Hypertrophy and Insulin Resistance of Epicardial Adipose Tissue Adipocytes: Association with the Coronary Artery Disease Severity
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Participants and Clinical Characteristics of Patients
Clinical Characteristics of Patients
2.2. Adipose Tissue Explants
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Erkan, A.F.; Tanindi, A.; Kocaman, S.A.; Ugurlu, M.; Tore, H.F. Epicardial Adipose Tissue Thickness Is an Independent Predictor of Critical and Complex Coronary Artery Disease by Gensini and Syntax Scores Epicardial. Texas Heart Inst. J. 2016, 43, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancio, J.; Azevedo, D.; Saraiva, F.; Azevedo, A.I.; Pires-Morais, G.; Leite-Moreira, A.; Falcao-Pires, I.; Lunet, N.; Bettencourt, N. Epicardial Adipose Tissue Volume Assessed by Computed Tomography and Coronary Artery Disease: A Systematic Review and Meta-Analysis. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 490–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villasante Fricke, A.C.; Iacobellis, G. Epicardial Adipose Tissue: Clinical Biomarker of Cardio-Metabolic Risk. Int. J. Mol. Sci. 2019, 20, 5989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.M. Mediastinal Fat, Insulin Resistance, and Hypertension. Hypertension 2004, 44, 117–118. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, B.; Li, Y.; Jing, X.; Deng, S.; Yan, Y.; She, Q. Epicardial Fat Tissue in Patients with Diabetes Mellitus: A Systematic Review and Meta-Analysis. Cardiovasc. Diabetol. 2019, 18, 3. [Google Scholar] [CrossRef] [Green Version]
- Iacobellis, G.; Leonetti, F. Epicardial Adipose Tissue and Insulin Resistance in Obese Subjects. J. Clin. Endocrinol. Metab. 2005, 90, 6300–6302. [Google Scholar] [CrossRef]
- Aitken-Buck, H.M.; Moharram, M.; Babakr, A.A.; Reijers, R.; Van Hout, I.; Fomison-Nurse, I.C.; Sugunesegran, R.; Bhagwat, K.; Davis, P.J.; Bunton, R.W.; et al. Relationship between Epicardial Adipose Tissue Thickness and Epicardial Adipocyte Size with Increasing Body Mass Index. Adipocyte 2019, 8, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Vianello, E.; Dozio, E.; Arnaboldi, F.; Marazzi, M.G.; Martinelli, C.; Lamont, J.; Tacchini, L.; Sigrüner, A.; Schmitz, G.; Corsi Romanelli, M.M. Epicardial Adipocyte Hypertrophy: Association with M1-Polarization and Toll-like Receptor Pathways in Coronary Artery Disease Patients. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 246–253. [Google Scholar] [CrossRef]
- Yanai, H.; Yoshida, H. Beneficial Effects of Adiponectin on Glucose and Lipid Metabolism and Atherosclerotic Progression: Mechanisms and Perspectives. Int. J. Mol. Sci. 2019, 20, 1190. [Google Scholar] [CrossRef] [Green Version]
