MiRNAs as New Tools in Lesion Vitality Evaluation: A Systematic Review and Their Forensic Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saukko, P.; Knight, B. Knight’s Forensic Pathology, 4th ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Grellner, W.; Georg, T.; Wilske, J. Quantitative analysis of proinflammatory cytokines (IL-1beta, IL-6, TNF-alpha) in human skin wounds. Forensic Sci. Int. 2000, 113, 251–264. [Google Scholar] [CrossRef]
- Bonelli, A.; Bacci, S.; Norelli, G.A. Affinity cytochemistry analysis of mast cells in skin lesions: A possible tool to assess the timing of lesions after death. Int. J. Legal. Med. 2003, 117, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Casse, J.M.; Martrille, L.; Vignaud, J.M.; Gauchotte, G. Skin wounds vitality markers in forensic pathology: An updated review. Med. Sci. Law. 2016, 56, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Oehmichen, M. Vitality and time course of wounds. Forensic Sci. Int. 2004, 144, 221–231. [Google Scholar] [CrossRef]
- Langlois, N.E.; Gresham, G.A. The ageing of bruises: A review and study of the colour changes with time. Forensic Sci. Int. 1991, 50, 227–238. [Google Scholar] [CrossRef]
- Balandiz, H.; Pehlivan, S.; Çiçek, A.F.; Tuğcu, H. Evaluation of Vitality in the Experimental Hanging Model of Rats by Using Immunohistochemical IL-1β Antibody Staining. Am. J. Forensic Med. Pathol. 2015, 36, 317–322. [Google Scholar] [CrossRef]
- Focardi, M.; Puliti, E.; Grifoni, R.; Palandrini, M.; Bugelli, V.; Pinchi, V.; Norelli, G.A.; Bacci, S. Immunohistochemical localization of Langerhans cells as a tool for vitality in -hanging mark wounds: A pilot study. Aust. J. Forensic Sci. 2019, 52, 393–405. [Google Scholar] [CrossRef]
- Ishida, Y.; Kuninaka, Y.; Nosaka, M.; Shimada, E.; Hata, S.; Yamamoto, H.; Hashizume, Y.; Kimura, A.; Furukawa, F.; Kondo, T. Forensic application of epidermal AQP3 expression to determination of wound vitality in human compressed neck skin. Int. J. Legal. Med. 2018, 132, 1375–1380. [Google Scholar] [CrossRef]
- Turillazzi, E.; Vacchiano, G.; Luna-Maldonado, A.; Neri, M.; Pomara, C.; Rabozzi, R.; Riezzo, I.; Fineschi, V. Tryptase, CD15 and IL-15 as reliable markers for the determination of soft and hard ligature marks vitality. Histol. Histopathol. 2010, 25, 1539–1546. [Google Scholar] [PubMed]
- De Matteis, A.; dell’Aquila, M.; Maiese, A.; Frati, P.; La Russa, R.; Bolino, G.; Fineschi, V. The Troponin-I fast skeletal muscle is reliable marker for the determination of vitality in the suicide hanging. Forensic Sci. Int. 2019, 301, 284–288. [Google Scholar] [CrossRef]
- Pérez, I.L.; Falcón, M.; Gimenez, M.; Diaz, F.M.; Pérez-Cárceles, M.D.; Osuna, E.; Nuno-Vieira, D.; Luna, A. Diagnosis of Vitality in Skin Wounds in the Ligature Marks Resulting From Suicide Hanging. Am. J. Forensic Med. Pathol. 2017, 38, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, J.; Sen, S. MicroRNA as Biomarkers and Diagnostics. J. Cell. Physiol. 2016, 231, 25–30. [Google Scholar] [CrossRef]
