-3 and RSL5, that selectively killed BJeLR cells without
causing apoptosis. When it was found in 2012 that erastin prevents the cystine/glutamate
antiporter (system xc

−) from absorbing cystines, leading to cell death, the term ferroptosis
was created [15,16].
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System xc
− was discovered to work by delivering the cell with cystine in return for

glutamate. A study claims that GPx4 is crucial for preventing ferroptosis because it inhibits
lipoxygenase-mediated lipid peroxidation by lowering phospholipid hydroperoxide. Acyl-
CoA synthetase long-chain family member 4 (ACSL4) has been shown to be a biomarker
and an important participant in ferroptosis. The production of polyunsaturated fatty acids
(PUFA), which are required for ferroptosis to take place, depends on it [16,17]. According
to a varying study, GPx4 requires selenium to prevent ferroptosis [15]. A new ferroptosis
suppression pathway has been identified with the recent discovery that FSP1, CoQ10 oxi-
doreductase, can inhibit ferroptosis in a glutathione-independent pattern [18]. Ferroptosis
was initially discovered in tumors, but more recent studies have revealed that it is also
closely linked to several neurological disorders, including stroke and neurodegenerative
diseases like Parkinson’s disease (PD) and Alzheimer’s disease (AD) [19].

1.2.3. Growing Significance of Ferroptosis in Neuropharmacology

The role of ferroptosis in the emergence of numerous illnesses that impact almost every
organ system has come to light in recent years. Ferroptosis is now recognized to be a major
contributor to a number of diseases, including autoimmune diseases, metabolic disorders,
cancer, neurodegeneration, sepsis, and ischemia-reperfusion injury. Since these illnesses
have a lot of lipids and iron, which promote lipid peroxidation, they are very vulnerable to
ferroptosis. The main processes behind ferroptosis in these circumstances are the GPX4
pathway’s malfunction and the increased ferritinophagy [4]. In order to address related
treatment issues, this review aims to examine the function of ferroptosis in uncommon
neurological illnesses and possible pharmaceutical approaches to target this process.

2. Pathophysiological Role of Ferroptosis in Rare Neurological Disorders
2.1. Mechanistic Insights: Lipid Peroxidation and Iron Dysregulation
2.1.1. Lipid Peroxidation

Ferroptosis depends on lipid metabolism, and oxidative stress, which triggers ferrop-
tosis, is shown by ROS-induced lipid peroxidation [20]. Since they accelerate the oxidation
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of the membrane lipids, causing ferroptosis, lipid peroxides (PL-OOH), especially lipid
hydroperoxides (L-OOH), can damage the lipid bilayer of the plasma membrane. An in-
crease in the concentration of lipid peroxide can alter the structure and function of proteins,
aldehydes, Michael acceptors, and nucleic acids [21–23]. Thus, the degree of ferroptosis
and lipid hydroperoxidation damage may differ between diseases and organs/tissues, and
the level of damage increases with the amount of free polyunsaturated fatty acids (PUFAs)
in the cell [24]. Polyunsaturated acyl-tailed phospholipids (PUFA-PL) and polyunsaturated
fatty acids (PUFAs) are necessary for ferroptosis to proceed normally. Ferroptosis can gener-
ate ROS and lipid peroxides, such as malondialdehyde (MDA), 4-hydroxynonenal (4-HNE),
and lipid hydroperoxides (LOOHs), by enzymatic catalysis or autooxidation [25,26]. Lipid
peroxidation and Fenton’s reaction-mediated OH formation under ferroptotic stress result
in the production of dangerous chemicals that damage cellular proteins and nucleic acids,
causing cellular dysfunction and, eventually, death.

Esterification of free PUFAs is necessary to create membrane phospholipids, and
oxidation to iron ion signals is necessary to create lipid signals, especially for phospho-
lipids containing phosphatidylethanolamine (PE) and arachidonic acid or epinephrine
moieties [26,27]. The three main categories of lipid oxidases are cytochrome p450s (CYPs),
lipid oxidases (LOXs), and cyclooxygenases (cox); ferroptosis has been discovered to be
mostly dependent on LOX enzymes [28]. Phospholipid choline acyltransferase 3 (LPCAT3)
and acyl-CoA synthetase long-chain family member 4 (ACSL4) affect PE synthesis, re-
modeling, polyunsaturated fatty acid activation, and the transmembrane properties of
polyunsaturated fatty acids. The sensitivity to substances that induce ferroptosis is in-
creased when ACSL4 is expressed [29]. Thus, inhibiting the expression of LPCAT3 and
ACSL4 lowers the buildup of intracellular lipid peroxide substrate, which prevents ferroptosis.

Ferroptosis is caused by PUFA oxidation, which can happen enzymatically or non-
enzymatically [30]. ROS and hydroxyl radicals cause the non-enzymatic oxidation process
through the Fenton reaction. The characteristics of this procedure are non-specificity
and non-selectivity. This results in a highly diverse pattern of oxidation products, with
oxygenated PUFA-PLs predominating, as the oxidation rate is determined by the number
of readily abstractable bis-allyl hydrogens in the PUFA molecule [30,31]. Additionally,
PUFA-PE can be catalyzed to oxidize by lipoxygenase (LOX), which causes cell ferroptosis.
Iron-containing dioxigenases, or LOXs, catalyze the dioxigenation of polyunsaturated fatty
acids having at least two isolated cis-double bonds [11]. Therefore, lipid reactive oxygen
species must cause cell damage in order for ferroptosis to occur [29,32].