- Koshelskaya, O.A.; Suslova, T.E.; Kologrivova, I.V.; Margolis, N.Y.; Zhuravleva, O.A.; Kharitonova, O.A.; Kravchenko, E.S.; Vinnitskaya, I.V.; Karpov, R.S. Epicardial Fat Thickness and Biomarkers of Inflammation in Patients with Stable Coronary Artery Disease: Correlation with the Severity of Coronary Atherosclerosis. Russ. J. Cardiol. 2019, 4, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Reaven, G.M. Insulin Resistance: The Link Between Obesity and Cardiovascular Disease. Endocrinol. Metab. Clin. N. Am. 2008, 37, 581–601. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.B.; Shah, S.; Verma, S.; Oudit, G.Y. Epicardial Adipose Tissue as a Metabolic Transducer: Role in Heart Failure and Coronary Artery Disease. Heart Fail. Rev. 2017, 22, 889–902. [Google Scholar] [CrossRef] [PubMed]
- Burgeiro, A.; Fuhrmann, A.; Cherian, S.; Espinoza, D.; Jarak, I.; Carvalho, R.A.; Loureiro, M.; Patrício, M.; Antunes, M.; Carvalho, E. Glucose Uptake and Lipid Metabolism Are Impaired in Epicardial Adipose Tissue from Heart Failure Patients with or without Diabetes. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E550–E564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacobellis, G.; Barbaro, G. Epicardial Adipose Tissue Feeding and Overfeeding the Heart. Nutrition 2019, 59, 1–6. [Google Scholar] [CrossRef]
- Salgado-Somoza, A.; Teijeira-Fernández, E.; Rubio, J.; Couso, E.; González-Juanatey, J.R.; Eiras, S. Coronary Artery Disease Is Associated with Higher Epicardial Retinol-Binding Protein 4 (RBP4) and Lower Glucose Transporter (GLUT) 4 Levels in Epicardial and Subcutaneous Adipose Tissue. Clin. Endocrinol. 2012, 76, 51–58. [Google Scholar] [CrossRef]
- Gensini, G.G. A More Meaningful Scoring System for Determining the Severity of Coronary Heart Disease. Am. J. Cardiol. 1983, 51, 606. [Google Scholar] [CrossRef]
- Iacobellis, G.; Assael, F.; Ribaudo, M.C.; Zappaterreno, A.; Alessi, G.; Di Mario, U.; Leonetti, F. Epicardial Fat from Echocardiography: A New Method for Visceral Adipose Tissue Prediction. Obes. Res. 2003, 11, 304–310. [Google Scholar] [CrossRef]
- Hwang, J.-W.; Choi, U.-J.; Ahn, S.-G.; Lim, H.-S.; Kang, S.-J.; Choi, B.-J.; Choi, S.-Y.; Yoon, M.-H.; Hwang, G.-S.; Tahk, S.-J.; et al. Echocardiographic Plains Reflecting Total Amount of Epicardial Adipose Tissue as Risk Factor of Coronary Artery Disease. J. Cardiovasc. Ultrasound 2008, 16, 17. [Google Scholar] [CrossRef] [Green Version]
- Thalmann, S.; Juge-Aubry, C.E.; Meier, C.A. Explant Cultures of White Adipose Tissue. In Adipose Tissue Protocols; Yang, K., Ed.; Humana Press: Totowa, NJ, USA, 2008. [Google Scholar]
- Suga, H.; Matsumoto, D.; Inoue, K.; Shigeura, T.; Eto, H.; Aoi, N.; Kato, H.; Abe, H.; Yoshimura, K. Numerical Measurement of Viable and Nonviable Adipocytes and Other Cellular Components in Aspirated Fat Tissue. Plast. Reconstr. Surg. 2008, 122, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Steinhorn, B.; Sartoretto, J.L.; Sorrentino, A.; Romero, N.; Kalwa, H.; Dale Abel, E.; Michel, T. Insulin-Dependent Metabolic and Inotropic Responses in the Heart Are Modulated by Hydrogen Peroxide from NADPH-Oxidase Isoforms NOX2 and NOX. Free Radic Biol. Med. 2017, 113, 16–25. [Google Scholar] [CrossRef]
