RETRACTED: Animal Models in Bladder Cancer
Abstract
:1. Introduction
- FGFR3 mutations;
- fusions with TACC3, and/or amplification;
- papillary histology;
- active sonic hedgehog signaling; and by low CIS scores;
- low risk for progression;
- preliminary data suggest a low likelihood of response to cisplatin-based NAC (neoadjuvant chemotherapy) (Seiler et al., 2017).
- the lowest purity, with a high expression of EMT and myofibroblast markers;
- medium expression of the immune markers CD274 (PD-L1) and CTLA4;
- has been reported to respond to immune checkpoint therapy with atezolizumab in patients with metastatic or unresectable bladder cancer (Rosenberg et al. 2016);
- high expression of luminal markers, as well as KRT20 and SNX31;
- higher incidence in women;
- squamous differentiation;
- basal keratin expression;
- high expression of immune markers CD274 (PD-L1) and CTLA4 and other signs of immune infiltration.
- the expression of both neuroendocrine and neuronal genes;
- do not have the typical morphological characteristics associated with neuroendocrine tumors;
- Etoposide-cisplatin therapy is recommended in neoadjuvant and metastatic settings.
2. Bladder Cancer In Vivo Models
3. Autochthonous (Spontaneous) Models
3.1. Carcinogen Induced Model
3.2. Genetically Engineered Models
3.3. Non-Autochthonous (Transplantable) Models
3.4. Orthotopic Models
3.5. Heterotopic Transplantable Models
3.6. Syngeneic Models
3.7. Xenograft Models
3.8. Orthotopic Xenografts
3.9. Subcutaneous Tumor Xenografts
3.10. Experimental Metastasis Models
3.11. Hollow Fiber (HF) Model
4. Modeling Bladder Cancer in Mice
5. Non-Muscle Invasive Versus Muscle Invasive Bladder Cancer
6. Patient Derived Xenografts
7. Monitoring and Evaluation of Animal Models for Bladder Cancer
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J Clin. 2013, 63, 11–30. [Google Scholar] [CrossRef]
- De George, K.C.; Holt, H.R.; Hodges, S.C. Bladder cancer: Diagnosis and Treatment. Am. Fam. Physician 2017, 96, 507–514. [Google Scholar]
- Letašiová, S.; Medveďová, A.; Šovčíková, A.; Dušinská, M.; Volkovová, K.; Mosoiu, C.; Bartonová, A. Bladder cancer, a review of the environmental risk factors. Environ. Heal. 2012, 11, S11. [Google Scholar] [CrossRef]
- Andrew, A.S.; Schned, A.R.; Heaney, J.A.; Karagas, M.R. Bladder cancer risk and personal hair dye use. Int. J. Cancer 2004, 109, 581–586. [Google Scholar] [CrossRef]
- Jankovic, S.; Radosavljevic, V. Risk factors for bladder cancer. Tumori J. 2007, 93, 4–12. [Google Scholar] [CrossRef]
- Aben, K.K.; Baglietto, L.; Baffoe-Bonnie, A.; Coebergh, J.-W.W.; Bailey-Wilson, J.E.; Trink, B.; Verbeek, A.L.; Schoenberg, M.P.; Witjes, J.A.; Kiemeney, L.A. Segregation analysis of urothelial cell carcinoma. Eur. J. Cancer 2006, 42, 1428–1433. [Google Scholar] [CrossRef] [PubMed]
- Kantor, A.F.; Hartge, P.; Hoover, R.N.; Fraumeni, J.F., Jr. Familial and environmental interactions in bladder cancer risk. Int. J. Cancer 1985, 35, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Murta-Nascimento, C.; Silverman, D.T.; Kogevinas, M.; Garcia-Closas, M.; Rothman, N.; Tardon, A.; Garcia-Closas, R.; Serra, C.; Carrato, A.; Villanueva, C.; et al. Risk of bladder cancer associated with family history of cancer: Do low-penetrance polymorphisms account for the increase in risk? Cancer Epidemiol. Biomark. Prev. 2007, 16, 1595–1600. [Google Scholar] [CrossRef] [PubMed]
