Identification of Aberrantly-Expressed Long Non-Coding RNAs in Osteoblastic Cells from Osteoporotic Patients
Abstract
:1. Introduction
2. Experimental Section
2.1. Subjects
2.2. Human Osteoblast Primary Cell Cultures
2.3. LncRNA Analysis
2.4. Prediction Methods for lncRNA–RNA Interactions
2.5. Prediction Methods for lncRNA–RNA Binding Protein (RBP) Interactions
2.6. Prediction Methods for lncRNA–miRNA Interactions
3. Results
3.1. Clinical Evaluation and In Vitro Study of Human Osteoblast Primary Cell Cultures
3.2. Expression Profile of lncRNAs
3.3. Bioinformatic Analysis and Target Prediction
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
OP | Osteoporosis |
CTR | Control |
lncRNAs | Long non-coding RNAs |
miRNAs | Micro-RNAs |
PASE | Physical Activity Scale for the Elderly |
Pr. Score | Prediction Score |
References
- Valdés-Flores, M.; Casas-Avila, L.; de León-Suárez, V.P.; Falcón-Ramírez, E. Genetics and Osteoporosis. In Osteoporosis; Dionyssiotis, Y., Ed.; InTech: London, UK, 2012; p. 33. ISBN 978-953-51-0026-3. [Google Scholar]
- Mac, I.; Alcorta-sevillano, N.; Rodr, C.I. Osteoporosis and the Potential of Cell-Based Therapeutic Strategies. Int. J. Mol. Sci. 2020, 21, 1653. [Google Scholar]
- Gordon, J.A.R.; Montecino, M.A.; Aqeilan, R.I.; Janet, L.; Stein, G.S.; Lian, J.B. Epigenetic Pathways Regulating Bone Homeostasis: Potential Targeting for Intervention of Skeletal Disorders. Curr. Osteoporos. Rep. 2014, 12, 496–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urano, T.; Inoue, S. Genetics of osteoporosis. Biochem. Biophys. Res. Commun. 2014, 452, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.B.; Zheng, H.-F.; Spector, T.D. Genetics of osteoporosis from genome-wide association studies: Advances and challenges. Nat. Rev. Genet. 2012, 13, 576–588. [Google Scholar] [CrossRef] [PubMed]
- Marini, F.; Cianferotti, L.; Brandi, M.; Marini, F.; Cianferotti, L.; Brandi, M.L. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices? Int. J. Mol. Sci. 2016, 17, 1329. [Google Scholar] [CrossRef] [Green Version]
- Vrtačnik, P.; Marc, J.; Ostanek, B. Epigenetic mechanisms in bone. Clin. Chem. Lab. Med. 2014, 52, 589–608. [Google Scholar] [CrossRef]
- Weilner, S.; Skalicky, S.; Salzer, B.; Keider, V.; Wagner, M.; Hildner, F.; Gabriel, C.; Dovjak, P.; Pietschmann, P.; Grillari-Voglauer, R.; et al. Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone 2015, 79, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Santoro, M.; Nociti, V.; Lucchini, M.; De Fino, C.; Losavio, F.A.; Mirabella, M. Expression Profile of Long Non-Coding RNAs in Serum of Patients with Multiple Sclerosis. J. Mol. Neurosci. 2016, 59, 18–23. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, P.C. Downregulated LncRNA-ANCR promotes osteoblast differentiation by targeting EZH2 and regulating Runx2 expression. Biochem. Biophys. Res. Commun. 2013, 432, 612–617. [Google Scholar] [CrossRef]
- Haxaire, C.; Haÿ, E.; Geoffroy, V. Runx2 Controls Bone Resorption through the Down-Regulation of the Wnt Pathway in Osteoblasts. Am. J. Pathol. 2016, 186, 1598–1609. [Google Scholar] [CrossRef] [Green Version]