- Viswanadha, S.; Londos, C. Determination of Lipolysis in Isolated Primary Adipocytes BT—Adipose Tissue Protocols; Yang, K., Ed.; Humana Press: Totowa, NJ, USA, 2008; pp. 299–306. [Google Scholar]
- Fang, L.; Guo, F.; Zhou, L.; Stahl, R.; Grams, J. The Cell Size and Distribution of Adipocytes from Subcutaneous and Visceral Fat Is Associated with Type 2 Diabetes Mellitus in Humans. Adipocyte 2015, 4, 273–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haczeyni, F.; Bell-Anderson, K.S.; Farrell, G.C. Causes and Mechanisms of Adipocyte Enlargement and Adipose Expansion. Obes. Rev. 2018, 19, 406–420. [Google Scholar] [CrossRef] [PubMed]
- Tong, G.; Wang, N.; Leng, J.; Tong, X.; Shen, Y.; Yang, J.; Ye, X.; Zhou, L.; Zhou, Y. Common Variants in Adiponectin Gene Are Associated with Coronary Artery Disease and Angiographical Severity of Coronary Atherosclerosis in Type 2 Diabetes. Cardiovasc. Diabetol. 2013, 12, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kou, H.; Deng, J.; Gao, D.; Song, A.; Han, Z.; Wei, J.; Jin, X.; Ma, R.; Zheng, Q. Relationship among Adiponectin, Insulin Resistance and Atherosclerosis in Non-Diabetic Hypertensive Patients and Healthy Adults. Clin. Exp. Hypertens. 2018, 40, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, B.; Zhao, Y.; Zhang, Z. Prognostic Value of Adiponectin Level in Patients with Coronary Artery Disease: A Systematic Review and Meta-Analysis. Lipids Health Dis. 2019, 18, 227. [Google Scholar] [CrossRef] [Green Version]
- Amirzadegan, A.; Shakarami, A.; Borumand, M.A.; Davoodi, G.; Ghaffari-Marandi, N.; Jalali, A.; Mazurek, T.; Zhang, L.F.; Zalewski, A.; Mannion, J.D.; et al. Human Epicardial Adipose Tissue Is a Source of Inflammatory Mediators. Circulation 2003, 108, 2460–2466. [Google Scholar] [CrossRef] [Green Version]
- Maghbooli, Z.; Hossein-Nezhad, A. Transcriptome and Molecular Endocrinology Aspects of Epicardial Adipose Tissue in Cardiovascular Diseases: A Systematic Review and Meta-Analysis of Observational Studies. BioMed Res. Int. 2015. [Google Scholar] [CrossRef] [Green Version]
- Yun, K.H.; Rhee, S.J.; Yoo, N.J.; Oh, S.K.; Kim, N.-H.; Jeong, J.-W.; Park, D.-S.; Park, H.-Y. Relationship between the Echocardiographic Epicardial Adipose Tissue Thickness and Serum Adiponectin in Patients with Angina. J. Cardiovasc. Ultrasound 2009, 17, 121. [Google Scholar] [CrossRef]
- Vrselja, Z.; Šram, M.; Andrijevic, D.; Takač, B.; Lekšan, I.; Radić, R.; Curic, G. Transcardial Gradient of Adiponectin, Interleukin-6 and Tumor Necrosis Factor-α in Overweight Coronary Artery Disease Patients. Cytokine 2015, 76, 321–327. [Google Scholar] [CrossRef]
- Lima-Martínez, M.M.; López-Mendez, G.; Odreman, R.; Donis, J.H.; Paoli, M. Epicardial Adipose Tissue Thickness and Its Association with Adiponectin in Metabolic Syndrome Patients from Mérida, Venezuela. Arq. Bras. Endocrinol. Metabol. 2014, 58, 352–361. [Google Scholar] [CrossRef] [Green Version]