- Maiese, A.; Scatena, A.; Costantino, A.; Di Paolo, M.; La Russa, R.; Turillazzi, E.; Frati, P.; Fineschi, V. MicroRNAs as Useful Tools to Estimate Time Since Death. A Systematic Review of Current Literature. Diagnostics 2021, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- Rocchi, A.; Chiti, E.; Maiese, A.; Turillazzi, E.; Spinetti, I. MicroRNAs: An Update of Applications in Forensic Science. Diagnostics 2020, 11, 32. [Google Scholar] [CrossRef]
- Lyu, H.P.; Cheng, M.; Liu, J.C.; Ye, M.Y.; Xu, D.; He, J.T.; Xie, X.L.; Wang, Q. Differentially expressed microRNAs as potential markers for vital reaction of burned skin. Forensic Sci. Med. 2018, 4, 135–141. [Google Scholar]
- Ibrahim, S.F.; Ali, M.M.; Basyouni, H.; Laila, A.; Rashed, E.; Amer, A.E.; Abd El-Kareem, D. Histological and miRNAs postmortem changes in incisional wound. Egypt J. Forensic Sci. 2019, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Neri, M.; Fabbri, M.; D’Errico, S.; Di Paolo, M.; Frati, P.; Gaudio, R.M.; La Russa, R.; Maiese, A.; Marti, M.; Pinchi, E.; et al. Regulation of miRNAs as new tool for cutaneous vitality lesions demonstration in ligature marks in deaths by hanging. Sci. Rep. 2019, 9, 20011. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ. 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Bertero, T.; Gastaldi, C.; Bourget-Ponzio, I.; Imbert, V.; Loubat, A.; Selva, E.; Busca, R.; Mari, B.; Hofman, P.; Barbry, P.; et al. miR-483-3p controls proliferation in wounded epithelial cells. FASEB J. 2011, 25, 3092–3105. [Google Scholar] [CrossRef]
- Cao, G.; Chen, B.; Zhang, X.; Chen, H. Human Adipose-Derived Mesenchymal Stem Cells-Derived Exosomal microRNA-19b Promotes the Healing of Skin Wounds Through Modulation of the CCL1/TGF-β Signaling Axis. Clin. Cosmet. Investig. Dermatol. 2020, 13, 957–971. [Google Scholar] [CrossRef]
- Etich, J.; Bergmeier, V.; Pitzler, L.; Brachvogel, B. Identification of a reference gene for the quantification of mRNA and miRNA expression during skin wound healing. Connect. Tissue. Res. 2017, 58, 196–207. [Google Scholar] [CrossRef]
- He, L.; Zhu, C.; Jia, J.; Hao, X.Y.; Yu, X.Y.; Liu, X.Y.; Shu, M.G. ADSC-Exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/β-catenin pathway. Biosci. Rep. 2020, 40, BSR20192549. [Google Scholar] [CrossRef]
- Jiang, Z.; Wei, J.; Yang, W.; Li, W.; Liu, F.; Yan, X.; Yan, X.; Hu, N.; Li, J. MicroRNA-26a inhibits wound healing through decreased keratinocytes migration by regulating ITGA5 through PI3K/AKT signaling pathway. Biosci. Rep. 2020, 40, BSR20201361. [Google Scholar] [CrossRef]
- Jin, Y.; Tymen, S.D.; Chen, D.; Fang, Z.J.; Zhao, Y.; Dragas, D.; Dai, Y.; Marucha, P.T.; Zhou, X. MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing. PLoS ONE 2013, 8, e64434. [Google Scholar] [CrossRef]
