Photobiomodulation of Human Fibroblasts and Keratinocytes with Blue Light: Implications in Wound Healing
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Device
2.2. Human Keratinocytes Cell Line
2.3. Human Healthy Skin Samples and Fibroblasts Primary Cultures
2.4. Cell Counting Kit-8 and Sulforhodamine B Based Assays
2.5. DAPI and Trypan Blue Analysis
2.6. Electrophysiological Recordings
2.7. Micro Raman Measurements on Single Cell
2.8. In Vitro Co-Culture Scratch Assay
3. Results
3.1. Blue Led Light Affects Metabolism and Proliferation in Both HaCaT Cells and Human Fibroblasts
3.2. Blue Led Light Effects on Cell Viability
3.3. Effects of Blue Led Light on Voltage Dependent Currents in Human Fibroblasts and HaCaT Cells
3.4. Raman Microspectroscopy on Irradiated Healthy Fibroblast and HaCaT Cells Revealed Effects of the Blue Light on Cytochrome C Molecule
3.5. Blue Led Light Increases Fibroblasts and Keratinocytes Migration in In Vitro Scratch Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PBM | Photobiomodulation |
IR | InfraRed |
NIR | Near InfraRed |
LED | Light Emitting Diode |
Cyt C | Cytochrome C |
GPC | Good Clinical Practice |
DMEM | Dulbecco Modified Eagle Medium |
HaCaT | Spontaneously transformed non-tumorigenic human keratinocyte cell line |
FBS | Fetal Serum Bovine |
pen/strep | Penicillin/streptomycin |
CCK-8 | Cell Counting Kit-8 |
SRB | Sulforhodamine B based assay |
DAPI | 4,6-diamidino-2-phenylindole |
PBS | phosphate buffer saline |
References
- Piaggesi, A.; Låuchli, S.; Bassetto, F.; Biedermann, T.; Marques, A.; Najafi, B.; Palla, I.; Scarpa, C.; Seimetz, D.; Triulzi, I.; et al. Advanced therapies in wound management: Cell and tissue based therapies, physical and bio-physical therapies smart and IT based technologies. J. Wound Care 2018, 27, S1–S137. [Google Scholar] [CrossRef] [PubMed]
- Mester, E.; Szende, B.; Gärtner, P. The effect of laser beams on the growth of hair in mice. Radiobiol. Radiother. 1968, 9, 621. [Google Scholar]
- Heiskanen, V.; Hamblin, M.R. Photobiomodulation: Lasers vs. light emitting diodes? Photochem. Photobiol. Sci. 2018, 17, 1003–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dompe, C.; Moncrieff, L.; Matys, J.; Grzech-Leśniak, K.; Kocherova, I.; Bryja, A.; Bruska, M.; Dominiak, M.; Mozdziak, P.; Skiba, T.H.I.; et al. Photobiomodulation—Underlying Mechanism and Clinical Applications. J. Clin. Med. 2020, 9, 1724. [Google Scholar] [CrossRef]
- Serrage, H.; Heiskanen, V.; Palin, W.M.; Cooper, P.R.; Milward, M.R.; Hadis, M.; Hamblin, M.R. Under the spotlight: Mechanisms of photobiomodulation concentrating on blue and green light. Photochem. Photobiol. Sci. 2019, 18, 1877–1909. [Google Scholar] [CrossRef]
- Jagdeo, J.; Austin, E.; Mamalis, A.; Wong, C.; Ho, D.; Siegel, D.M. Light-emitting diodes in dermatology: A systematic review of randomized controlled trials. Lasers Surg. Med. 2018, 50, 613–628. [Google Scholar] [CrossRef]
- dos Santos, J.G.R.P.; Zaninotto, A.L.C.; Zângaro, R.A.; Carneiro, A.M.C.; Neville, I.S.; de Andrade, A.F.; Teixeira, M.J.; Paiva, W.S. Effects of transcranial LED therapy on the cognitive rehabilitation for diffuse axonal injury due to severe acute traumatic brain injury: Study protocol for a randomized controlled trial. Trials 2018, 19, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Karu, T. Is it time to consider photobiomodulation as a drug equivalent? Photomed. Laser Surg. 2013, 31, 189–191. [Google Scholar] [CrossRef] [Green Version]
- Hamblin, M.R. Introduction to experimental and clinical studies using low-level laser (light) therapy (LLLT). Lasers Surg. Med. 2010, 42, 447. [Google Scholar] [CrossRef]
- Rossi, F.; Tatini, F.; Pini, R.; Bacci, S.; De Siena, G.; Cicchi, R.; Pavone, F.; Alfieri, D. Improved wound healing in blue LED treated superficial abrasions. In European Conference on Biomedical Optics; Optical Society of America: Washington, DC, USA, 2013; p. 88030S. [Google Scholar]