- Otto, F.; Thornell, A.P.; Crompton, T.; Denzel, A.; Gilmour, K.C.; Rosewell, I.R.; Stamp, G.W.H.; Beddington, R.S.P.; Mundlos, S.; Olsen, B.R.; et al. Cbfa1, a Candidate Gene for Cleidocranial Dysplasia Syndrome, Is Essential for Osteoblast Differentiation and Bone Development. Cell 1997, 89, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Huynh, N.P.T.T.; Anderson, B.A.; Guilak, F.; McAlinden, A. Emerging roles for long noncoding RNAs in skeletal biology and disease. Connect. Tissue Res. 2017, 58, 116–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kartsogiannis, V.; Ng, K.W. Cell lines and primary cell cultures in the study of bone cell biology. Mol. Cell. Endocrinol. 2004, 228, 79–102. [Google Scholar] [CrossRef] [PubMed]
- Wergedal, J.E.; Baylink, D.J. Characterization of Cells Isolated and Cultured from Human Bone. Exp. Biol. Med. 1984, 176, 60–69. [Google Scholar] [CrossRef]
- Wong, G.; Cohn, D.V. Separation of parathyroid hormone and calcitonin-sensitive cells from non-responsive bone cells. Nature 1974, 252, 713–715. [Google Scholar] [CrossRef]
- Robey, P.G.; Termine, J.D. Human bone cells in vitro. Calcif. Tissue Int. 1985, 37, 453–460. [Google Scholar] [CrossRef]
- Anastasiadou, E.; Garg, N.; Bigi, R.; Yadav, S.; Campese, A.F.; Lapenta, C.; Spada, M.; Cuomo, L.; Botta, A.; Belardelli, F.; et al. Epstein-Barr virus infection induces miR-21 in terminally differentiated malignant B cells. Int. J. Cancer 2015, 137, 1491–1497. [Google Scholar] [CrossRef]
- Terai, G.; Iwakiri, J.; Kameda, T.; Hamada, M.; Asai, K. Comprehensive prediction of lncRNA-RNA interactions in human transcriptome. BMC Genomics 2016, 17, 12. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Wu, W.; Li, H.; Yuan, J.; Luo, J.; Zhao, Y.; Chen, R. NPInter v3.0: An upgraded database of noncoding RNA-associated interactions. Database 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Paraskevopoulou, M.D.; Vlachos, I.S.; Karagkouni, D.; Georgakilas, G.; Kanellos, I.; Vergoulis, T.; Zagganas, K.; Tsanakas, P.; Floros, E.; Dalamagas, T.; et al. DIANA-LncBase v2: Indexing microRNA targets on non-coding transcripts. Nucleic Acids Res. 2016, 44, D231–D238. [Google Scholar] [CrossRef] [Green Version]
- Vlachos, I.S.; Zagganas, K.; Paraskevopoulou, M.D.; Georgakilas, G.; Karagkouni, D.; Vergoulis, T.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res. 2015, 43, W460–W466. [Google Scholar] [CrossRef] [PubMed]
- Karagkouni, D.; Paraskevopoulou, M.D.; Chatzopoulos, S.; Vlachos, I.S.; Tastsoglou, S.; Kanellos, I.; Papadimitriou, D.; Kavakiotis, I.; Maniou, S.; Skoufos, G.; et al. DIANA-TarBase v8: A decade-long collection of experimentally supported miRNA-gene interactions. Nucleic Acids Res. 2018, 46, D239–D245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiagen. RT2 Profiler PCR Array Data Analysis v3.5 Handbook. In Handbook; Hilden, Germany, 2015; p. 24. Available online: https://geneglobe.qiagen.com/it/product-groups/rt2-lncrna-qpcr-assays (accessed on 10 February 2020).
- Lisse, T.S.; Vadivel, K.; Bajaj, S.P.; Zhou, R.; Chun, R.F.; Hewison, M.; Adams, J.S. The heterodimeric structure of heterogeneous nuclear ribonucleoprotein C1/C2 dictates 1,25-dihydroxyvitamin D-directed transcriptional events in osteoblasts. Bone Res. 2014, 2, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Sharma, R.; Nie, D.; Jiao, H.; Im, H.J.; Lai, Y.; Zhao, Z.; Zhu, K.; Fan, J.; Chen, D.; et al. ADAR1 ablation decreases bone mass by impairing osteoblast function in mice. Gene 2013, 513, 101–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gennari, L.; Bianciardi, S.; Merlotti, D. MicroRNAs in bone diseases. Osteoporos. Int. 2017, 28, 1191–1213. [Google Scholar] [CrossRef]