- Lang, H.; Zhao, F.; Zhang, T.; Liu, X.; Wang, Z.; Wang, R.; Shi, P.; Pang, X. MicroRNA-149 contributes to scarless wound healing by attenuating inflammatory response. Mol. Med. Rep. 2017, 16, 2156–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.; Halilovic, A.; Yue, P.; Bellner, L.; Wang, K.; Wang, L.; Zhang, C. Inhibition of miR-205 impairs the wound-healing process in human corneal epithelial cells by targeting KIR4.1 (KCNJ10). Investig. Ophthalmol. Vis. Sci. 2013, 54, 6167–6178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; He, Q.; Luo, C.; Qian, L. Differentially expressed miRNAs in acute wound healing of the skin: A pilot study. Medicine 2015, 94, 458. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shu, B.; Zhou, Z.; Xu, Y.; Liu, Y.; Wang, P.; Xiong, K.; Xie, J. Involvement of miRNA203 in the proliferation of epidermal stem cells during the process of DM chronic wound healing through Wnt signal pathways. Stem. Cell Res. Ther. 2020, 11, 348. [Google Scholar] [CrossRef]
- Long, S.; Zhao, N.; Ge, L.; Wang, G.; Ran, X.; Wang, J.; Su, Y.; Wang, T. MiR-21 ameliorates age-associated skin wound healing defects in mice. J. Gene Med. 2018, 20, e3022. [Google Scholar] [CrossRef]
- Pastar, I.; Khan, A.A.; Stojadinovic, O.; Lebrun, E.A.; Medina, M.C.; Brem, H.; Kirsner, R.S.; Jimenez, J.J.; Leslie, C.; Tomic-Canic, M. Induction of specific microRNAs inhibits cutaneous wound healing. J. Biol. Chem. 2012, 287, 29324–29335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viticchiè, G.; Lena, A.M.; Cianfarani, F.; Odorisio, T.; Annicchiarico-Petruzzelli, M.; Melino, G.; Candi, E. MicroRNA-203 contributes to skin re-epithelialization. Cell Death Dis. 2012, 3, e435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Feng, Y.; Sun, H.; Zhang, L.; Hao, L.; Shi, C.; Wang, J.; Li, R.; Ran, X.; Su, Y.; et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing process. Am. J. Pathol. 2012, 181, 1911–1920. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, J.; Guo, S.L.; Fan, K.J.; Li, J.; Wang, Y.L.; Teng, Y.; Yang, X. miR-21 promotes keratinocyte migration and re-epithelialization during wound healing. Int. J. Biol. Sci. 2011, 7, 685–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Peng, H.; Ruan, Q.; Fatima, A.; Getsios, S.; Lavker, R.M. MicroRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2. FASEB J. 2010, 24, 3950–3959. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Cheng, M.; Xu, J.; Chen, L.; Li, J.; Li, Q.; Xie, X.; Wang, Q. MiR-711 and miR-183-3p as potential markers for vital reaction of burned skin. Forensic Sci. Res. 2020. [Google Scholar] [CrossRef]
- Pinchi, E.; Frati, A.; Cantatore, S.; D’Errico, S.; La Russa, R.; Maiese, A.; Palmieri, M.; Pesce, A.; Viola, R.V.; Frati, P.; et al. Acute Spinal Cord Injury: A Systematic Review Investigating miRNA Families Involved. Int. J. Mol. Sci. 2019, 20, 1841. [Google Scholar] [CrossRef] [Green Version]
- Pinchi, E.; Frati, P.; Aromatario, M.; Cipolloni, L.; Fabbri, M.; La Russa, R.; Maiese, A.; Neri, M.; Santurro, A.; Scopetti, M.; et al. miR-1, miR-499 and miR-208 are sensitive markers to diagnose sudden death due to early acute myocardial infarction. J. Cell. Mol. Med. 2019, 23, 6005–6016. [Google Scholar] [CrossRef] [Green Version]