- Yañez-Rivera, T.G.; Baños-Gonzalez, M.A.; Ble-Castillo, J.L.; Torres-Hernandez, M.E.; Torres-Lopez, J.E.; Borrayo-Sanchez, G. Relationship between Epicardial Adipose Tissue, Coronary Artery Disease and Adiponectin in a Mexican Population. Cardiovasc. Ultrasound 2014, 12, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, T.; Yokota, T.; Shingu, Y.; Yamada, A.; Iba, Y.; Ujihira, K.; Wakasa, S.; Ooka, T.; Takada, S.; Shirakawa, R.; et al. Impaired Mitochondrial Oxidative Phosphorylation Capacity in Epicardial Adipose Tissue Is Associated with Decreased Concentration of Adiponectin and Severity of Coronary Atherosclerosis. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, T.; Kamon, J.; Minokoshi, Y.; Ito, Y.; Waki, H.; Uchida, S.; Yamashita, S.; Noda, M.; Kita, S.; Ueki, K.; et al. Adiponectin Stimulates Glucose Utilization and Fatty-Acid Oxidation by Activating AMP-Activated Protein Kinase. Nat. Med. 2002, 8, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Mao, X.; Wang, L.; Liu, M.; Wetzel, M.D.; Guan, K.-L.; Dong, L.Q.; Liu, F. Adiponectin Sensitizes Insulin Signaling by Reducing P70 S6 Kinase-Mediated Serine Phosphorylation of IRS-1. J. Biol. Chem. 2007, 282, 7991–7996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danielsson, A.; Öst, A.; Lystedt, E.; Kjolhede, P.; Gustavsson, J.; Nystrom, F.H.; Strålfors, P. Insulin Resistance in Human Adipocytes Occurs Downstream of IRS1 after Surgical Cell Isolation but at the Level of Phosphorylation of IRS1 in Type 2 Diabetes. FEBS J. 2005, 272, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Kataria, M.A.; Saini, V.; Yadav, A. Role of Leptin and Adiponectin in Insulin Resistance. Clin. Chim. Acta 2013, 417, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Somoza, A.; Teijeira-Fernández, E.; Fernández, Á.L.; González-Juanatey, J.R.; Eiras, S. Changes in Lipid Transport-Involved Proteins of Epicardial Adipose Tissue Associated with Coronary Artery Disease. Atherosclerosis 2012, 224, 492–499. [Google Scholar] [CrossRef]
- Barber, M.C.; Ward, R.J.; Richards, S.E.; Salter, A.M.; Buttery, P.J.; Vernon, R.G.; Travers, M.T. Ovine Adipose Tissue Monounsaturated Fat Content Is Correlated to Depot-Specific Expression of the Stearoyl-CoA Desaturase Gene. J. Anim. Sci. 2000, 78, 62–68. [Google Scholar] [CrossRef]
- Díaz-Rodríguez, E.; Agra, R.M.; Fernández, Á.L.; Adrio, B.; García-Caballero, T.; González-Juanatey, J.R.; Eiras, S. Effects of Dapagliflozin on Human Epicardial Adipose Tissue: Modulation of Insulin Resistance, Inflammatory Chemokine Production, and Differentiation Ability. Cardiovasc. Res. 2018, 114, 336–346. [Google Scholar] [CrossRef] [Green Version]
- Nyström, T.; Bodegard, J.; Nathanson, D.; Thuresson, M.; Norhammar, A.; Eriksson, J.W. Novel Oral Glucose-Lowering Drugs Are Associated with Lower Risk of All-Cause Mortality, Cardiovascular Events and Severe Hypoglycaemia Compared with Insulin in Patients with Type 2 Diabetes. Diabetes Obes. Metab. 2017, 19, 831–841. [Google Scholar] [CrossRef]
