A Novel Nonsense Mutation in FGB (c.1421G>A; p.Trp474Ter) in the Beta Chain of Fibrinogen Causing Hypofibrinogenemia with Bleeding Phenotype
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Population
2.2. Coagulation Tests and Rotational Thromboelastometry
2.3. Fibrin Polymerization Curve
2.4. Fibrinolysis
2.5. Scanning Electron Microscopy (SEM)
2.6. Genetic Analysis and Protein Modelling
3. Results
3.1. Clinical Description
3.2. Results Coagulation Test and ROTEM Analysis
3.3. Results Fibrin Clot Studies
3.4. Results Genetic Analysis and Protein Modelling
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tiscia, L.G.; Margaglione, M. Human Fibrinogen: Molecular and Genetic Aspects of Congenital Disorders. Int. J. Mol. Sci. 2018, 19, 1597. [Google Scholar] [CrossRef] [Green Version]
- Weisel, J.W.; Litvinov, R. Fibrin Formation, Structure and Properties. Subcell. Biochem. 2017, 82, 405–456. [Google Scholar] [PubMed] [Green Version]
- Casini, A.; Undas, A.; Palla, R.; Thachil. J, .; de Moerloose, P. Subcommittee on Factor XIII and Fibrinogen. Diagnosis and classification of congenital fibrinogen disorders: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2018, 16, 1887–1890. [Google Scholar] [CrossRef] [PubMed]
- Simurda, T.; Zolkova, J.; Snahnicanova, Z.; Loderer, D.; Skornova, I.; Sokol, J.; Hudecek, J.; Stasko, J.; Lasabova, Z.; Kubisz, P. Identification of Two Novel Fibrinogen Bβ Chain Mutations in Two Slovak Families with Quantitative Fibrinogen Disorders. Int. J. Mol. Sci. 2018, 19, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simurda, T.; Casini, A.; Stasko, J.; Hudecek, J.; Skornova, I.; Vilar, R.; Neerman-Arbez, M.; Kubisz, P. Perioperative Management of a Severe Congenital Hypofibrinogenemia With Thrombotic Phenotype. Thromb. Res. 2020, 188, 1–4. [Google Scholar] [CrossRef]
- Casini, A.; Blondon, M.; Tintillier, V.; Goodyer, M.; Sezgin, M.E.; Gunes, A.M.; Hanss, M.; De Moerloose, P.; Neerman Arbez, M. Mutational Epidemiology of Congenital Fibrinogen Disorders. Thromb. Haemost. 2018, 118, 1867–1874. [Google Scholar] [CrossRef] [Green Version]
- Kotlin, R.; Chytilova, M.; Suttnar, J.; Salaj, P.; Riedel, T.; Santruček, J.; Klener, P.; Dyr, J.E. A novel fibrinogen variant-praha I: Hypofibrinogenemia associated with gamma Gly351Ser substitution. Eur. J. Haematol. 2007, 78, 410–416. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Spraggon, G.; Everse, S.J.; Doolittle, R.F. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature 1997, 389, 455–462. [Google Scholar] [CrossRef]
- Casini, A.; Vilar, R.; Beauverd, Y.; Aslan, D.; Devreese, K.; Mondelaers, V.; Alberio, L.; Gubert, C.; De Moerloose, P.; Neerman-Arbez, M. Protein modelling to understand FGB mutations leading to congenital hypofibrinogenaemia. Haemophilia 2017, 23, 583–589. [Google Scholar] [CrossRef]