- Rossi, F.; Cicchi, R.; Tatini, F.; Bacci, S.; Alfieri, D.; De Siena, G.; Pavone, F.S.; Pini, R. Healing process study in murine skin superficial wounds treated with the blue LED photocoagulator “EMOLED”. In European Conference on Biomedical Optics; Optical Society of America: Washington, DC, USA, 2015; p. 95420F. [Google Scholar]
- Rossi, F.; Cicchi, R.; Magni, G.; Tatini, F.; Bacci, S.; Paroli, G.; Alfieri, D.; Tripodi, C.; De Siena, G.; Pavone, F.S.; et al. Blue LED induced thermal effects in wound healing: Experimental evidence in an in vivo model of superficial abrasions. In Energy-Based Treatment of Tissue and Assessment IX; International Society for Optics and Photonics: Bellingham, WA, USA, 2017; Volume 10066, p. 100660B. [Google Scholar]
- Magni, G.; Tatini, F.; Cavigli, L.; Pini, R.; Cicchi, R.; Bacci, S.; Paroli, G.; DeSiena, G.; Alfieri, D.; Tripodi, C.; et al. Blue LED treatment of superficial abrasions: In vivo experimental evidence of wound healing improvement. In Biophotonics: Photonic Solutions for Better Health Care VI; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10685, p. 106850G. [Google Scholar]
- Dini, V.; Romanelli, M.; Oranges, T.; Davini, G.; Janowska, A. Giornale Italiano di Dermatologia e Venereologia 2020 Jul 28. G. Ital. Dermatol. 2020. [Google Scholar] [CrossRef]
- Mosti, G.; Gasperini, S. Observations made on three patients suffering from ulcers of the lower limbs treated with Blue Light. Chronic Wound Care Manag. Res. 2018, 5, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Magni, G.; Tatini, F.; Bacci, S.; Paroli, G.; De Siena, G.; Cicchi, R.; Pavone, F.S.; Pini, R.; Rossi, F. Blue LED light modulates inflammatory infiltrate and improves the healing of superficial wounds. Photodermatol. Photoimmunol. Photomed. 2020, 36, 166–168. [Google Scholar] [CrossRef] [PubMed]
- Cicchi, R.; Rossi, F.; Alfieri, D.; Bacci, S.; Tatini, F.; De Siena, G.; Paroli, G.; Pini, R.; Pavone, F.S. Observation of an improved healing process in superficial skin wounds after irradiation with a blue-LED haemostatic device. J. Biophotonics 2016, 9, 645–655. [Google Scholar] [CrossRef]
- Magni, G.; Banchelli, M.; Cherchi, F.; Coppi, E.; Fraccalvieri, M.; Pugliese, A.M.; Pedata, F.; Mangia, A.; Gasperini, S.; Pavone, F.S.; et al. Human keloid cultured fibroblasts irradiated with blue LED light: Evidence from an in vitro study. In European Conference on Biomedical Optics; Optical Society of America: Washington, DC, USA, 2019; p. 11079_31. [Google Scholar]
- Keira, S.M.; Ferreira, L.M.; Gragnani, A.; Duarte, I.d.S.; Santos, I.A.N.d. Experimental model for fibroblast culture. Acta Cir. Bras. 2004, 19, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Krassovka, J.; Borgschulze, A.; Sahlender, B.; Lögters, T.; Windolf, J.; Grotheer, V. Blue light irradiation and its beneficial effect on Dupuytren’s fibroblasts. PLoS ONE 2019, 14, e0209833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, H.Y.; Kim, Y.; Park, H.W.; Moon, H.E.; Bae, S.; Kim, J.; Kim, D.G.; Paek, S.H. The unreliability of MTT assay in the cytotoxic test of primary cultured glioblastoma cells. Exp. Neurobiol. 2015, 24, 235–245. [Google Scholar] [CrossRef]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef]
- Orellana, E.A.; Kasinski, A.L. Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio-Protocol 2016, 6, e1984. [Google Scholar] [CrossRef] [Green Version]
- Khorsandi, L.; Orazizadeh, M.; Niazvand, F.; Abbaspour, M.; Mansouri, E.; Khodadadi, A. Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells. Bratisl. Med. J. 2017, 118, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Park, H.; Ban, J.; Chung, J.; Chun, G.; Cho, J. Effects of nicotine on apoptosis in human gingival fibroblasts. Arch. Oral Biol. 2011, 56, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 1997. [Google Scholar] [CrossRef]
- Ayuk, S.M.; Houreld, N.N.; Abrahamse, H. Collagen production in diabetic wounded fibroblasts in response to low-intensity laser irradiation at 660 nm. Diabetes Technol. Ther. 2012, 14, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Coppi, E.; Cherchi, F.; Fusco, I.; Dettori, I.; Gaviano, L.; Magni, G.; Catarzi, D.; Colotta, V.; Varano, F.; Rossi, F.; et al. Adenosine A2B receptors inhibit K+ currents and cell differentiation in cultured oligodendrocyte precursor cells and modulate sphingosine-1-phosphate signaling pathway. Biochem. Pharmacol. 2020, 177, 113956. [Google Scholar] [CrossRef]