Parameters | Total Sample (n = 24) | Patients with Non-Hypertrophied EAT Adipocyte, (n = 12) | Patients with Hypertrophied EAT Adipocyte, (n = 12) | p |
---|---|---|---|---|
Gender (m/f) | 16/8 | 7/5 | 9/3 | 0.1 |
Age, years | 62 (53–72) | 62 (53–71) | 59 (55–72) | 0.64 |
History of myocardial infarction, n (%) | 9 (37.5%) | 5 (42%) | 4 (33%) | 0.1 |
Hypertension, n (%) | 24 (100%) | 12 (100%) | 12 (100%) | 1 |
Diabetes mellitus, n (%) | 7 (29.2%) | 3 (25%) | 4 (33%) | 0.9 |
Duration of hypertension, years | 15 (10; 21) | 15 (10; 20) | 20 (12; 23) | 0.3 |
Gensini score, points * | 70 (28; 99) | 32 (25.75; 78) | 82 (52.5; 140.75) | 0.024 |
Duration of CAD, years | 2 (1; 7) | 2 (1; 11) | 5 (2; 6) | 0.29 |
Systolic blood pressure, mmHg | 136 (127; 142) | 130 (123; 141) | 140(135; 144) | 0.38 |
Diastolic blood pressure, mmHg | 80 (73; 85) | 77.5 (70; 83) | 81 (74; 86) | 0.49 |
Smoking, n (%) | 11 (46%) | 6 (50%) | 5 (42%) | 0.1 |
Obesity, n (%) | 12 (50%) | 4 (33%) | 8 (66%) | 0.1 |
BMI, kg/m2 | 30 (27; 31) | 28.1 (25.5; 30.3) | 31.2 (29.8; 35.4) | 0.028 |
Waist circumference, cm | 104 (98; 110) | 100 (99; 105) | 109 (103; 117) | 0.0083 |
Waist-to-hip ratio | 1 (0.93; 1.04) | 1 (0.9; 1.02) | 1 (0.93; 1.09) | 0.21 |
Fat mass, kg | 30.55 (26.4; 37.4) | 27.7 (24.4; 36.7) | 30.7 (27.5; 38.1) | 0.53 |
Fat free mass, kg | 57.6 (47.1; 61.7) | 57.5 (47.1; 58.3) | 57.7 (47.0; 62.3) | 0.65 |
Skeletal muscle mass, kg | 26.3 (19.7; 28.7) | 24.3 (22.4; 27.2) | 26.8 (18.0; 29.2) | 0.82 |
EAT thickness, mm | 4.5 (4.1; 5.4) | 4.85(4.36; 5.6) | 4.35 (3.88; 4.9) | 0.22 |
EAT adipocytes size, μm | 86.9 (80.97; 89.31) | 80.96 (78.8; 85.75) | 89.31 (88.06; 90.39 | 0.000037 |
% EAT adipocytes >100 μm | 14 (9.32; 18.65) | 9.32 (5.91; 11.87) | 18.65 (16.08; 26.88) | 0.000014 |
Fasting glucose, mM | 5.7 (5.13; 6.13) | 5.25 (5.1; 5.65) | 5.98 (5.75; 7.3) | 0.046 |
Fasting insulin, μIU/mL | 5.7 (5.13; 6.13) | 8.22 (6.07; 9.15) | 4.95 (3.5; 5.38) | 0.0039 |
Postprandial glucose, mM | 7.1(5.7; 7.8) | 7.025 (5.7; 7.7) | 7.1 (5.7; 7.89) | 0.96 |
Postprandial insulin, μIU/mL | 15.45 (11.4; 21.17) | 14.13 (13.34; 18.1) | 16.76 (11.4; 21.17) | 0.87 |
Glycated hemoglobin, % | 6.35 (5.54; 6.92) | 6.7 (5.65; 7.32) | 5.91 (5.46; 6.5) | 0.10 |
HOMA-IR | 1.6 (1.15; 2.01) | 1.84 (1.43; 2.29) | 1.38 (0.76; 1.76) | 0.088 |
Total cholesterol, mM | 3.88 (3.25; 4.58) | 3.53 (3.1; 4.28) | 4.21 (3.71; 4.79) | 0.23 |
TG, mM | 1.35 (1.12; 1.58) | 1.24 (0.94; 1.41) | 1.44 (1.23; 1.85) | 0.078 |
HDL, mM | 1.04 (0.92; 1.21) | 1.0 (0.83; 1.18) | 1.06 (0.99; 1.36) | 0.20 |
LDL, mM | 2.11 (1.66; 2.55) | 2.0 (1.57; 2.63) | 2.25 (1.76; 2.55) | 0.62 |
Atherogenic index | 2.14 (1.5; 2.6) | 2.22 (1.36; 2.9) | 2.05 (1.52; 2.37) | 0.58 |
Parameters | Total Sample (n = 24) | Men (n = 16) | Women (n = 8) | p |
---|---|---|---|---|