2.1.2. Iron Metabolism

Numerous physiological functions, such as DNA synthesis, cellular respiration, oxy-
gen transport, and the nervous system’s neurotransmitter production, are linked to iron,
an essential metal. Normal cell development and survival depend on iron homeosta-
sis [33,34]. However, because iron mediates the formation of ROS and enzyme function in
LPO, ferroptosis is tightly controlled by iron metabolism regulators, including iron intake,
storage, absorption, and efflux. Furthermore, an integrated network to evaluate ferroptosis
sensitivity is provided by transcriptional and translational regulation of iron homeostasis.
Numerous iron-related clinical disorders or situations, such as cancer, ischemia-reperfusion
injury, and neurological diseases, have been linked to defective ferroptosis [35]. Iron con-
centration, erythropoietin, and cell environment all have a significant impact on hepicidin
expression at the transcription level. After translation, hepicidin will attach to Fpn, causing
Fpn to degrade and preventing iron production.

Iron homeostasis can be controlled at the translational level in addition to transcrip-
tionally. An RNA-binding protein called iron regulatory protein 2 (IRP2) regulates the
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translation of a collection of mRNAs related to iron homeostasis [36]. Posttranscriptional
regulation of the iron regulatory proteins (IRP1 and IRP2) governs cellular iron metabolism.
Under normal physiological conditions, IRP1 and IRP2 can control several genes involved
in iron metabolism, including ferritin heavy chain 1 (FTH1) and TFRC, to maintain the
stability of unstable iron pools [37]. Additionally, iron can exist in ferrous (Fe2+) and ferric
(Fe3+) forms. By binding with transferrin (TF), iron in circulation can exist in ferric form
(Fe3+). According to reports, free Fe3+ can enter the cell through the membrane protein TF
receptor 1 (TFR1) and then be deposited in the nucleosome. Meanwhile, Fe3+ is transformed
into Fe2+ by the prostate’s six transmembrane epithelial antigen 3 (STEAP3) [Figure 3] [38].
Subsequently this Fe2+ is transferred from the endosome to the cytoplasm by divalent
metal transporter 1 (DMT1). Fe2+ can be pumped out by ferroportin, which is present on
the cellular membrane, or stored in the cytoplasm in ferritin to maintain intracellular iron
homeostasis. When cells produce too much Fe2+, the Fenton chemical reaction produces
lipid ROS, which build up inside the cell and eventually lead to ferroptosis [39].
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The main causes of iron accumulation are ferroportin (FPN), TFR1, and DMT1 barriers,
which also result in a lack of iron transport regulation [37]. The depletion of the ferritin
phagocytosis cascade by NCOA4 causes an increase in iron storage, while the Fenton
reaction, mitochondrial damage, and the activity of lipoxygenases (LOXs) cause an increase
in the amount of iron in the active iron pool [40]. Ferroptosis is the subsequent consequence
of elevated ROS. Moreover, Fe2+ mediates the production of ROS and functions as a cofactor
of several metabolic enzymes [36,37,40].



Biomedicines 2025, 13, 265 7 of 22

2.2. Emerging Evidence: Ferroptosis in Specific Rare Disorders
2.2.1. Battens Disease

Most cases of infantile dementia are caused by a rare category of inherited neurode-
generative lysosomal storage diseases (LSDs) called neuronal ceroid lipofuscinosis (NCL),
often known as Batten disease [41,42]. One feature of these diseases that causes gradual
neurological deterioration is the accumulation of lipopigments (lipofuscin) in many body
tissues, including the brain. Batten disease is characterized by ataxia, progressive seizures,
motor impairment, cognitive decline, and early death. NCLs are clinically classified into
four primary groups according to the age at which the disease appears to be: infantile
(6–24 months), late-infantile (2–4 years), juvenile (5–10 years), and adult-onset (>18 years).
Depending on the associated gene, NCLs are classified into different subtypes. Signifi-
cant clinical variability in terms of symptoms and onset age is generated by mutations in
thirteen genes (CLN1-8 and 10–14) that lead to different subgroups of NCL disease [43].
Iron-dependent lipid peroxidation causes ferroptosis, a regulated form of cell death that
has been connected to a number of neurological disorders. The buildup of autofluorescent
lipopigments in neurons is a hallmark of NCL, a class of lysosomal storage disorders that
also show signs of oxidative stress and abnormal iron metabolism.

Data from patients with neuronal ceroid lipofuscinoses, one of the progressive neu-
rodegenerative LSDs marked by an excessive buildup of lipofuscins, provided the first
evidence on iron regulation. According to these findings, patients’ CSF fluids have a high
percentage of free iron, which rises as the condition worsens [44,45]. The 1960s saw the
first findings suggesting that iron excess might cause elevated lipid peroxidation and, more
significantly, that lysosomes might play a role in this phenomena. Research has already
shown that the pathophysiology of LSD involves disruptions in iron metabolism and lipid
peroxidation. Neuronal ceroid lipofuscinosis, which is similar to iron overload, was one
of the lysosomal illnesses where this issue was brought to light. Reduced amounts of
antioxidants and polyunsaturated fatty acids (PUFA) from phosphatidyl ethanolamine
were found in patient samples according to biochemical studies [46,47]. This link raises the
possibility that ferrotosis plays a role in the death of neurons in NCL.

2.2.2. Leighs Syndrome

A neurological disease affecting infants and children, Leigh syndrome is hereditary,
diverse, and progressive. It is brought on by a malfunction in mitochondrial energy
metabolism. This degenerative CNS disease has a common origin that involves defects in
mitochondrial energy generation. The symptoms of Leigh syndrome normally manifest in
the first few years of life and vary depending on which parts of the central nervous system
are affected. The symptoms include hypotonia, psychomotor regression, ataxia, abnor-
malities in ocular movement, seizures, dystonia, swallowing dysfunction, and respiratory
disturbances [48,49].