- Ell, B.; Kang, Y. MicroRNAs as regulators of bone homeostasis and bone metastasis. Bonekey Rep. 2014, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Deng, K.; Wang, H.; Guo, X.; Xia, J. The cross talk between long, non-coding RNAs and microRNAs in gastric cancer. Acta Biochim. Biophys. Sin. (Shanghai) 2015, 48, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Rashid, F.; Shah, A.; Shan, G. Long Non-coding RNAs in the Cytoplasm. Genom. Proteom. Bioinform. 2016, 14, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Tang, P.; Xiong, Q.; Ge, W.; Zhang, L. The role of MicroRNAs in osteoclasts and osteoporosis. RNA Biol. 2014, 11, 1355–1363. [Google Scholar] [CrossRef] [Green Version]
- Panach, L.; Mifsut, D.; Tarín, J.J.; Cano, A.; García-Pérez, M.Á. Serum Circulating MicroRNAs as Biomarkers of Osteoporotic Fracture. Calcif. Tissue Int. 2015, 97, 495–505. [Google Scholar] [CrossRef]
- Wu, Q.Y.; Li, X.; Miao, Z.N.; Ye, J.X.; Wang, B.; Zhang, F.; Xu, R.S.; Jiang, D.L.; Zhao, M.D.; Yuan, F.L. Long Non-coding RNAs: A new regulatory code for osteoporosis. Front. Endocrinol. (Lausanne) 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brincat, S.D.; Borg, M.; Camilleri, G.; Calleja-Agius, J. The role of cytokines in postmenopausal osteoporosis. Minerva Ginecol. 2014, 66, 391–407. [Google Scholar]
- Ginaldi, L.; Cristina, M.; Benedetto, D.; De Martinis, M. Osteoporosis, inflammation and ageing. Immun. Ageing. 2005, 2, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Ahn, C.; Chun, C.H.; Jin, E.J. A long non-coding RNA, GAS5, plays a critical role in the regulation of miR-21 during osteoarthritis. J. Orthop. Res. 2014, 32, 1628–1635. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, D.; Zhu, Y.; Dong, Y.; Liu, Y. Long non-coding RNA GAS5 promotes osteogenic differentiation of bone marrow mesenchymal stem cells by regulating the miR-135a-5p/FOXO1 pathway. Mol. Cell. Endocrinol. 2019, 496, 110534. [Google Scholar] [CrossRef]
- Feng, J.; Wang, J.X.; Li, C.H. LncRNA GAS5 overexpression alleviates the development of osteoporosis through promoting osteogenic differentiation of MSCs via targeting microRNA-498 to regulate RUNX2. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 7757–7765. [Google Scholar]
- Kelch, S.; Balmayor, E.R.; Seeliger, C.; Vester, H.; Kirschke, J.S.; Van Griensven, M. MiRNAs in bone tissue correlate to bone mineral density and circulating miRNAs are gender independent in osteoporotic patients. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Seeliger, C.; Karpinski, K.; Haug, A.T.; Vester, H.; Schmitt, A.; Bauer, J.S.; Van Griensven, M. Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J. Bone Miner. Res. 2014, 29, 1718–1728. [Google Scholar] [CrossRef]
- Doni, A.; Garlanda, C.; Mantovani, A. Innate immunity, hemostasis and matrix remodeling: PTX3 as a link. Semin. Immunol. 2016, 28, 570–577. [Google Scholar] [CrossRef] [Green Version]
- Grčević, D.; Sironi, M.; Valentino, S.; Deban, L.; Cvija, H.; Inforzato, A.; Kovačić, N.; Katavić, V.; Kelava, T.; Kalajzić, I.; et al. The long pentraxin 3 plays a role in bone turnover and repair. Front. Immunol. 2018, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Parente, R.; Sobacchi, C.; Bottazzi, B.; Mantovani, A.; Grčevic, D.; Inforzato, A. The Long Pentraxin PTX3 in Bone Homeostasis and Pathology. Front. Immunol. 2019, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.-J.; Song, D.-H.; Kim, Y.-J.; Choi, B.; Chung, Y.-H.; Kim, S.-M.; Koh, J.-M.; Yoon, S.-Y.; Song, Y.; Kang, S.-W.; et al. PTX3 Stimulates Osteoclastogenesis by Increasing Osteoblast RANKL Production. J. Cell. Physiol. 2014, 229, 1744–1752. [Google Scholar] [CrossRef] [PubMed]