- Bellamri, M.; Brandt, K.; Brown, C.V.; Wu, M.-T.; Turesky, R.J. Cytotoxicity and genotoxicity of the carcinogen aristolochic acid I (AA-I) in human bladder RT4 cells. Arch. Toxicol. 2021, 95, 2189–2199. [Google Scholar] [CrossRef] [PubMed]
- Dinney, C.P.; McConkey, D.J.; Millikan, R.E.; Wu, X.; Bar-Eli, M.; Adam, L.; Kamat, A.M.; Siefker-Radtke, A.; Tuziak, T.; Sabichi, A.L.; et al. Focus on bladder cancer. Cancer Cell 2004, 6, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Rebhan, K.; Ertl, I.E.; Shariat, S.F.; Grollman, A.P.; Rosenquist, T. Aristolochic acid and its effect on different cancers in uro-oncology. Curr. Opin. Urol. 2020, 30, 689–695. [Google Scholar] [CrossRef] [PubMed]
- John, B.A.; Said, N. Insights from animal models of bladder cancer: Recent advances, challenges, and opportunities. Oncotarget 2017, 8, 57766–57781. [Google Scholar] [CrossRef]
- Catsburg, C.E.; Gago-Dominguez, M.; Yuan, J.-M.; Castelao, J.E.; Cortessis, V.K.; Pike, M.C.; Stern, M.C. Dietary sources of N-nitroso compounds and bladder cancer risk: Findings from the Los Angeles bladder cancer study. Int. J. Cancer 2014, 134, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-R. Urothelial tumorigenesis: A tale of divergent pathways. Nat. Rev. Cancer 2005, 5, 713–725. [Google Scholar] [CrossRef]
- Hicks, R.M. The mammalian urinary bladder: An accommodating organ. Biol. Rev. 1975, 50, 215–246. [Google Scholar] [CrossRef]
- Bradley, W.E.; Long, D.M. Morphology of the developing mammalian bladder. Investig. Urol. 1969, 7, 66–73. [Google Scholar]
- Baskin, L.; Hayward, S.; Young, P.; Cunha, G. Ontogeny of the Rat Bladder: Smooth Muscle and Epithelial Differentiation. Cells Tissues Organs 1996, 155, 163–171. [Google Scholar] [CrossRef]
- De La Rosette, J.; Smedts, F.; Schoots, C.; Hoek, H.; Laguna, P. Changing patterns of keratin expression could be associated with functional maturation of the developing human bladder. J. Urol. 2002, 168, 709–717. [Google Scholar] [CrossRef]
- Khandelwal, P.; Abraham, S.N.; Apodaca, G. Cell biology and physiology of the uroepithelium. Am. J. Physiol. Physiol. 2009, 297, F1477–F1501. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Martin, M.; Domingo-Domenech, J.; Karni-Schmidt, O.; Matos, T.; Cordon-Cardo, C. Molecular pathways of urothelial development and bladder tumorigenesis. Urol. Oncol. Semin. Orig. Investig. 2010, 28, 401–408. [Google Scholar] [CrossRef]
- Sun, W.; Aalders, T.W.; Oosterwijk, E. Identification of potential bladder progenitor cells in the trigone. Dev. Biol. 2014, 393, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-R.; Kong, X.-P.; Pellicer, A.; Kreibich, G.; Sun, T.-T. Uroplakins in urothelial biology, function, and disease. Kidney Int. 2009, 75, 1153–1165. [Google Scholar] [CrossRef]
- Messier, B.; Leblond, C.P. Cell proliferation and migration as revealed by radioautography after injection of thymidine-H3 into male rats and mice. Am. J. Anat. 1960, 106, 247–285. [Google Scholar] [CrossRef]