- Bobadilla, A.V.P.; Arévalo, J.; Sarró, E.; Byrne, H.M.; Maini, P.K.; Carraro, T.; Balocco, S.; Meseguer, A.; Alarcón, T. In Vitro cell migration quantification method for scratch assays. J. R. Soc. Interface 2019, 16, 20180709. [Google Scholar] [CrossRef] [Green Version]
- Gnerucci, A.; Faraoni, P.; Sereni, E.; Ranaldi, F. Scratch assay microscopy: A reaction–diffusion equation approach for common instruments and data. Math. Biosci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Magni, G.; Banchelli, M.; Cherchi, F.; Coppi, E.; Fraccalvieri, M.; Rossi, M.; Tatini, F.; Pugliese, A.M.; Rossi Degl’Innocenti, D.; Alfieri, D.; et al. Experimental Study on Blue Light Interaction with Human Keloid-Derived Fibroblasts. Biomedicines 2020, 8, 573. [Google Scholar] [CrossRef] [PubMed]
- Masson-Meyers, D.S.; Bumah, V.V.; Enwemeka, C.S. Blue light does not impair wound healing in vitro. J. Photochem. Photobiol. Biol. 2016, 160, 53–60. [Google Scholar] [CrossRef]
- Magni, G.; Cherchi, F.; Coppi, E.; Fraccalvieri, M.; Tatini, F.; Fusco, I.; Pini, R.; Pugliese, A.M.; Pedata, F.; Mangia, A.; et al. Blue light effects in human keloid fibroblasts. In Mechanisms of Photobiomodulation Therapy XIV; International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 10861, p. 1086107. [Google Scholar]
- Rossi, F.; Pini, R.; De Siena, G.; Massi, D.; Pavone, F.S.; Alfieri, D.; Cannarozzo, G. A blue-LED-based device for selective photocoagulation of superficial abrasions: Theoretical modeling and in vivo validation. In Photonic Therapeutics and Diagnostics VI; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7548, p. 754807. [Google Scholar]
- Alfieri, D.; Bacci, S.; Cicchi, R.; De Siena, G.; Lotti, V.; Pavone, F.; Pini, R.; Rossi, F.; Tatini, F. Blue LED treatment of superficial abrasions. In Photonic Therapeutics and Diagnostics IX; International Society for Optics and Photonics: Bellingham, WA, USA, 2013; Volume 8565, p. 85650H. [Google Scholar]
Sample | % of Viable Cells in Ctrl (Not Irradiated Cells) | % of Viable Cells in Irradiated Cells (41.2 J/cm Applied) | p Value |
---|---|---|---|
HaCaT 24 h | 224.25 (89.64) | 126.42 (100.64) | <0.001 |
HaCaT 48 h | 189.35 (104.80) | 61.42 (44.86) | <0.001 |
Fibroblast 24 h | 93.20 (20.05) | 44.38 (21.84) | <0.001 |
Fibroblast 48 h | 39.52 (17.08) | 38.65 (16.51) | 0.778 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, F.; Magni, G.; Tatini, F.; Banchelli, M.; Cherchi, F.; Rossi, M.; Coppi, E.; Pugliese, A.M.; Rossi degl’Innocenti, D.; Alfieri, D.; et al. Photobiomodulation of Human Fibroblasts and Keratinocytes with Blue Light: Implications in Wound Healing. Biomedicines 2021, 9, 41. https://doi.org/10.3390/biomedicines9010041
Rossi F, Magni G, Tatini F, Banchelli M, Cherchi F, Rossi M, Coppi E, Pugliese AM, Rossi degl’Innocenti D, Alfieri D, et al. Photobiomodulation of Human Fibroblasts and Keratinocytes with Blue Light: Implications in Wound Healing. Biomedicines. 2021; 9(1):41. https://doi.org/10.3390/biomedicines9010041
Chicago/Turabian StyleRossi, Francesca, Giada Magni, Francesca Tatini, Martina Banchelli, Federica Cherchi, Michele Rossi, Elisabetta Coppi, Anna Maria Pugliese, Duccio Rossi degl’Innocenti, Domenico Alfieri, and et al. 2021. "Photobiomodulation of Human Fibroblasts and Keratinocytes with Blue Light: Implications in Wound Healing" Biomedicines 9, no. 1: 41. https://doi.org/10.3390/biomedicines9010041
APA StyleRossi, F., Magni, G., Tatini, F., Banchelli, M., Cherchi, F., Rossi, M., Coppi, E., Pugliese, A. M., Rossi degl’Innocenti, D., Alfieri, D., Pavone, F. S., Pini, R., & Matteini, P. (2021). Photobiomodulation of Human Fibroblasts and Keratinocytes with Blue Light: Implications in Wound Healing. Biomedicines, 9(1), 41. https://doi.org/10.3390/biomedicines9010041