- Scimeca, M.; Salustri, A.; Bonanno, E.; Nardozi, D.; Rao, C.; Piccirilli, E.; Feola, M.; Tancredi, V.; Rinaldi, A.; Iolascon, G.; et al. Impairment of PTX3 expression in osteoblasts: A key element for osteoporosis. Cell Death Dis. 2017, 8, e3125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dou, C.; Li, N.; Ding, N.; Liu, C.; Yang, X.; Kang, F.; Cao, Z.; Quan, H.; Hou, T.; Xu, J.; et al. HDAC2 regulates FoxO1 during RANKL-induced osteoclastogenesis. Am. J. Physiol. Cell Physiol. 2016, 310, C780–C787. [Google Scholar] [CrossRef]
- Pan, J.X.; Xiong, L.; Zhao, K.; Zeng, P.; Wang, B.; Tang, F.L.; Sun, D.; Guo, H.H.; Yang, X.; Cui, S.; et al. YAP promotes osteogenesis and suppresses adipogenic differentiation by regulating β-catenin signaling. Bone Res. 2018, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Iyer, S.; Ambrogini, E.; Bartell, S.M.; Han, L.; Roberson, P.K.; De Cabo, R.; Jilka, R.L.; Weinstein, R.S.; O’Brien, C.A.; Manolagas, S.C.; et al. FOXOs attenuate bone formation by suppressing Wnt signaling. J. Clin. Investig. 2013, 123, 3409–3419. [Google Scholar] [CrossRef]
- Lee, W.C.; Guntur, A.R.; Long, F.; Rosen, C.J. Energy metabolism of the osteoblast: Implications for osteoporosis. Endocr. Rev. 2017, 38, 255–266. [Google Scholar] [CrossRef]
- Kovács, B.; Vajda, E.; Nagy, E.E. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis. Int. J. Mol. Sci. 2019, 20, 4653. [Google Scholar] [CrossRef] [Green Version]
- Yarbrough, M.L.; Zhang, K.; Sakthivel, R.; Forst, C.V.; Posner, B.A.; Barber, G.N.; White, M.A.; Fontoura, B.M.A. Primate-specific miR-576-3p sets host defense signalling threshold. Nat. Commun. 2014, 5, 1–10. [Google Scholar] [CrossRef]
- Su, N.; Jin, M.; Chen, L. Role of FGF/FGFR signaling in skeletal development and homeostasis: Learning from mouse models. Bone Res. 2014, 2, 1–24. [Google Scholar] [CrossRef] [Green Version]
Clinical Characteristics | OP (n = 4) | CTR (n = 4) |
---|---|---|
BMI (kg/m2) | 25.61 ± 1.13 | 27.0 ± 6.0 |
T Score (L1–L4) | −2.85 ± 0.15 | 0.95 ± 0.01 |
T Score (neck) | −2.77 ± 0.17 | 0.19 ± 0.05 |
PASE test | 72.96 ± 24.89 | 100 ± 20.86 |
Kellgren–Lawrence scale | 0–1 | 0 |
Long Non-Coding RNAs (LncRNAs) | Fold-Regulation | p-Value |
---|---|---|
CEP83-AS1 | −8.75 ↓ down | 0.014 |
RP11-84C13.1 | −5.44 ↓ down | 0.015 |
CTC-487M23.5 | −5.39 ↓ down | 0.004 |
GAS5 | −4.86 ↓ down | 0.006 |
NCBP2-AS2 | −4.34 ↓ down | 0.020 |
SDCBP2-AS1 | −4.00 ↓ down | 0.002 |
List of mRNAs Interacting with lncRNAs | |||||
---|---|---|---|---|---|
LncRNA | mRNA | Ensemble ID | MinEnergy | Location | SumEnergy |
CEP83-AS1 (ENST00000623122) | - | - | - | - | - |
CTC-487M23.5 (ENST00000602872) | AGO3 | ENST00000373191 | −63.2 | UTR3 | −2550.9 |
RBM28 | ENST00000223073 | −62.5 | UTR3 | −2038.0 | |
PDK1 | ENST00000282077 | −71.3 | UTR3 | −1994.5 | |
PPM1L | ENST00000498165 | −72.6 | UTR3 | −1622.0 | |
HDAC2 | ENST00000519065 | −56.2 | UTR3 | −1573.2 | |
GAS5 (ENST00000450589) | SOD2 | ENST00000538183 | −40.8 | UTR3 | −1798.0 |
FGFR1OP | ENST00000366847 | −38.2 | UTR3 | −1508.2 | |
NOS1 | ENST00000317775 | −47.2 | UTR3 | −1380.6 | |
EIF4E | ENST00000450253 | −42.2 | UTR3 | −1298.0 | |
LRRC27 | ENST00000392638 | −42.9 | UTR3 | −1002.8 | |
RP11-84C13.1 (ENST00000603357) | IGFN1 | ENST00000335211 | −39.1 | CDS | −2316.5 |