- Jost, S.P.; Potten, C.S. Urothelial Proliferation In Growing Mice. Cell Prolif. 1986, 19, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Cooper, E.H.; Cowen, D.M.; Knowles, J.C. The recovery of mouse bladder epithelium after injury by 4-ethylsulphonylnaphthalene-1-sulphonamide. J. Pathol. 1972, 108, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Lavelle, J.; Meyers, S.; Ramage, R.; Bastacky, S.; Doty, D.; Apodaca, G.; Zeidel, M.L. Bladder permeability barrier: Recovery from selective injury of surface epithelial cells. Am. J. Physiol. Physiol. 2002, 283, F242–F253. [Google Scholar] [CrossRef]
- Mysorekar, I.U.; Isaacson-Schmid, M.; Walker, J.N.; Mills, J.C.; Hultgren, S.J. Bone Morphogenetic Protein 4 Signaling Regulates Epithelial Renewal in the Urinary Tract in Response to Uropathogenic Infection. Cell Host Microbe 2009, 5, 463–475. [Google Scholar] [CrossRef]
- Shin, K.; Lee, J.; Guo, N.; Kim, J.; Lim, A.; Qu, L.; Mysorekar, I.U.; Beachy, P.A. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nat. Cell Biol. 2011, 472, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, D.S.; Shipley, W.U.; Feldman, A.S. Bladder cancer. Lancet 2009, 374, 239–249. [Google Scholar] [CrossRef]
- Prasad, S.M.; DeCastro, G.J.; Steinberg, G. Urothelial carcinoma of the bladder: Definition, treatment and future efforts. Nat. Rev. Urol. 2011, 8, 631–642. [Google Scholar] [CrossRef]
- Dahm, P.; Gschwend, J.E. Malignant Non-Urothelial Neoplasms of the Urinary Bladder: A Review. Eur. Urol. 2003, 44, 672–681. [Google Scholar] [CrossRef]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.; Akbani, R.; et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2017, 171, 540–556.e25. [Google Scholar] [CrossRef]
- Clayson, D.; Fishbein, L.; Cohen, S. Effects of stones and other physical factors on the induction of rodent bladder cancer. Food Chem. Toxicol. 1995, 33, 771–784. [Google Scholar] [CrossRef]
- Oliveira, P.A.; Colaço, A.; De la Cruz, L.F.; Lopes, C. Experimental bladder carcinogenesis-rodent models. Exp. Oncol. 2006, 28, 2–11. [Google Scholar]
- Nóbrega, C.; Colaço, A.; Lopes, C.; Oliveira, P. Review: BBN as an urothelial carcinogen. In Vivo 2012, 26, 727–739. [Google Scholar]
- van Moorselaar, R.J.; Ichikawa, T.; Schaafsma, H.E.; Jap, P.H.; Isaacs, J.T.; van Stratum, P.; Ramaekers, F.C.; Debruyne, F.M.; Schalken, J.A. The rat bladder tumor model system RBT resembles phenotypically and cytogenetically human superficial transitional cell carcinoma. Urol. Res. 1993, 21, 413–421. [Google Scholar] [CrossRef]
- Crallan, R.; Georgopoulos, N.; Southgate, J. Experimental models of human bladder carcinogenesis. Carcinogenesis 2005, 27, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Babjuk, M.; Burger, M.; Zigeuner, R.; Shariat, S.F.; van Rhijn, B.W.; Compérat, E.; Sylvester, R.J.; Kaasinen, E.; Böhle, A.; Redorta, J.P.; et al. EAU Guidelines on Non–Muscle-invasive Urothelial Carcinoma of the Bladder: Update 2013. Eur. Urol. 2013, 64, 639–653. [Google Scholar] [CrossRef]
- Druckrey, H.; Preussmann, R.; Ivankovic, S.; Schmidt, C.H.; Mennel, H.D.; Stahl, K.W. Selective induction of bladder cancer in rats by dibutyl- and N-butyl-N-butanol(4)-nitrosamine. Z Krebsforsch. 1964, 66, 280–290. [Google Scholar] [CrossRef]
- Fukushima, S.; Hirose, M.; Tsuda, H.; Shirai, T.; Hirao, K. Histological classification of urinary bladder cancers in rats induced by N-butyl-n-(4-hydroxybutyl)nitrosamine. Gan 1976, 67, 81–90. [Google Scholar]