Leigh syndrome results from mitochondrial dysfunction caused by genetic muta-
tions, which causes energy deficits and eventual neurological decline. According to re-
cent research, cells may be more susceptible to ferroptosis if they have mitochondrial
abnormalities, like those found in Leigh syndrome. As an illustration, studies employing
PARL-deficient mice, a model for mitochondrial failure and Leigh syndrome, have shown
that compromised mitochondria increased vulnerability to ferroptosis, influencing sper-
matogenesis and other processes [50]. Therapeutic potential for ferroptosis targeting has
been demonstrated in cellular models produced from patients with Leigh syndrome. In
patient-derived fibroblasts, EPI-743, a substance that modifies redox balance, was found to
reduce lipid oxidation and prevent ferroptosis. This discovery emphasizes how ferroptosis
suppression may be used as a therapeutic approach for mitochondrial diseases [51].
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2.2.3. Alexander Disease

Alexander’s disease is a degenerative illness of the central nervous system that mani-
fests as widespread development of Rosenthal fiber RF, megalencephaly, early onset, and
loss of white matter [52]. The glial fibrillary acidic protein (GFAP) gene is mutated in
Alexander disease, a rare neurological condition. These mutations cause Rosenthal fibers to
build up in astrocytes, which causes anomalies in the white matter and gradually worsens
neurological disability. According to one study, astrocytes in models and patient cells from
Alexander disease exhibited increased ferroptosis sensitivity, suggesting that ferroptosis
may be associated with the pathophysiology of Alexander disease [53]. Understanding the
precise connection between ferroptosis and Alexander disease may lead to novel treatment
options, even though this association is still being investigated. In Alexander disease,
focusing on ferroptosis pathways may provide viable methods for reducing neuronal injury
and astrocyte dysfunction [54].

2.2.4. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS), often known as Lou Gehrig’s illness or motor
neuron disease, is a rare progressive neurodegenerative disease that affects the brain and
spinal cord nerve cells responsible for controlling voluntary muscle movement [55]. The
prevalence of ALS is estimated to be between 1.9 and 6 per 100,000 people worldwide.
Weakness in the hands, arms, legs, or the muscles used for breathing, swallowing, or
speaking are typical early signs. Cognitive and behavioral abnormalities, including issues
with executive function, language, decision-making, and emotional management, can
occasionally be linked to ALS [56,57]. Although the exact cause and pathophysiology of
ALS remain unclear, it is presently thought to be associated with immunological disorders,
mitochondrial dysfunction, glutamate excitotoxicity, oxidative stress, gene mutations (such
as the SOD1 gene mutation), and decreased axonal transport.

Ferroptosis has been connected to the pathogenesis of ALS. Iron deposits were discov-
ered in the spinal cord, thalamus, motor cortex, and basal ganglia of ALS patients. ALS
is associated with increased oxidative damage caused by mutations in the gene encoding
the protein superoxide dismutase 1 (SOD1), which scavenges free radicals [58]. It has
been demonstrated that ferritin is dysregulated in SOD1 transgenic mice and that intra-
cellular iron efflux in neurons is impeded, increasing the intracellular iron burden. The
hypochlorous acid (HOCl)-myeloperoxidase (MPO) pathway is activated by SOD1 muta-
tion, which also increases production of ROS and inhibits GPX4 expression, which results
in irreversible lipid peroxidation [59]. In animal models, neuron-specific GPX4 deletion
resulted in muscular atrophy, paralysis, and motor neuron degeneration, indicating that
GPX4 expression is linked to cell vulnerability in ALS. Collectively, these findings suggest
that ferroptosis plays a major role in ALS-related motor neuron death [36,60].

2.2.5. Huntington’s Disease

Huntington’s disease (HD), often known as Huntington’s chorea, is a rare inherited
neurological illness characterized by progressive mental symptoms, cognitive impairment,
and physical dysfunction. According to estimations, there are around 2.7 cases of HD for
every 100,000 people worldwide [61]. A mutation in the huntingtin protein-encoding HTT
gene, which is found on chromosome 4, results in HD [36]. The neuronal death in HD is
characterized by the traditional markers of ferroptosis, including enhanced lipid peroxi-
dation, reduced GSH, chronic iron buildup, and repetitive glutamate imbalances [62,63].
Glutamate, iron ions, GSH, and intracellular lipid ROS accumulation have also been ob-
served to be abnormally elevated in HD patients [64]. Animal models of HD have shown
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certain ferroptotic characteristics, such as decreased GPX functions and restricted GSH
production [65].

3. Current Therapeutic Landscape and Limitation
3.1. Conventional Approaches in Rare Neurological Disorders

Instead of treating the underlying illness, conventional methods usually involve sup-
portive care, gene therapy, and pharmaceutical therapies to control symptoms. Ferroptosis
and oxidative stress are two examples of the complex pathophysiologies of rare neurologi-
cal illnesses. The damage caused by ferroptosis is not well addressed by current treatments,
which try to control symptoms or slow down the disease’s progression. Huntington’s
disease (HD)—Aggregation of mutant huntingtin proteins causes neuronal death in Tradi-
tional methods, such as tetrabenazine, lessen the symptoms of chorea but do not address
ferroptosis, which leads to neurodegeneration and lipid peroxidation. This gap may be
filled by new treatments that target lipid metabolism or GPX4 [66]. The importance of
ferroptosis-related events, such as iron overload and oxidative stress, highlights a strong
correlation between ferroptosis and HD, even though the exact mechanism of ferroptosis
in HD is yet unclear.