- Manetti, A.C.; Maiese, A.; Di Paolo, M.; De Matteis, A.; La Russa, R.; Turillazzi, E.; Frati, P.; Fineschi, V. MicroRNAs and Sepsis-Induced Cardiac Dysfunction: A Systematic Review. Int. J. Mol. Sci. 2020, 22, 321. [Google Scholar] [CrossRef]
- Chiti, E.; Di Paolo, M.; Turillazzi, E.; Rocchi, A. MicroRNAs in Hypertrophic, Arrhythmogenic and Dilated Cardiomyopathy. Diagnostics 2021, 11, 1720. [Google Scholar] [CrossRef]
- Tahamtan, A.; Teymoori-Rad, M.; Nakstad, B.; Salimi, V. Anti-Inflammatory MicroRNAs and Their Potential for Inflammatory Diseases Treatment. Front. Immunol. 2018, 9, 1377. [Google Scholar] [CrossRef] [Green Version]
- Marques-Rocha, J.L.; Samblas, M.; Milagro, F.I.; Bressan, J.; Martínez, J.A.; Marti, A. Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J. 2015, 29, 3595–3611. [Google Scholar] [CrossRef] [Green Version]
- Brudecki, L.; Ferguson, D.A.; McCall, C.E.; El Gazzar, M. MicroRNA-146a and RBM4 form a negative feed-forward loop that disrupts cytokine mRNA translation following TLR4 responses in human THP-1 monocytes. Immunol. Cell Biol. 2013, 91, 532–540. [Google Scholar] [CrossRef]
- Sessa, F.; Salerno, M.; Bertozzi, G.; Cipolloni, L.; Messina, G.; Aromatario, M.; Polo, L.; Turillazzi, E.; Pomara, C. miRNAs as Novel Biomarkers of Chronic Kidney Injury in Anabolic-Androgenic Steroid Users: An Experimental Study. Front. Pharmacol. 2020, 11, 563756. [Google Scholar] [CrossRef]
- Chang, R.; Yi, S.; Tan, X.; Huang, Y.; Wang, Q.; Su, G.; Zhou, C.; Cao, Q.; Yuan, G.; Kijlstra, A.; et al. MicroRNA-20a-5p suppresses IL-17 production by targeting OSM and CCL1 in patients with Vogt-Koyanagi-Harada disease. Br. J. Ophthalmol. 2018, 102, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Pasparakis, M. Regulation of tissue homeostasis by NF-kappaB signalling: Implications for inflammatory diseases. Nat. Rev. Immunol. 2009, 9, 778–788. [Google Scholar] [CrossRef]
- Balkwill, F. TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev. 2006, 25, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Pullen, N.; Thomas, G. The modular phosphorylation and activation of p70s6k. FEBS Lett. 1997, 410, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Suwa, A.; Kurama, T.; Shimokawa, T. SHIP2 and its involvement in various diseases. Expert Opin. Ther. Targets 2010, 14, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Liu, X.; Kolokythas, A.; Yu, J.; Wang, A.; Heidbreder, C.E.; Shi, F.; Zhou, X. Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma. Int. J. Cancer 2010, 127, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Su, N.; Qiu, H.; Chen, Y.; Yang, T.; Yan, Q.; Wan, X. miR-205 promotes tumor proliferation and invasion through targeting ESRRG in endometrial carcinoma. Oncol. Rep. 2013, 29, 2297–2302. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X. miR-122-5p promotes aggression and epithelial-mesenchymal transition in triple-negative breast cancer by suppressing charged multivesicular body protein 3 through mitogen-activated protein kinase signaling. J. Cell. Physiol. 