
Statistical Plan Analysis 

Univariate analysis 

For each cytokine, we define a dummy variable indicating whether the level of the patient 

is above or below the optimal threshold to predict the binomial target UCI or Exitus 

following the criterion based on Youden's Index [1-3]. We calculate the odds ratio of each 

cytokine as the odds ratio of its dummy variable, with respect the binomial target UCI or 

Exitus. 

Multivariate analysis 

As highlighted in Levine and Renelt [4] and Sala-i-Martin [5], as soon as one starts 

combining multivariate regressions combining the various variables (cytokines, in our 

case), one finds out that a certain variable ݔ௜ is significant when the model includes ݔ௝ 

and ݔ௞, but it becomes non-significant when ݔ௭ is included. The problem, known as 

“Nothing is robust”, is exacerbated when the sample size is just one order of magnitude 

above the total number of explanatory variables. Since we don’t know a priori which are 

the “true” variables that should be included in the model, we are left with the question: 

what are the cytokines that are really correlated with fatal outcome of COVID-19 

patients? 

To answer this question, we follow a strategy based on the “extreme bounds” test [6,7] 

and the distribution test [5]. In short, given J potential explanatory variables, to test the 

robustness of the J-th variable, the “extreme bounds” test estimates all the potential 

models using the J-th variable and k other variables - ൫௃ିଵ
௞ ൯ models-. Each model provides 

an estimation of the interval of confidence of the parameter, ߚ௃,௠ ∓  ߬ଵିഀ
మ
 ௃,௠ߚ ௃,௠, whereߪ 

is the estimated value of the parameter corresponding to the J-th variable in the m 

model, ߪ௃,௠ its standard deviation, and ߬ଵିഀ
మ
 the value of the t-student distribution with N-



k degrees of freedom, for a signification α. If the interval of confidence built with the 

lowest lower bound and the highest upper bound is strictly positive or strictly negative, 

the variable is said to be robust.  That is, the J-th variable is said to be robust if it is 

statistically significant in all the models, and the parameter has always the same sign. The 

test is so strict that typically leads to non-robustness. Hence, a modification was suggested 

by Sala-i-Martin [5] to account for the distribution of the ൫௃ିଵ
௞ ൯ estimates of the parameter 

associated with the J-th variable. Instead of having a binary answer to the robustness 

problem, a level of confidence in the robustness of the parameter is given, based on the 

distribution of the estimates.  

In our case, the target is a binomial variable that equals 1 if the patient was an “Exitus” 

or treated in an ICU. We fix an explanatory variable that consists of a risk score based on 

historical records and oxygen saturation. The score was estimated using the EM-7 model 

by Alvarez-Mon et al. [8], which was trained using a population of 3.247 COVID-19 

patients in Spain, and achieved and AUC of 78,41%. The risk score alone has an AUC of 

81,13% on the selected 287 patients of these analysis. On top of the risk score, we let 

each model to introduce three cytokines at the same time. Hence, ൫ே
ଷ൯ models will be built, 

where ܰ is the number of selected cytokines. 

We introduce two modifications to the distribution test approach. First, we use Bayesian 

logistic models, where no fixed distribution is assumed on the parameters (GLM 

estimation assumes normal distribution). Low sample size can lead to less robust 

estimations of parameters and standard errors, thus compromising the GLM significance 

test, which relies on asymptotic properties of the estimators [9] We perform the Bayesian 

estimation using the brms package available in R [10] and using no prior to avoid 

introducing any bias. 



Second, apart from the signification, we estimate the marginal contribution that each 

variable has in the output of the models. We estimate the relative importance of each 

variable included in the model using SHAP (SHapley Additive ExPlanation) values 

[29,30]. Given an observation ݔ = ,ଵݔ) … ,  ௃), the SHAP value of feature j on instance xݔ

corresponds to the modification that the concrete value of feature j on x makes to the 

output of the model, with respect to other instances that share some features with x but 

not j. For a parametric model (ݔ)ܨ =  ݃(∑ ௝௝ݔ௝ߙ ), where ݃ is a function of the weighted 

features of x, the SHAP value corresponds to: ߮௝(ݔ) = ௝ݔ)௝ߙ  − ൫ܧ ௝ܺ൯) where X is the 

set of observations and ܧ( ௝ܺ) is the average value of the j feature on X. Then, noting as n 

the total number of observations, we can estimate the relative importance of feature j in 

the model as: 

 

(݆)ܫܴ =  
∑ |߮௝(ݔ௜)|௡

௜ୀଵ

∑ ∑ |߮௞(ݔ௜)|௡
௜ୀଵ

௃
௞ୀଵ

 

Formula 1. Relative importance 

The average contribution of a cytokine is defined as the AUC gain attributable to the 

cytokine, with respect a model that consists only of the risk score based on medical record 

and oxygen saturation. Noting by ݔ௖ଵ, ,௖ଶݔ  ,௖ଷ the three cytokines included in a model mݔ

and by ݔ௥ the risk score, the AUC gain of ݔ௖ଵ is: 

(௖ଵݔ)݊݅ܽ݃ܥܷܣ =  
(௖ଵݔ)ܫܴ

(௖ଵݔ)ܫܴ + (௖ଶݔ)ܫܴ + (௖ଷݔ)ܫܴ (݉)ܥܷܣ) −  ((௥ݔ)ܥܷܣ

Formula 2. Individual AUC gain. 
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