Friedreich’s Ataxia (FA)—It is linked to iron dysregulation and mitochondrial mal-
function, which results in oxidative stress. Iron chelators and idebenone are two examples
of current medicines that somewhat help but fall short of stopping ferroptosis-induced
neuronal damage. Mitochondrial dysfunction is closely associated with lipid peroxidation,
especially in the context of ferroptosis driven by iron-dependent lipid peroxidation. In-
hibitors targeting lipid peroxidation pathways by preventing the accumulation of lipid
peroxides or regenerating oxidized lipids show promise in mitigating damage. Conse-
quently, lipid peroxidation inhibitors that target ferroptosis hold significant therapeutic
potential [10].

Neuronal Ceroid Lipofuscinosis (NCL): NCLs are hereditary metabolic diseases, and
only one clinically licensed medication has been proven to be effective in treating CLN2
illness, a particular variant of NCL [67]. TPP1, the enzyme implicated in CLN2 illness,
has a recombinant human proenzyme called Cerliponase Alpha. Here, the proenzyme
is transformed into the proteolytic form of TPP1 by removing a prosegment, and this
proteolytic activity lowers the buildup of lysosomal storage material, which is strongly
linked to neurodegenerative diseases [68,69]. Since there is currently no cure for NCLs,
supportive and symptomatic approaches remain the mainstays of treatment: Occupational
and Physical Therapy, Antiepileptic Drugs [41,42]. Conventional treatments for NCLs
alleviate symptoms, but they do not address the pathophysiology that may be caused by
ferroptosis. More efficient methods to delay or stop the evolution of the disease may be
provided by future treatment techniques that target ferroptosis, lipid peroxidation, and
oxidative stress.

Leigh syndrome: The condition is rare and typically appears in early childhood
or infancy. Its characteristic is the presence of bilateral lesions in the brainstem, basal
ganglia, and other parts of the central nervous system. These lesions cause symptoms
such as hypotonia, ataxia, psychomotor regression, and irregularities in breathing [48,49].
Leigh syndrome currently has no known cure, although treatment options include gene
replacement therapy, mitochondrial biogenesis, ketogenic diets, and high-fat diets. L-
carnitine, creatine monohydrate, riboflavin, biotin, thiamine, alfa-lipoic acid, and coenzyme
Q10 are all components of coenzyme Q (CoQ). Vitamins and cofactors are still often utilized
to treat mitochondrial disease, despite decades of study demonstrating that they have
no discernible impact on respiratory chain disease. Another strategy to alleviate the
neurological symptoms of LS is to take vitamin supplements. An essential component
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for the metabolism of energy in brain tissue is thiamine. The pyruvate dehydrogenase
complex requires thiamine as a cofactor [70–72]. According to research, iron dysregulation
and elevated oxidative stress may result from mitochondrial failure, a defining feature of
Leigh syndrome [50], which may set off ferroptosis pathways.

3.2. Need for Ferroptosis—Targeted Therapies

Ferroptosis is primarily controlled by glutathione-dependent redox balance, lipid
metabolism, and iron homeostasis. Ferroptosis research has led to a lot of work in finding
strong pharmacological ferroptosis modulators for therapeutic use, which has opened up
new possibilities for creating innovative treatment plans to target a variety of ferroptosis-
related illnesses, such as cancer and heart damage [73,74]. Regarding cancer, new fer-
roptosis agonists have demonstrated potential in a number of cancer types. However,
ferroptosis antagonists have been demonstrated to help treat ferroptosis-related illnesses,
including inflammatory disorders, neurodegenerative diseases, and damage caused by
ischemia/reperfusion (I/R) [75].

Ischemia/reperfusion injury (IRI): Ischemia/reperfusion injury (IRI)-induced ferropto-
sis has been reported in the kidney, liver, gut, brain, and heart [73,76–78]. The effectiveness
of anti-ferroptosis agents in preventing acute kidney injury is demonstrated by a number
of FDA-approved drugs in addition to liproxstatin-1, including rifampicin, promethazine,
omeprazole, indole-3- carbinol, carvedilol, propranolol, estradiol, and thyroid hormones
that have lipid peroxyl radical-scavenging properties [76]. Ferroptosis also contributes to
hemopoiesis caused by seizures, stroke, and traumatic brain injury (TBI) [79].

Neurodegenerative disorders: Numerous neurodegenerative illnesses, including Hunt-
ington’s disease, Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis
(ALS), and PelizaeusMerzbacher disease, have been linked to ferroptosis [80–82]. The
greater susceptibility to ferroptosis is linked to the high levels of polyunsaturated lipids
in neurons and glial cells, even if the triggering of cell death may be a cumulative event
caused by constantly diminished antioxidant capacity in these cells [83].

Inhibiting ferroptosis may be useful in treating these disorders since it occurs in tissues
under a variety of pathophysiological conditions and is not only caused by pharmacologi-
cal or genetic intervention [84,85]. Along with the known tissue malfunctions related to
ferroptosis addressed above, other human diseases, including atherosclerosis, diabetes mel-
litus, Alexander’s disease, inflammatory bowel disease, prion disease, and chronic alcohol
exposure, are more likely to exhibit lipid peroxidation and ferroptosis-like events [86,87].