2020, 235, 2825–2835. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.H.; Caricilli, A.M.; de Abreu, L.L.; Araújo, E.P.; Pelegrinelli, F.F.; Thirone, A.C.; Tsukumo, D.M.; Pessoa, A.F.; dos Santos, M.F.; de Moraes, M.A.; et al. Topical insulin accelerates wound healing in diabetes by enhancing the AKT and ERK pathways: A double-blind placebo-controlled clinical trial. PLoS ONE 2012, 7, e36974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Z.; Chi, Y.J.; Lin, G.Q.; Luo, S.H.; Jiang, Q.Y.; Chen, Y.K. MiRNA-26a promotes angiogenesis in a rat model of cerebral infarction via PI3K/AKT and MAPK/ERK pathway. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 3485–3492. [Google Scholar] [PubMed]
- Eniafe, J.; Jiang, S. MicroRNA-99 family in cancer and immunity. Wiley Interdiscip. Rev. RNA 2021, 12, e1635. [Google Scholar] [CrossRef]
- Clevers, H.; Nusse, R. Wnt/β-catenin signaling and disease. Cell 2012, 149, 1192–1205. [Google Scholar] [CrossRef] [Green Version]
- Gorostizaga, A.; Brion, L.; Maloberti, P.; Cornejo Maciel, F.; Podestá, E.J.; Paz, C. Heat shock triggers MAPK activation and MKP-1 induction in Leydig testicular cells. Biochem. Biophys. Res. Commun. 2005, 327, 23–28. [Google Scholar] [CrossRef]
- Song, B.; Wang, C.; Liu, J.; Wang, X.; Lv, L.; Wei, L.; Xie, L.; Zheng, Y.; Song, X. MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. J. Exp. Clin. Cancer Res. 2010, 29, 29. [Google Scholar] [CrossRef] [Green Version]
- Manetti, A.C.; Baronti, A.; Bosetti, C.; Costantino, A.; Di Paolo, M.; Turillazzi, E.; Maiese, A. Bleeding varicose veins’ ulcer as a cause of death: A case report and review of the current literature. Clin. Ter. 2021, 172, 395–406. [Google Scholar]
- Whyte, J.L.; Smith, A.A.; Helms, J.A. Wnt signaling and injury repair. Cold. Spring Harb. Perspect. Biol. 2012, 4, a008078. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, L.; Shi, C.; Sun, H.; Wang, J.; Li, R.; Zou, Z.; Ran, X.; Su, Y. TGF-β-induced miR-21 negatively regulates the antiproliferative activity but has no effect on EMT of TGF-β in HaCaT cells. Int. J. Biochem. Cell Biol. 2012, 44, 366–376. [Google Scholar] [CrossRef]
- Vanbokhoven, H.; Melino, G.; Candi, E.; Declercq, W. p63, a story of mice and men. J. Investig. Dermatol. 2011, 131, 1196–1207. [Google Scholar] [CrossRef] [PubMed]
- Bonni, A.; Brunet, A.; West, A.E.; Datta, S.R.; Takasu, M.A.; Greenberg, M.E. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 1999, 286, 1358–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grellner, W.; Madea, B. Demands on scientific studies: Vitality of wounds and wound age estimation. Forensic Sci. Int. 2007, 165, 150–154. [Google Scholar] [CrossRef]
- Grellner, W.; Vieler, S.; Madea, B. Transforming growth factors (TGF-alpha and TGF-beta1) in the determination of vitality and wound age: Immunohistochemical study on human skin wounds. Forensic Sci. Int. 2005, 153, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Madea, B.; Doberentz, E.; Jackowski, C. Vital reactions—An updated overview. Forensic Sci. Int. 2019, 305, 110029. [Google Scholar] [CrossRef] [PubMed]