- Naz, A.; Biswas, A.; Khan, T.N.; Goodeve, A.; Ahmed, N.; Saqlain, N.; Ahmed, S.; Ujjan, I.D.; Shamsi, T.S.; Oldenburg, J. Identification of novel mutations in congenital afibrinogenemia patients and molecular modeling of missense mutations in Pakistani population. Thromb. J. 2017, 15, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simurda, T.; Snahnicanova, Z.; Loderer, D.; Zolkova, J.; Skornova, I.; Sokol, J.; Hudecek, J.; Stasko, J.; Lasabova, Z.; Kubisz, P. Fibrinogen Martin: A Novel Mutation in FGB (Gln180Stop) Causing Congenital Afibrinogenemia. Semin. Thromb. Hemost. 2016, 42, 455–458. [Google Scholar] [PubMed] [Green Version]
- Asselta, R.; Duga, S.; Tenchini, M.L. The molecular basis of quantitative fibrinogen disorders. J. Thromb. Haemost. 2006, 4, 2115–2129. [Google Scholar] [CrossRef] [PubMed]
- Vu, D.; Di Sanza, C.; Caille, D.; De Moerloose, P.; Scheib, H.; Meda, P.; Neerman-Arbez, M. Quality control of fibrinogen secretion in the molecular pathogenesis of congenital afibrinogenemia. Hum. Mol. Genet. 2005, 14, 3271–3280. [Google Scholar] [CrossRef]
- Neerman-Arbez, M.; Casini, A. Clinical Consequences and Molecular Bases of Low Fibrinogen Levels. Int. J. Mol. Sci. 2018, 19, 192. [Google Scholar] [CrossRef] [Green Version]
- Peyvandi, F.; Haertel, S.; Knaub, S.; Mannucci, P.M. Incidence of bleeding symptoms in 100 patients with inherited afibrinogenemia or hypofibrinogenemia. J. Thromb. Haemost. 2006, 4, 1634–1637. [Google Scholar] [CrossRef]
- Cai, H.; Liang, H.; Yang, J.; Zhang, X. Congenital hypofibrinogenemia in pregnancy: A report of 11 cases. Blood Coagul. Fibrinolysis 2018, 29, 155–159. [Google Scholar] [CrossRef] [Green Version]
- Simurda, T.; Stanciakova, L.; Stasko, J.; Dobrotova, M.; Kubisz, P. Yes or no for secondary prophylaxis in afibrinogenemia? Blood Coagul. Fibrinolysis 2015, 26, 978–980. [Google Scholar] [CrossRef]
- Casini, A.; de Moerloose, P. Fibrinogen concentrates in hereditary fibrinogen disorders: Past, present and future. Haemophilia 2020, 26, 25–32. [Google Scholar] [CrossRef]
- Medved, L.; Tsyurupa, G.; Jakovlev, S. Conformational changes upon conversion of fibrinogen into fibrin: The mechanisms of exposure of some cryptic sites. Ann. N. Y. Acad. Sci. 2001, 936, 185–204. [Google Scholar] [CrossRef]
- Hunt, B.J.; Segal, H. Hyperfibrinolysis. J. Clin. Pathol. 1996, 49, 958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lord, S.T. Molecular mechanisms affecting fibrin structure and stability. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 494–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisel, J.W. Fibrinogen and fibrin. Adv. Protein Chem. 2005, 70, 247–299. [Google Scholar] [PubMed]
- Cushman, M.; Cornell, A.; Folsom, A.R.; Wang, L.; Tsai, M.Y.; Polak, J.; Tang, Z. Associations of the beta-fibrinogen Hae III and factor XIII Val34Leu gene variants with venous thrombosis. Thromb. Res. 2007, 121, 339–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapin, J.C.; Hajjar, K.A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015, 29, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchi, R.; Brennan, S.; Meyer, M.; Rojas, H.; Kanzler, D.; De Agrela, M.; Ruiz-Saez, A. A Novel Mutation in the FGB: C.1105C>T Turns the Codon for Amino Acid Bβ Q339 Into a Stop Codon Causing Hypofibrinogenemia. Blood Cells Mol. Dis. 2013, 50, 177–181. [Google Scholar] [CrossRef]