4. Pharmacological Modulators of Ferroptosis: A Therapeutic
Opportunity
4.1. Ferroptosis Inhibitor: Preclinical and Clinical Updates (Table 1)
4.1.1. Ferrostatin-1

In several models of cellular illness, such as acute brain injury, Huntington’s disease,
periventricular leukomalacia, and renal failure, studies have shown that Fer-1 prevents cell
death [88]. According to other studies, Fer1 prevented ferroptosis linked to Parkinson’s
disease and stroke in animal models and decreased glutamate-induced ferroptosis in
organotypic hippocampal slices. In a recent study, Fer-1-treated TBI rats showed reduced
neuronal breakdown and iron buildup. Over time, Fer1 treatment improved cognitive
and motor function and reduced neuronal cell death. These findings thus identified a
new therapeutic target for protecting the injured brain and demonstrated a unique type of
TBI-related cell death [76,89].
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4.1.2. Liproxstatin

Liproxstatin-1 is another popular and efficient lipid antioxidant. It can inhibit a variety
of inhibitors, including erastin, just like Fer-1. In the absence of GPX4, it can also shield
cells from ferroptosis. In many illness models, liproxstatin-1 provides protection due to the
aforementioned actions [90]. The selection of liproxstatin (Lip)-1 was achieved by screening
small molecules in TAM inducible gpx4−/− mouse embryonic fifibroblasts (MEFs) [91]. In
human proximal tubule epithelial cells, Gpx4-deficient kidneys, and a model of tissue dam-
age carried on by ischemia-reperfusion injury (IRI), liprxostatin-1 has been demonstrated to
inhibit ferroptosis. The effect of ferroptosis inhibition in Ischemic/Reperfusion injury was
investigated by administering mice liproxstatin-1, a strong and specific ferroptosis inhibitor
that has been demonstrated to reduce I/R damage. In vivo, ischemia from liproxstatin-1
treatment decreased COX2 expression while increasing GPx4 expression [92,93].

4.1.3. Vitamin E

A well-known lipophilic antioxidant, vitamin E is found naturally in foods like eggs,
vegetables, and plant seeds. The main ingredient in vitamin E, α-tocopherol (α-Toc), low-
ers cell lipid peroxides and stops ferroptosis [93]. The most active form of vitamin E,
α-tocopherol (α-TOH), and its analog, pentamethyl chromanol (PMC), are well-known phe-
nolic RTAs [94]. α-TOH showed potential in preventing ferroptosis in a variety of cell types
in vitro. Phenolic antioxidants are potent regulators of ferroptosis and lipid peroxidation,
but their efficiency is limited by the strong H-bond that forms between the phenolic -OH
group and the polar phospholipid heads. In this sense, amino RTAs are better. Tocotrienols,
a family of vitamin E isoforms, have been demonstrated to suppress ferroptosis more
effectively than α-TOH. Recent research has also found that the endogenous antioxidant
VK1 effectively prevents lipid peroxidation after acute renal injury [92,95].

4.2. Ferroptosis Inducers: Selective Applications (Table 1)

4.2.1. Systeme xc
−

The transmembrane transporter SLC7A11 and the regulatory protein SLC3A2L form
the heterodimer termed Systeme xc

−, which is connected by disulfide links. This combina-
tion allows cystine to enter cells and glutamate to exit them [96]. By blocking the synthesis
of GSH, inhibiting intracellular Cys levels, and preventing the transfer of more cysteine
by systeme xc

−, excess extracellular glutamate leads to the accumulation of intracellular
lipid ROS and cell death. According to earlier research, the addition of the ferroptosis
inducer erastin results in a substantial decrease in intracellular radiolabeled Cys levels
and the inhibition of GSH formation, which in turn causes ferroptosis. The US Food and
Drug Administration (US FDA) has approved sorafenib as a targeted therapy medication
for metastatic kidney cancer. Research has demonstrated that sorafenib can cause tumor
cells to undergo ferroptosis, creating a new avenue for tumor therapy. By preventing the
transfer of systeme xc

−, glutamate can lower intracellular Cys expression. This inhibits
GSH synthesis and results in ferroptosis [92,96].

4.2.2. GPX4 Inhibitor

Systeme xc
− is impacted by eratin, but it also influences intracellular GSH synthesis,

which in turn affects GPX4 activity, resulting in ferroptosis and intracellular lipid ROS
accumulation [97]. RAS-selective lethal small molecule 3 (RSL3) can directly inhibit the
target protein GPX4, which reduces GPX4 activity and induces ferroptosis, but it cannot
affect the cell’s ability to produce GSH [98]. The small chemical FIN56 increases the
degradation of the GPX4 protein and reduces the synthesis of the lipophilic antioxidant
coenzyme Q 10 (CoQ 10) via the MVA pathway. This reduces the inhibitory effect of CoQ
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10 on the production of lipid ROS, which leads to ferroptosis. FIN56-induced cell death
was reduced when cells overexpressed GPX4 [99].

4.2.3. Agent That Depletes GSH

As a reducing agent of GPX4, GSH impacts its activity and, when its synthesis is
blocked, results in ferroptosis. Earlier research has demonstrated that buthionine sulfox-
imine (BSO) inhibits the formation of GPX4 in RAS mutant cells. This results in decreased
GSH synthesis, intracellular lipid ROS buildup, GPX4 activity inhibition, and ferropto-
sis [39,100].

Table 1. Ferroptosis inhibitors and inducers [32,101,102].