- Courts, C.; Madea, B. Micro-RNA—A potential for forensic science? Forensic Sci. Int. 2010, 203, 106–111. [Google Scholar] [CrossRef]
References | N. Cases | Model | Cells and/or Animals | Kind of Lesions | Controls | miRNAs | miRNAs Expression | Performed Analysis | RNA Isolation/cDNA Synthesis |
---|---|---|---|---|---|---|---|---|---|
Bertero et al., 2011 [21] | 6 | In vitro + in vivo | NHKs, HaCat + Mice | Scratch wound + Excisional wound | Normal skin | miR-483-3p | ↑ 3d after injury infliction Peak: 6–7 days Normalization: at day 10 In epidermis (PM) | H + IHC + WB + RT-PCR | TRIzol reagent/NP |
Cao et al., 2020 [22] | 15 | In vitro + in vivo | HaCaT, HSF + Mice | H2O2-induced wound + Excisional wound | Normal skin | miR-19b | ↓ In epidermis if ↑ H2O2 | H + IHC + WB + RT-PCR | TRIzol reagent/NP |
Etich et al., 2017 [23] | 15 | In vivo | Mice | Excisional wound | Normal skin | miR-204 | ↓ from day 5 to day 10 | H + RT-PCR | miRNeasy mini kit/miScript II RT kit |
miR-205 | ↓ from day 1 to day 7 | ||||||||
miR-31 | ↑ In epidermis from day 5 to 14 after injury infliction (PM samples) | ||||||||
He et al., 2020 [24] | NS | In vitro | HADSCs exosome, MALAT1 knockdown HaCaT and HSF | H2O2 induced scratch wound | Normal HaCaT and HSF | miR-124 | ↓ In epidermis if ↑ H2O2 | WB + RT-PCR | TRIzol reagent/cDNA Synthesis SuperMix |
Ibrahim et al., 2019 [18] | 18 | In vivo | Rats | Incisional wound | Normal skin | miR-205, miR-21 | No statistical significance In epidermis 0, 24, and 48 h after death | H + RT-PCR | mirVana PARIS kit/NP |
Jiang et al., 2020 [25] | 3 | In vitro | TGF-β1-treated HaCaT | Scratch wound | HaCaT | miR-26a | ↓ In keratinocytes | WB + RT-PCR | EZ-Magna RIP kit/miScript II RT kit |
Jin et al., 2013 [26] | 5 | In vivo + in vitro | HaCaT + Mice | Scratch wound + Excisional wound | Normal skin | miR-152, miR-365, miR-125a/b-5p, miR-181d, miR-99, miR-100, miR-30c | ↓ In keratinocytes Peak: day 1 Normalization: day 5 | WB + RT-PCR | TRIzol reagent/CyQUANT assay |
Lang et al., 2017 [27] | 9 | In vitro + In vivo | HaCaT, HSF + Rats | Scratch wound + Excisional wound | No- TNFα-exposed cells | miR-149 | ↓ In epidermis | H + IHC + WB | mirVana miRNA isolation kit/NP |
Lin et al., 2013 [28] | NS | In vitro | HCECs and HEKs | Scratch wound | Normal miR-16 levels | miR-205 | ↑ In corneal epithelial cells 24h after incision | WB + RT-PCR | TRIzol reagent/cDNA Synthesis SuperMix |
Li et al., 2015 [29] | 9 | In vivo | Human (surgical samples) | Hypertrophic scar | Normal skin | miR-149, miR-203a, miR-222, miR-122 | ↓ In epidermis | ISH | miRcute RNA Isolation kit/NP |
Liu et al., 2020 [30] | 24 | In vivo | Rats and DM rats | Excisional wound | No-diabetic rats | mir-203 | ↓ Over the course of the first 4 days in non-diabetic rats, over the course of the first 6 days in DM rats, in epidermis, dermis, and subcutaneous fat | H + IHC+ IHF + WB + RT-PCR | TRIzol rea-gent/RevertAid H minus first-strand cDNA synthesis kit |