RYR2 | ENST00000366574 | −40.3 | CDS | −1848.3 | |
CCDC88A | ENST00000436346 | −35.2 | UTR5 | −1688.0 | |
CACNG8 | ENST00000270458 | −37.9 | UTR3 | −1488.5 | |
RYR3 | ENST00000389232 | −40.4 | CDS | −1469.4 | |
NCBP2-AS2 (ENST00000602845) | SMAD2 | ENST00000402690 | −34.5 | UTR5 | −1363.4 |
PTPN14 | ENST00000366956 | −28.7 | CDS | −1249.8 | |
LRP1 | ENST00000243077 | −31.0 | CDS | −1132.5 | |
PTPN4 | ENST00000263708 | −28.5 | CDS | −1056.9 | |
IGSF10 | ENST00000282466 | −29.0 | CDS | −1056.2 | |
SDCBP2-AS1 (ENST00000446423) | ASXL2 | ENST00000435504 | −38.9 | CDS | −4456.0 |
CBL | ENST00000264033 | −37.5 | UTR3 | −3988.8 | |
HIVEP3 | ENST00000372584 | −38.1 | CDS | −3670.8 | |
HDAC9 | ENST00000406451 | −38.9 | CDS | −3554.0 | |
ROCK1 | ENST00000399799 | −39.0 | UTR5 | −3065.6 |
List of miRNAs Interacting with lncRNA | ||||
---|---|---|---|---|
LncRNA | miRNA | Pr.Score* | KEGG Pathways | Gene Target |
CEP83-AS1 (ENST00000623122) | - | - | - | - |
CTC-487M23.5 (ENST00000602872) | hsa-miR-136-3p | 0.451 | ECM-receptor interaction | THBS2 |
PPP1CB | ||||
PDGFC | ||||
GAS5 (ENST00000450589) | hsa-miR-21-5p | 0.382 | Hippo signaling pathway FoxO signaling pathway | PDCD4 |
PTX3 | ||||
RP11-84C13.1 (ENST00000603357) | hsa-miR-576-3p | 0.408 | Hippo signaling pathway FoxO signaling pathway | FGF2 |
FRS2 | ||||
PTPN11 | ||||
NCBP2-AS2 (ENST00000602845) | hsa-miR-103a-3p | 0.734 | Hippo signaling pathway FoxO signaling pathway Wnt signaling pathway TGF-β signaling pathway mTOR signaling pathway HIF-1 signaling pathway AMPK signaling pathway Insulin signaling pathway TNF signaling pathway | Runx2 |
hsa-miR-497-5p | 0.799 | BMP | ||
hsa-miR-195-5p | 0.662 | |||
hsa-miR-23a-3p | 0.417 | Runx2/SATB2 | ||
hsa-miR-24-2-5p | 0.497 | |||
hsa-miR-23b-3p | 0.418 | SMAD | ||
hsa-let-7d-3p | 0.391 | Collagens | ||
SDCBP2-AS1 (ENST00000446423) | hsa-miR-2116-3p | 0.545 | FoxO signaling pathway TGF-β signaling pathway | |
hsa-miR-532-3p | 0.558 | |||
hsa-miR-150-5p | 0.644 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Centofanti, F.; Santoro, M.; Marini, M.; Visconti, V.V.; Rinaldi, A.M.; Celi, M.; D’Arcangelo, G.; Novelli, G.; Orlandi, A.; Tancredi, V.; et al. Identification of Aberrantly-Expressed Long Non-Coding RNAs in Osteoblastic Cells from Osteoporotic Patients. Biomedicines 2020, 8, 65. https://doi.org/10.3390/biomedicines8030065
Centofanti F, Santoro M, Marini M, Visconti VV, Rinaldi AM, Celi M, D’Arcangelo G, Novelli G, Orlandi A, Tancredi V, et al. Identification of Aberrantly-Expressed Long Non-Coding RNAs in Osteoblastic Cells from Osteoporotic Patients. Biomedicines. 2020; 8(3):65. https://doi.org/10.3390/biomedicines8030065
Chicago/Turabian StyleCentofanti, Federica, Massimo Santoro, Mario Marini, Virginia Veronica Visconti, Anna Maria Rinaldi, Monica Celi, Giovanna D’Arcangelo, Giuseppe Novelli, Augusto Orlandi, Virginia Tancredi, and et al. 2020. "Identification of Aberrantly-Expressed Long Non-Coding RNAs in Osteoblastic Cells from Osteoporotic Patients" Biomedicines 8, no. 3: 65. https://doi.org/10.3390/biomedicines8030065
APA StyleCentofanti, F., Santoro, M., Marini, M., Visconti, V. V., Rinaldi, A. M., Celi, M., D’Arcangelo, G., Novelli, G., Orlandi, A., Tancredi, V., Tarantino, U., & Botta, A. (2020). Identification of Aberrantly-Expressed Long Non-Coding RNAs in Osteoblastic Cells from Osteoporotic Patients. Biomedicines, 8(3), 65. https://doi.org/10.3390/biomedicines8030065