Compounds Mechanism

Ferroptosis Inhibitors

Fer-1
Liproxstatin-1
Vitamin E
Phenoxazin
Nitroxide-based compounds

Inhibit lipid peroxidation

Rosiglitazone ACSL4 inhibitor

Deferoxamine mesylate
DFO Inhibit accumulation of iron

Amino-oxyacetic acid Glutaminase inhibitor

Ferroptosis Inducers

Erastin
Sorafenib
Sulfasalazine
CD8 + Tcells
RSL3

Inhibit system xc
−

FIN56
Artemisinin derivatives Inhibit GPX4

FINO2 Iron oxidation and inactivate GPX4 inactivate GPX4

Siramesine, Lapatinib Increase in accumulation of iron

Neutrophils Increase lipid-based ROS

4.3. Challenges in Translating Ferroptosis Modulators

Translating ferroptosis modulators into clinical applications presents several chal-
lenges, particularly concerning pharmacokinetics, safety, and drug delivery. Although they
confront several obstacles, ferroptosis modulators’ pharmacokinetics are essential to their
clinical translation. Erastin’s poor solubility and bioavailability limit its systemic avail-
ability and effective absorption, which lowers its therapeutic efficacy. Tissue distribution,
particularly across critical barriers like the blood brain barrier (BBB), is crucial for treating
diseases of the central nervous system, despite the limited penetration of many modulators.
The plasma concentration and duration of action of these chemicals are further limited by
metabolic instability, which frequently results in fast breakdown [103,104]. Furthermore,
frequent dosage is required due to short elimination half-lives, which affects patient com-
pliance and raises the possibility of toxicity. Absorption, distribution, metabolism, and
excretion (ADME) profiles are made more difficult by structural variety and inadequate
physicochemical characteristics, such as low lipophilicity and unfavorable logP values [105].
For ferroptosis-based treatments to be developed successfully, these pharmacokinetic issues
must be resolved. The pharmacokinetic properties of these modulators are being improved
by investigating sophisticated drug delivery methods.
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Off-target effects, where non-specific distribution might harm healthy tissues, are a
safety concern. For example, cisplatin, a ferroptosis inducer, can cause nephrotoxicity and
ocular toxicity. Additionally, ferrostatin-1 (Fer-1) and other ferroptosis inhibitors have
poor stability and solubility, which may be harmful. Poor solubility and bioavailability are
obstacles to drug delivery; erastin is one example of this, which reduces therapeutic efficacy
because of insufficient absorption. Furthermore, drugs such as deferoxamine have brief half-
lives (about 15 min), which limits their ability to accumulate in tumor tissues and reduces
their efficacy. However, by enhancing the solubility, stability, and targeting of ferroptosis
inducers, developments in nanotechnology present encouraging alternatives. Additionally,
drug delivery restrictions can be addressed by nanocarriers, offering a more effective and
focused therapeutic strategy [105,106]. By more accurately targeting tumor locations and
lowering systemic toxicity, these innovations—such as co-delivery systems—may improve
the therapeutic efficacy of ferroptosis-based medicines. In order for ferroptosis modulators
to be successfully translated into clinical practice, these safety and drug delivery issues
must be resolved.

5. Innovations of Drug Discovery for Rare Neurological Disorders
5.1. High Throughput Screening for Ferroptosis Modulators

High-throughput screening (HTS) technologies, such as CRISPR-based genetic screens
and artificial intelligence (AI) methodologies, have significantly advanced the identification
of novel modulators of ferroptosis.

CRISPR-Based Screens: To identify the genes that control ferroptosis, genome-wide loss-
of-function or gain-of-function investigations are made possible by CRISPR-Cas9 technology.

SWI/SNF ATPases Ferroptosis Suppressors: The SWI/SNF ATPases BRG1 (SMARCA4)
and BRM (SMARCA2) were found to be ferroptosis suppressors via a CRISPR activation
screen. At NRF2 target genes, these ATPases improve chromatin accessibility, strengthen-
ing antioxidant defenses and providing tolerance to GPX4 inhibition. According to this
finding, ferroptosis-based cancer treatments may be more effective if SWI/SNF ATPases
are targeted [107].

CARM1 as an Inhibitor of Ferroptosis in Hepatocellular Carcinoma (HCC): A CRISPR-
Cas9 library screening revealed that coactivator-associated arginine methyltransferase 1
(CARM1) is an essential inhibitor of ferroptosis in HCC cells. Since CARM1 depletion
exacerbated sorafenib-induced ferroptosis, resulting in decreased cell viability, decreased
cellular glutathione level, increased lipid peroxidation, and altered mitochondrial crista
structure, CARM1 inhibitors may be used as novel ferroptosis inducers for the treatment of
HCC [108].

TRIM34 and Ferroptosis Sensitivity: The whole-genome CRISPR/Cas9 screen in the
HCC cell line employing a subtoxic concentration of the ferroptosis inducer erastin revealed
that TRIM34 increases ferroptosis sensitivity and increases immunotherapy efficacy in HCC.
By encouraging the degradation of up-frameshift 1 UPF1, TRIM34 suppresses ferroptosis
by increasing the levels of GPX4, a ferroptosis-essential suppressor. Targeting TRIM34 may
be one method of treating HCC [109].

Artificial intelligence (AI): Artificial intelligence (AI) has made significant contri-
butions to the drug development process in recent years with promising applications
in compound validation, target identification, drug discovery, dose design, and drug
repositioning [110,111]. Lately, deep neural networks have demonstrated state-of-the-art
performance in predicting medication combination synergy, surpassing other simpler mod-
els [112]. Additionally, lead compounds isolated from microbes and plants can be promptly
identified using AI. Precision medicine and cancer research have recently benefited from the
successful application of AI [113]. Utilizing a blend of network pharmacology, bioinformat-
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ics, and artificial intelligence, it was demonstrated that the TGF-β signaling pathway and
ferroptosis could be involved in the protective benefits of celastrol, a triterpene produced
from plants, against type 2 diabetes [114]. AI techniques provide a potent way for the
methodical discovery of new ferroptosis modulators, which has important ramifications
for the development of treatments for cancer and other disorders where dysregulated
ferroptosis is present.