Age, years | 62 (53–72) | 59 (53–71) | 63 (56–72) | 0,21 |
BMI, kg/m2 | 30 (27; 31) | 29 (26; 31) | 31 (30; 33) | 0.11 |
Waist circumference, cm | 104 (98; 110) | 107 (99; 112) | 101 (95; 107) | 0.35 |
Waist-to-hip ratio | 1 (0.93; 1.04) | 1.02 (0.96; 1.05) | 0.93 (0.91; 1.03) | 0.14 |
Fat mass, kg | 30.55 (26.4; 37.4) | 30.3 (26.4; 36.5) | 37.4 (28.5; 44.5) | 0.33 |
Fat free mass, kg | 57.6 (47.1; 61.7) | 58.95 (52.6; 62.05 | 44.2 (44.0; 51.0) | 0.025 |
Skeletal muscle mass, kg | 26.3 (19.7; 28.7) | 27.0 (23.35; 29.25 | 16.2 (15.10; 22.45) | 0.95 |
EAT adipocytes size, μm | 86.9 (80.97; 89.31) | 87.3 (82.55; 88.87) | 85.75 (80.10; 91.49) | 0.92 |
% EAT adipocytes >100 μm | 14 (9.32; 18.65) | 13.86 (9.84; 18.43) | 15.54 (8.16; 30.13) | 0.6 |
% EAT adipocytes <50 μm | 2.08 (0.84; 3.86) | 1.84 (0.99; 3.1) | 3.67 (0.43; 5.09) | 0.49 |
Gensini score, points | 70 (28; 99) | 71 (32; 123) | 35 (28; 82) | 0.31 |
EAT thickness, mm | 4.5 (4.1; 5.4) | 4.36 (4.0; 5.0) | 4.98 (4.5; 5.6) | 0.19 |
Fasting glucose, mM | 5.7 (5.1; 6.1) | 5.7 (5.1; 6.3) | 5.8 (5.4; 6.1) | 0.61 |
Fasting insulin, μIU/mL | 5.7 (5.13; 6.13) | 5.49 (3.56; 7.62) | 7.03 (5.01; 11.12) | 0.14 |
Postprandial glucose, mM | 7.1(5.7; 7.8) | 6.7 (5.7; 7.7) | 7.5 (6.8; 7.9) | 0.38 |
Postprandial insulin, μIU/mL | 15.45 (11.4; 21.17) | 14.13 (11.87; 21.17) | 16.76 (11.40; 17.12) | 0.95 |
Glycated hemoglobin, % | 6.35 (5.54; 6.92) | 5.8 (5.46; 6.8) | 6.69 (6.11; 9.09) | 0.17 |
HOMA-IR | 1.6 (1.15; 2.01) | 1.6 (0.76; 1.77) | 1.7 (1.27; 3.79) | 0.23 |
Total cholesterol, mM | 3.88 (3.25; 4.58) | 3.87 (3.12; 4.38) | 3.94 (3.58; 4.82) | 0.54 |
TG, mM | 1.35 (1.12; 1.58) | 1.32(1.14; 1.44) | 1.48 (1.01; 2.18) | 0.43 |
HDL, mM | 1.04 (0.92; 1.21) | 1.05 (0.96; 1.18) | 1.00 (0.87; 1.31) | 0.83 |
LDL, mM | 2.11 (1.66; 2.55) | 1.98 (1.62; 2.57) | 2.25 (1.93; 2.54) | 0.56 |
Atherogenic index | 2.14 (1.5; 2.6) | 2.03 (1.36; 2.8) | 2.24 (1.67; 2.39) | 0.6 |
Adiponectin, μg/mL | 7.25 (4.85; 9.91) | 7.64 (4.77; 10.07) | 6.70 (4.85; 9.92) | 0.73 |
Leptin, ng/mL | 17.49 (8.63; 27.01) | 11.33 (7.36; 17.49) | 40.25 (23.68; 67.58) | 0.0017 |
Adiponectin/leptin | 0.46 (0.17; 0.80) | 0.8 (0.37; 1.08) | 0.13 (0.08; 0.20) | 0.0077 |
Parameters | Total Sample (n = 24) | BMI < 25 (n = 3) | 25 < BMI < 30 (n = 9) | 30 < BMI < 35 (n = 8) | 35 < BMI < 40 (n = 4) |
---|---|---|---|---|---|
Age, years | 62 (53–72) | 59 (55–71) | 61 (53–67) | 63 (55–71) | 63 (57–72) |
BMI, kg/m2 | 30 (27; 31) | 24.6 (20.3; 24.7) | 28.1 (27.4; 29.1) *,&,‡ | 31.2 (30.8; 31.4) *,#,‡ | 37.6 (36.1; 39.5) *,#,& |
Waist circumference, cm | 104 (98; 110) | 98 (76; 100) | 102 (97; 106) | 109 (104; 110) | 119 (105; 120)* |
Waist-to-hip ratio | 1 (0.93; 1.04) | 1.02 (0.84; 1.02) | 0.94 (0.9; 0.98) | 1.04 (1.01; 1.08) | 0.95 (0.92; 1.02) |
EAT adipocytes size, μm | 87 (81; 89) | 87 (79; 87) | 85 (79; 88) | 87 (83; 89) | 90 (89; 92) |
% EAT adipocytes >100 μm | 14 (9.3; 18.7) | 12.3 (5.7; 18.2) | 11.4 (5.9; 15.2) | 13.9 (9.4; 17.9) | 26.9 (23.5; 30.1) *,# |