- Castaman, G.; Giacomelli, S.H.; Duga, S.; Rodeghiero, F. Congenital hypofibrinogenemia associated with novel heterozygous fibrinogen Bβ and γ chain mutations. Haemophilia 2008, 14, 630–633. [Google Scholar] [CrossRef]
- Hanss, M.; Ffrench, P.; Vinciguerra, C.; Bertrand, M.A.; De Mazancourt, P. Four Cases of Hypofibrinogenemia Associated with Four Novel Mutations. J. Thromb. Haemost. 2005, 3, 2347–2349. [Google Scholar] [CrossRef]
- Aung, N.N.; Kennedy, H.; Faed, J.M.; Brennan, S.O. Novel Heterozygous Bβ (c.1311T>A) Mutation (Fibrinogen St Kilda) Associated with Recurrent Pregnancy Loss. Pathology 2015, 47, 583–585. [Google Scholar] [CrossRef]
- Homer, V.M.; Brennan, S.O.; Ockelford, P.; George, P.M. Novel fibrinogen truncation with deletion of Bbeta chain residues 440–461 causes hypofibrinogenaemia. Thromb. Haemost. 2002, 88, 427–431. [Google Scholar]
- Vu, D.; Neerman-Arbez, M. Molecular mechanisms accounting for fibrinogen deficiency: From large deletions to intracellular retention of misfolded proteins. J. Thromb. Haemost. 2007, 5, 125–131. [Google Scholar] [CrossRef] [PubMed]
Age | Clotting Time (s) | Fibrinogen (g/L) | ELT (h) | PAI-1 (IU/mL) | Pls (%) | α2-AP (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
PT | APTT | TT | Clauss | Ag | ||||||
Patient 1 | 6 | 12.2 | 27.5 | 19.8 | 1.43 | 1.40 | 5.0 | 1.10 | 116.6 | 120.0 |
Patient 2 | 34 | 13.0 | 28.3 | 23.8 | 1.06 | 1.10 | 6.0 | 0.50 | 88.4 | 111.8 |
Normal range | 9.4–12.5 | 22–32 | 15–22 | 1.8–4.2 | 1.8–4.2 | 8.0–16.0 | 2.00–7.00 | 80.0–120.0 | 80.0–120.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simurda, T.; Vilar, R.; Zolkova, J.; Ceznerova, E.; Kolkova, Z.; Loderer, D.; Neerman-Arbez, M.; Casini, A.; Brunclikova, M.; Skornova, I.; et al. A Novel Nonsense Mutation in FGB (c.1421G>A; p.Trp474Ter) in the Beta Chain of Fibrinogen Causing Hypofibrinogenemia with Bleeding Phenotype. Biomedicines 2020, 8, 605. https://doi.org/10.3390/biomedicines8120605
Simurda T, Vilar R, Zolkova J, Ceznerova E, Kolkova Z, Loderer D, Neerman-Arbez M, Casini A, Brunclikova M, Skornova I, et al. A Novel Nonsense Mutation in FGB (c.1421G>A; p.Trp474Ter) in the Beta Chain of Fibrinogen Causing Hypofibrinogenemia with Bleeding Phenotype. Biomedicines. 2020; 8(12):605. https://doi.org/10.3390/biomedicines8120605
Chicago/Turabian StyleSimurda, Tomas, Rui Vilar, Jana Zolkova, Eliska Ceznerova, Zuzana Kolkova, Dusan Loderer, Marguerite Neerman-Arbez, Alessandro Casini, Monika Brunclikova, Ingrid Skornova, and et al. 2020. "A Novel Nonsense Mutation in FGB (c.1421G>A; p.Trp474Ter) in the Beta Chain of Fibrinogen Causing Hypofibrinogenemia with Bleeding Phenotype" Biomedicines 8, no. 12: 605. https://doi.org/10.3390/biomedicines8120605
APA StyleSimurda, T., Vilar, R., Zolkova, J., Ceznerova, E., Kolkova, Z., Loderer, D., Neerman-Arbez, M., Casini, A., Brunclikova, M., Skornova, I., Dobrotova, M., Grendar, M., Stasko, J., & Kubisz, P. (2020). A Novel Nonsense Mutation in FGB (c.1421G>A; p.Trp474Ter) in the Beta Chain of Fibrinogen Causing Hypofibrinogenemia with Bleeding Phenotype. Biomedicines, 8(12), 605. https://doi.org/10.3390/biomedicines8120605