5.2. Biomarker Development for Ferroptosis in Rare Disease

The creation of ferroptosis biomarkers in these conditions is essential for prompt
diagnosis and focused treatment. Among the uncommon conditions are:

Friedreich’s Ataxia (FRDA): Movement problems and increasing impairment to the
neurological system are hallmarks of FRDA, a rare hereditary disease. Ferroptosis is
characterized by elevated lipid peroxidation, which has been observed in FRDA patients.
FRDA patients’ plasma has been shown to contain elevated amounts of malondialdehyde
(MDA), a lipid peroxidation product that indicates oxidative stress. Ferroptosis is further
associated with FRDA pathogenesis by the observation of iron buildup and mitochondrial
dysfunction. According to these results, MDA and other lipid peroxidation products may
be useful biomarkers for ferroptosis in FRDA [115,116].

Amyotrophic lateral sclerosis (ALS)—ALS is a neurological illness that affects motor
neurons. A panel of ferroptosis-related biomarkers for the prognosis of ALS has been
proposed by a study. This panel contains genes related to antioxidant defense, lipid
peroxidation, and iron metabolism. These genes’ expression levels were linked to the
advancement of the illness, indicating that they may serve as predictive biomarkers for
ALS [55,82].

Multiple Sclerosis (MS)—Multiple Sclerosis (MS) is an autoimmune illness that occurs
in demyelination of the central nervous system. Ferroptosis’s function in MS has been
brought to light by recent studies. Iron accumulation has been linked to elevated ferroptosis
scores in active lesions, especially at the margins. This suggests that ferroptosis is involved
in the development and progression of lesions. Due to the discovery of ferroptosis-related
genes in peripheral blood (PB) and cerebrospinal fluid (CSF), models for MS diagnosis
and prognosis have been developed, suggesting that these genes may serve as biomark-
ers [117,118]. Iron buildup markers, ferroptosis-related gene expression patterns, and lipid
peroxidation products are examples of markers that may improve early diagnosis and
treatment approaches.

6. Therapeutic Challenges and Future Directions
6.1. Disease—Specific Barriers

Address issue like heterogeneity in rare disorders and lack of robust animal models:
Address problems such as the absence of reliable animal models and the variety of rare
disorders: An Accurate diagnosis and successful treatment of rare illnesses depend on
addressing their heterogeneity. Allelic heterogeneity, in which distinct mutations within the
same gene produce comparable phenotypes, and locus heterogeneity, in which mutations
in distinct genes produce comparable clinical presentations, are the two main ways that
heterogeneity presents itself [119]. Numerous rare conditions, including Rett syndrome,
neurofibromatosis, osteogenesis imperfect, chondrodysplasias, and infantile spinal muscu-
lar atrophy, are severe, progressive, chronic, and primarily genetic in origin. Symptoms can
occur as early as birth or infancy. Amyotrophic lateral sclerosis, Kaposi’s sarcoma, thyroid
cancer, Huntington’s, Crohn’s, or Charcot–Marie–Tooth’s illnesses, and others only exhibit
indications in maturity [120].
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Because of physiological differences, traditional animal models, such as mice, fre-
quently fall short in reproducing the intricacy of human disease. Laboratory-created animal
models are not suitable for use in “real-life” clinical situations. Animals are typically given
experimental medications for multiple sclerosis (MS) a few days prior to neurological dete-
rioration. Since human patients cannot be diagnosed before the development of MS, these
medications are irrelevant to the human state even though they may prevent the disease
from being induced. Only when treatment is successfully initiated after the development
of symptoms can animal models of multiple sclerosis have clinical significance. A similar
issue arises with Parkinson’s disease models in animals [121,122].

Other Animal Models: Sheep and zebrafish are among the species that are increas-
ingly being used as models for genetic illnesses in humans. High-throughput phenotypic
screening can be performed on zebrafish, which also share many genes associated with
human disorders. Sheep are useful models for several genetic illnesses because of their
physiological resemblance to humans; this allows for therapeutic testing and insights into
disease mechanisms [120,123]. Addressing elements such as age, genetic diversity, and
environmental variables to more closely resemble human illness situations is necessary
to improve the external validity of animal models [124]. These methods are essential for
expanding the study of uncommon illnesses and refining treatment plans.

6.2. Personalized Medicine in Ferroptosis—Based Therapies

Ferroptosis, a regulated form of cell death characterized by iron-dependent lipid
peroxidation, has emerged as a potential therapeutic target in various diseases, including
cancer and neurodegenerative disorders. Tailoring ferroptosis modulators to an indi-
vidual’s genetic and metabolic profiles holds promise for enhancing treatment efficacy
and specificity.