Gensini score, points | 70 (28; 99) | 110 (44; 156) | 28 (24.5; 121) | 69.5 (32; 73.5) | 62 (34.5; 146) |
EAT thickness, mm | 4.5 (4.1; 5.4) | 4.1 (3.5; 4.9) | 4.35 (4.0; 4.4) | 5.35 (4.60; 5.94) | 4.65 (4.18; 4.9) |
Fasting glucose, mM | 5.7 (5.1; 6.1) | 5.1 (4.3; 5.15) | 5.3 (5.1; 6.0) | 5.85 (5.55; 7.11) | 6.24 (5.79; 7.6) |
Fasting insulin, μIU/mL | 5.7 (5.13; 6.13) | 2.47 (1.85; 5.62) | 7.48 (4.98; 8.6) | 5.93 (4.97; 11.1) | 5.71 (4.97; 6.9) |
Postprandial glucose, mM | 7.1(5.7; 7.8) | 5.7 (4.9; 7.7) | 6.9 (5.7; 7.9) | 7.24 (5.58; 7.90) | 7.34 (7.3; 7.37) |
Postprandial insulin, μIU/mL | 15.45 (11.4; 21.17) | 18.1 (10.08; 20.1) | 13.59 (11.06; 32.31) | 15.62 (11.40; 41.67) | 14.32 (11.87; 16.76) |
Glycated hemoglobin, % | 6.35 (5.54; 6.92) | 5.65 (5.27; 7.32) | 6.07 (5.59; 6.43) | 6.8 (5.57; 9.09) | 6.5 (5.5; 6.8) |
HOMA-IR | 1.6 (1.15; 2.01) | 0.47 (0.42; 1.27) | 1.7 (1.15; 2.03) | 1.68 (1.38; 3.63) | 1.59 (1.28; 2.37) |
Total cholesterol, mM | 3.88 (3.25; 4.58) | 3.28 (3.22; 5.12) | 3.76 (3.58; 4.31) | 4.21 (2.68; 4.89) | 3.9 (3.03; 4.42) |
TG, mM | 1.35 (1.12; 1.58) | 1.37 (0.77; 1.45) | 1.27 (1.14; 1.50) | 1.43 (1.12; 2.01) | 1.49 (1.19; 1.72) |
HDL, mM | 1.04 (0.92; 1.21) | 1.09 (0.64; 1.18) | 1.04 (1.01; 1.36) | 0.9 (0.81; 1.26) | 1.06 (1.01; 1.15) |
LDL, mM | 2.11 (1.66; 2.55) | 1,95 (1.75; 3.36) | 2.04 (1.68; 2.42) | 2.13 (1.39; 2.56) | 2.27 (1.92; 2.48) |
Atherogenic index | 2.14 (1.5; 2.6) | 3,05 (1.48; 3.09) | 2,12 (1.24; 2.45) | 1.87 (1.37; 2.58) | 2.17 (1.84; 2.25) |
Adiponectin, μg/mL | 7.25 (4.85; 9.91) | 8.58 (6.26; 24.38) | 5.73 (4.6; 11.94) | 7.46 (4.85; 9.92) | 6.89 (6.14; 7.64) |
Leptin, ng/mL | 17.49 (8.63; 27.01) | 5.96 (1.52; 6.40) | 11.64 (8.63; 23.65) | 27.83 (16.74; 48.52) | 48.23 (20.72; 75.74) *,# |
Adiponectin/leptin | 0.46 (0.17; 0.80) | 1.34 (1.05; 1.04) | 0.56 (0.25; 0.8) | 0.18 (0.11; 0.46) | 0.23 (0.08; 0.37) |
Parameters | Total Sample (n = 24) | Patients with Non- Hypertrophied EAT Adipocyte (1) (n = 12) | Patients with Hypertrophied EAT Adipocyte (2) (n = 12) | p |
---|---|---|---|---|
* Gensini score, points | 69.5 (46.3; 138.3) | 55.28 (35.50; 78.58) | 121.52 (67.18; 162.69) | 0.05 |
# Serum adiponectin, μg/mL | 7.31 (5.73; 9.59) | 8.29 (7.31; 14.81) | 6.15 (5.40; 7.46) | 0.039 |
# Serum leptin, ng/mL | 17.47 (10.73; 22.35) | 17.47 (12.71; 20.78) | 18.11 (9.25; 40.38) | 0.69 |
# Serum adiponectin/leptin | 0.48 (0.25; 0.752) | 0.57 (0.48; 0.75) | 0.24 (0.14; 0.65) | 0.06 |
Fasting glucose, mM | 5.7 (5.13; 6.13) | 5.25 (5.1; 5.65) | 5.98 (5.75; 7.3) | 0.046 |
Fasting insulin, μIU/mL | 5.51 (4.78; 8.22) | 8.22 (6.07; 9.15) | 4.95 (3.5; 5.38) | 0.0039 |
Parameters | Regression Coefficient | p |
---|---|---|
Fasting glucose, mM | 11 | <0.0001 |
Fasting insulin, μIU/mL | −6.7 | <0.0001 |
Serum adiponectin, μg/mL | −4.05 | <0.0001 |
Gensini score, points | 0.0334 | 0.048 |
EAT Adipocytes Size | EAT Adipocytes Hypertrophy | |||