Lyu et al., 2018 [17] | 22 | In vivo | Mice | Burned skin | Normal skin | miR-135a-1-3p miR-183-3p miR-188-5p miR-3081-5p miR-5103 miR-6378 miR-6385 miR-6391 miR-6769b-5p miR-6969-5p miR-7005-5p miR-7036a-5p miR-7044-5p miR-710 miR-711 miR-7118-5p miR-7668-3p miR-8090 mmu-miR-874-3p | ↑ | H + RT-PCR | NS/PrimeScript RT reagent |
miR-155-5p miR-28a-3p miR-467b-3p miR-5132-5p miR-6924-3p | ↓ | ||||||||
Long et al., 2018 [31] | NS | In vivo | miR-21 knock-in mice | Excisional wound | Normal skin | miR-21 | ↑ | H + MP + ISH + RT-PCR | TaqMan microR-NA assay kit/NP |
Neri et al., 2019 [19] | 64 | Autopsy casuistry | Human | Ligature marks | Normal skin | miR125a/b-5p miR130a-3p miR214-3p miR92a-3p | ↑ | H + IHC + RT-PCR | miScript miRNA PCR Array- Human Cell Differentiation/miScript II RT Kit |
Pastar et al., 2012 [32] | 21 | In vivo + in vitro | HEK, HSF + Rats (6) + Humans (15) | Chronic ulcers + Excisional wound | Normal skin | miR-16, miR-20a, miR-21, miR-106a, miR-130a, miR-203 | ↑ In epidermis (miR-21: in epidermis, dermis, and blood vessels) | H + ISH + WB + RT-PCR | TaqMan Mi-croRNA As-says/NP |
Viticchiè et al., 2012 [33] | NS | In vitro + in vivo | HEK and MEK + Mice | Excisional wound | Normal skin | miR-203 | ↑ In epidermis surrounding the wound and wound margin ↓ In keratinocytes at the migratory front (day 3 and 5 after wounding) | H + ISH + WB + RT-PCR | mirVana miRNA isolation kit/NP |
Wang et al., 2012 [34] | NS | In vivo | Mice | Excisional wound | Normal skin | miR-31, miR-21, miR-203 | ↑ In epithelial cells | H + IHC + ISH + RT-PCR | TaqMan Mi-croRNA As-says/NP |
miR-249 | ↓ (day 7 after wounding) | ||||||||
Yang et al., 2011 [35] | 9 | In vivo | Mice | Excisional wound | miR-21 knockdown mice | miR-21 | ↑ In epidermis after 0, 1, 2 and 3 days | H + IHC + IHF + RT-PCR | NS/NS |
Yu et al., 2010 [36] | NS | In vitro | HCECs and HEKs (miR-205 and miR-184 downregulated) | Scratch wound | Normal cells | miR-205, miR-184 | ↑ In epithelial cells | IHC + PCM + WB | Quik-Change Site-Directed Muta-genesis kit/NP |
Zhang et al., 2020 [37] | 35 | In vivo + autopsy cases | Mice (9) + autoptic human samples (26) | Excisional wound in burned skin | Mice unburned skin + mice PM burned skin | miR-711, miR-183-3p | ↑ 48 h after excision in human burned skin (PM samples), 120 h in mice burned skin (AM samples) | RT-PCR | NS/PrimeScript RT reagent kit |
Tot: 20 articles | Tot: 255 (at least) | Tot: 51 different miRNAs |
Study’s Characteristics | N. of Studies (Tot. 20) | References | ||
---|---|---|---|---|
Model | In Vivo | 8 | [17,18,23,29,30,31,34,35] | |
In Vitro | 4 | [24,25,28,36] | ||
In Vivo + In Vitro | 6 | [21,22,26,27,32,33] | ||
Human samples | Autoptic | 2 | [19,37] | |
Surgical | 1 | [29] | ||
Type of lesion * | Excisional wound | 10 | [21,22,23,26,27,30,31,33,34,35] | |
Incisional wound | 1 | [18] | ||
Burned skin | 1 | [37] | ||