6.2.1. Genetic Profiling and Ferroptosis Modulation

Ferroptosis susceptibility is greatly influenced by genetic mutations. Mutations in
genes including GPX4, presenilins, and superoxide dismutase 1 (SOD1) have been con-
nected to heightened susceptibility to ferroptosis in neurodegenerative illnesses. For exam-
ple, GPX4’s R152H missense mutation results in decreased enzymatic activity, which com-
promises resistance to ferroptosis and adds to the pathophysiology of the disease [125,126].
Certain ferroptosis-related gene signatures have been found in recent research to be pre-
dictive of treatment response and patient prognosis. For example, a four-gene signature
(ABCB6, FLVCR1, SLC48A1, and SLC7A11) was created to build diagnostic and prognostic
models for hepatocellular carcinoma (HCC). In addition to offering insights into the tumor
immune milieu, this model effectively separated HCC from normal samples, indicating its
potential for use in customized treatment plans [26,127]. Ferroptosis is a contributing factor
to cardiomyocyte death and vascular dysfunction in diseases such as atherosclerosis, heart
failure, and ischemia/reperfusion injury. Potential treatment options include modifying
ferroptosis with iron chelators, antioxidants, and lipid metabolism regulators [128].

6.2.2. Metabolic Profiling and Ferroptosis Modulation

Ferroptosis is significantly influenced by metabolic pathways. A six-gene profile linked
to iron metabolism and ferroptosis was discovered to be connected to the prognosis of
patients with gastric cancer. Ferroptosis in gastric cancer may be linked to immune-related
signaling pathways, glutathione, and cysteine metabolism, according to functional analy-
ses [97,129]. These results demonstrate how crucial metabolic profiling is to comprehending
ferroptosis and creating individualized treatments. Techniques in personalized medicine
that take metabolic and genetic factors into account have the potential to improve the
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effectiveness of treatments based on ferroptosis. It might be feasible to enhance treatment
results and lessen side effects by customizing modulators to each patient’s unique profile.

6.3. Opportunities for Interdisciplinary Collaboration

Integrating neuroscience, pharmacology, and bioinformatics offers a comprehensive
approach to understanding the nervous system and developing effective therapeutics.
This interdisciplinary convergence facilitates the analysis of complex neural data, the
identification of novel drug targets, and the advancement of personalized medicine.

Neuroinformatics: Creating and managing easily available databases of computational
data and experimental data pertaining to the nervous system is the focus of neuroinfor-
matics. Traditional bioinformatics of brain gene and protein sequences, brain anatomy
atlases, imaging data, electrophysiological recordings, and clinical neurological data are all
included in this topic. Neuroinformatics helps researchers better understand neurological
illnesses and the normal functioning of the nervous system by collecting and analyzing
varied datasets [130,131].

Pharmacology and Bioinformatics Integration: The combination of bioinformatics and
pharmacology represents a powerful synergy between cutting-edge computational tools
and traditional pharmacological techniques [132,133]. In order to find and validate new
treatment targets, bioinformatics techniques enable the systematic analysis of biological
data, including transcriptomics, proteomes, and genomes [134]. By analyzing large datasets,
scientists can pinpoint specific genes, proteins, or pathways that play important roles in
the onset and course of illnesses. These targets are then put through a thorough pharma-
cological validation procedure to confirm their importance and suitability for therapeutic
intervention. Using prediction models, bioinformatics is essential for ranking potential
medications according to their binding specificity and affinity for target proteins. Addition-
ally, pharmacokinetic properties and toxicity of possible therapeutic candidates, including
absorption, distribution, metabolism, and excretion, can be predicted through the use of
bioinformatics models [135,136].

Network Pharmacology Approaches: By using network-based approaches, it is pos-
sible to analyze drug effects and diseases in the intricate context of biological networks.
Understanding the interdependence of biological processes and finding multi-target medica-
tions that can alter several elements within a disease network are made easier by this holistic
viewpoint, which is especially important for complicated neurological illnesses [134,137].
By using these techniques, the fusion of bioinformatics, pharmacology, and neurology
not only increases fundamental scientific understanding but also opens the door to novel
therapeutic approaches catered to the needs of specific patients.

7. Conclusions
7.1. Summary of Key Insights

Ferroptosis, a type of regulated cell death characterized by lipid peroxidation and
dependent on iron, is a significant contributor to the pathogenesis of many neurological
diseases, especially rare syndromes [10,15]. The fact that ferroptosis contributes to neu-
ronal degeneration highlights its potential as a therapeutic target. Preclinical research has
indicated that pharmacological treatments that block ferroptosis may offer novel therapy
options [88,93]. However, a number of obstacles stand in the way of these results being clin-
ically used. Further research is necessary to clarify the precise role of ferroptosis in various
illnesses, as its complex regulatory mechanisms in neurological situations are still not fully
understood [103]. The creation of particular ferroptosis biomarkers is also essential for ac-
curately evaluating the effectiveness of possible treatments. Furthermore, as ferroptosis has
been linked to a number of illnesses, the treatment plans need to be carefully designed to
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prevent unforeseen side effects like toxicity or drug resistance [12]. Innovative therapeutics
that target ferroptosis in rare neurological illnesses may be made possible by cooperative
efforts that integrate developments in neuroscience, bioinformatics, and pharmacology.
In conclusion, although ferroptosis targeting offers a promising treatment option for un-
common neurological conditions, overcoming the current obstacles requires a thorough
comprehension of its mechanisms and the creation of targeted therapeutic approaches.

7.2. A Call to Action for Future Research

Addressing therapeutic gaps in rare neurological disorders is a critical global health
priority, as these conditions collectively affect a significant population but often receive
limited research and development attention. Rare neurological disorders face challenges
such as limited diagnostics, expertise, and small patient populations for clinical trials. With
no viable treatments for 94% of rare diseases, innovative economic, legal, and regulatory
incentives are essential to drive research. Specialized centers offering interdisciplinary
expertise, early diagnosis, and personalized care are crucial in improving patient outcomes,
emphasizing the need for integrated healthcare practices.
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