---|---|---|---|---|
Parameters | rs | p | rs | p |
BMI, kg/m2 | 0.45 | 0.028 | 0.59 | 0.002 |
Waist circumference, cm | 0.38 | 0.063 | 0.34 | 0.11 |
Hip circumference, cm | 0.41 | 0.049 | 0.51 | 0.01 |
Waist-to-hip ratio | 0.16 | 0.46 | 0.011 | 0.96 |
EAT thickness, mm | −0.33 | 0.11 | −0.30 | 0.16 |
* Gensini score, points | 0.56 | 0.00047 | 0.6 | 0.002 |
CAD duration, years | 0.29 | 0.16 | 0.25 | 0.23 |
Fasting glucose, mM | 0.43 | 0.034 | 0.43 | 0.037 |
Fasting insulin, μIU/mL | −0.37 | 0.076 | −0.23 | 0.28 |
Postprandial glucose, mM | 0.10 | 0.67 | 0.08 | 0.73 |
Postprandial insulin, μIU/mL | −0.25 | 0.32 | −0.12 | 0.63 |
Glycated hemoglobin, % | −0.13 | 0.59 | −0.07 | 0.78 |
HOMA-IR | −0.21 | 0.38 | −0.07 | 0.79 |
Total cholesterol, mM | 0.17 | 0.42 | 0.17 | 0.43 |
TG, mM | 0.34 | 0.11 | 0.3 | 0.15 |
HDL, mM | 0.20 | 0.35 | 0.18 | 0.40 |
LDL, mM | 0.11 | 0.61 | 0.12 | 0.57 |
Atherogenic index | −0.05 | 0.83 | −0.02 | 0.93 |
EAT Adipocyte Size | EAT Adipocyte Hypertrophy | Gensini Score | ||||
---|---|---|---|---|---|---|
Parameters | rs | p | rs | p | rs | p |
Serum adiponectin | −0.60 | 0.01 | −0.67 | 0.0029 | −0.81 | 0.00007 |
Serum leptin | 0.08 | 0.75 | 0.027 | 0.91 | 0.30 | 0.23 |
Serum adiponectin/leptin | −0.50 | 0.04 | −0.48 | 0.047 | −0.65 | 0.0044 |
Parameter | rs | p |
---|---|---|
Insulin-dependent ROS generation/Gensini score | −0.90 | 0.037 |
Insulin-dependent inhibition of lipolysis/Gensini score | −0.40 | 0.051 |
Insulin-dependent ROS generation/Fasting insulin | 0.90 | 0.037 |
Insulin-dependent ROS generation/Postprandial insulin | −0.90 | 0.037 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naryzhnaya, N.V.; Koshelskaya, O.A.; Kologrivova, I.V.; Kharitonova, O.A.; Evtushenko, V.V.; Boshchenko, A.A. Hypertrophy and Insulin Resistance of Epicardial Adipose Tissue Adipocytes: Association with the Coronary Artery Disease Severity. Biomedicines 2021, 9, 64. https://doi.org/10.3390/biomedicines9010064
Naryzhnaya NV, Koshelskaya OA, Kologrivova IV, Kharitonova OA, Evtushenko VV, Boshchenko AA. Hypertrophy and Insulin Resistance of Epicardial Adipose Tissue Adipocytes: Association with the Coronary Artery Disease Severity. Biomedicines. 2021; 9(1):64. https://doi.org/10.3390/biomedicines9010064
Chicago/Turabian StyleNaryzhnaya, Natalia V., Olga A. Koshelskaya, Irina V. Kologrivova, Olga A. Kharitonova, Vladimir V. Evtushenko, and Alla A. Boshchenko. 2021. "Hypertrophy and Insulin Resistance of Epicardial Adipose Tissue Adipocytes: Association with the Coronary Artery Disease Severity" Biomedicines 9, no. 1: 64. https://doi.org/10.3390/biomedicines9010064
APA StyleNaryzhnaya, N. V., Koshelskaya, O. A., Kologrivova, I. V., Kharitonova, O. A., Evtushenko, V. V., & Boshchenko, A. A. (2021). Hypertrophy and Insulin Resistance of Epicardial Adipose Tissue Adipocytes: Association with the Coronary Artery Disease Severity. Biomedicines, 9(1), 64. https://doi.org/10.3390/biomedicines9010064