Ligature mark | 1 | [19] | ||
Chronic ulcer | 1 | [32] | ||
Hypertrophic scar | 1 | [29] | ||
Performed analysis | RT-PCR | 17 | [17,18,19,21,22,23,24,25,26,28,30,31,32,33,34,35,37] | |
Histology (HE) | 13 | [18,19,21,22,23,24,27,30,31,32,33,34,35] | ||
WB | 11 | [21,22,24,25,26,27,28,30,32,33,36] | ||
IHC | 8 | [19,21,22,27,30,34,35,36] | ||
ISH | 5 | [29,31,32,33,34] | ||
IHF | 2 | [30,35] | ||
MP | 1 | [31] | ||
PMC | 1 | [36] |
miRNAs | Target Genes and/or Proteins | References |
---|---|---|
miR19-b | CCL1, TGFβ | [22] |
miR-21 | Factor 3, vinculin, LepR, EGR3, Collagen, TGF-β, TIMP3, TIAM1, TP53 | [29,32,34,35] |
miR-26a | ITGA5, PI3K/ AKT, SMAD1, GSK3β | [25] |
miR-30c | PI3K/AKT, mTOR, IGF1R | [26] |
miR-31 | IL-1b, PTPRC/CD45, SHIP2, RNU6B, Col1a1 | [23] |
miR-99 | PI3K/AKT, mTOR, IGF1R | [26] |
miR-100 | PI3K/AKT, mTOR, IGF1R | [26] |
miR-122 | MAPK, lysosome, insulin signaling pathway, focal adhesion | [29] |
miR-125a-5p, miR-125b-5p | PI3K/AKT, mTOR, IGF1R | [26] |
miR-130a | EGR3 | [32] |
miR-149 | IL-1a, IL-1b, IL-6, TGF-β3, collagen III, Nf-Kb, RelB, Rel, MAPK | [27,29] |
miR-152 | PI3K/AKT, mTOR, IGF1R | [26] |
miR-181d | PI3K/AKT, mTOR, IGF1R | [26] |
miR-184 | SHIP2, PI3K-Akt, actin filaments, p-cofilin (via Rho) | [36] |
miR-203 | MAPK, lysosome, insulin signaling pathway, focal adhesion, K15, P63, integrin-β1, TCF-4, ID-2, CD44, VEGFA, NRCAM, C-MET, Wnt, Notch, Factor 3, vinculin, LepR, EGR3, p63, LASP1, RAN, RAPH1 | [29,30,32,33] |
miR-204 | IL-1b, PTPRC/CD45, SHIP2, RNU6B, Col1a1 | [23] |
miR-205 | IL-1b, PTPRC/CD45, SHIP2, RNU6B, Col1a1, KCNJ10, SHIP2, PI3K-Akt, actin filaments, p-cofilin (via Rho), p-ERM | [23,28,36] |
miR-222 | DDK2, AXIN2, FRAT2, MAPK | [29] |
miR-365 | PI3K/AKT, mTOR, IGF1R | [26] |
miR-483-3p | MK2, YAP1, ASH2, MKI67 | [21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manetti, A.C.; Maiese, A.; Baronti, A.; Mezzetti, E.; Frati, P.; Fineschi, V.; Turillazzi, E. MiRNAs as New Tools in Lesion Vitality Evaluation: A Systematic Review and Their Forensic Applications. Biomedicines 2021, 9, 1731. https://doi.org/10.3390/biomedicines9111731
Manetti AC, Maiese A, Baronti A, Mezzetti E, Frati P, Fineschi V, Turillazzi E. MiRNAs as New Tools in Lesion Vitality Evaluation: A Systematic Review and Their Forensic Applications. Biomedicines. 2021; 9(11):1731. https://doi.org/10.3390/biomedicines9111731
Chicago/Turabian StyleManetti, Alice Chiara, Aniello Maiese, Arianna Baronti, Eleonora Mezzetti, Paola Frati, Vittorio Fineschi, and Emanuela Turillazzi. 2021. "MiRNAs as New Tools in Lesion Vitality Evaluation: A Systematic Review and Their Forensic Applications" Biomedicines 9, no. 11: 1731. https://doi.org/10.3390/biomedicines9111731
APA StyleManetti, A. C., Maiese, A., Baronti, A., Mezzetti, E., Frati, P., Fineschi, V., & Turillazzi, E. (2021). MiRNAs as New Tools in Lesion Vitality Evaluation: A Systematic Review and Their Forensic Applications. Biomedicines, 9(11), 1731. https://doi.org/10.3390/biomedicines9111731