- Williams, P.D.; Lee, J.K.; Theodorescu, D. Molecular Credentialing of Rodent Bladder Carcinogenesis Models. Neoplasia 2008, 10, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Fantini, D.; Glaser, A.P.; Rimar, K.J.; Wang, Y.; Schipma, M.; Varghese, N.; Rademaker, A.; Behdad, A.; Yellapa, A.; Yu, Y. A carcinogen-induced mouse model recapitulates the molecular alterations of human muscle invasive bladder cancer. Oncogene 2018, 37, 1911–1925. [Google Scholar] [CrossRef]
- Masui, T.; Dong, Y.; Yamamoto, S.; Takada, N.; Nakanishi, H.; Inada, K.-I.; Fukushima, S.; Tatematsu, M. p53 mutations in transitional cell carcinomas of the urinary bladder in rats treated with N-butyl-N-(4-hydroxybutyl)-nitrosamine. Cancer Lett. 1996, 105, 105–112. [Google Scholar] [CrossRef]
- Hicks, R.; Wakefield, J.S.J. Rapid induction of bladder cancer in rats with N-methyl-N-nitrosourea I. Histology. Chem. Interact. 1972, 5, 139–152. [Google Scholar] [CrossRef]
- Cohen, S.M. Comparative Pathology of Proliferative Lesions of the Urinary Bladder. Toxicol. Pathol. 2002, 30, 663–671. [Google Scholar] [CrossRef]
- Said, N.; Frierson, H.F.; Sanchez-Carbayo, M.; Brekken, R.A.; Theodorescu, D. Loss of SPARC in bladder cancer enhances carcinogenesis and progression. J. Clin. Investig. 2013, 123, 751–766. [Google Scholar] [CrossRef]
- Garnett, M.J.; Edelman, E.J.; Heidorn, S.J.; Greenman, C.D.; Dastur, A.; Lau, K.W.; Greninger, P.; Thompson, I.R.; Luo, X.; Soares, J.; et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012, 483, 570–575. [Google Scholar] [CrossRef]
- Johnson, D.T.; Hooker, E.; Luong, R.; Yu, E.-J.; He, Y.; Gonzalgo, M.L.; Sun, Z. Conditional Expression of the Androgen Receptor Increases Susceptibility of Bladder Cancer in Mice. PLoS ONE 2016, 11, e0148851. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, T.; Li, L.; Yang, Z.; Bai, Y.; Liu, D.; Kong, C. Knockout of phospholipase Cepsilon attenuates N-butyl-N-(4- hydroxybutyl) nitrosamine-induced bladder tumorigenesis. Mol. Med. Rep. 2016, 13, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, T.; Miyata, Y.; Asai, A.; Sagara, Y.; Furusato, B.; Fukuoka, J.; Sakai, H. Green Tea Polyphenol Induces Changes in Cancer-Related Factors in an Animal Model of Bladder Cancer. PLoS ONE 2017, 12, e0171091. [Google Scholar] [CrossRef]
- Shang, Z.; Li, Y.; Zhang, M.; Tian, J.; Han, R.; Shyr, C.-R.; Messing, E.M.; Yeh, S.; Niu, Y.; Chang, C. Antiandrogen Therapy with Hydroxyflutamide or Androgen Receptor Degradation Enhancer ASC-J9 Enhances BCG Efficacy to Better Suppress Bladder Cancer Progression. Mol. Cancer Ther. 2015, 14, 2586–2594. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Shi, Q.; Xu, S.; Du, C.; Liang, L.; Wu, K.; Wang, K.; Wang, X.; Chang, L.S.; He, D.; et al. Curcumin Promotes KLF5 Proteasome Degradation through Downregulating YAP/TAZ in Bladder Cancer Cells. Int. J. Mol. Sci. 2014, 15, 15173–15187. [Google Scholar] [CrossRef]
- Reis, L.O.; Pereira, T.C.; Fávaro, W.J.; Cagnon, V.; Lopes-Cendes, I.; Ferreira, U. Experimental animal model and RNA interference: A promising association for bladder cancer research. World J. Urol. 2009, 27, 353–361. [Google Scholar] [CrossRef]
- Spry, L.A.; Zenser, T.V.; Cohen, S.M.; Davis, B.B. Role of renal metabolism and excretion in 5-nitrofuran-induced uroepithelial cancer in the rat. J. Clin. Investig. 1985, 76, 1025–1031. [Google Scholar] [CrossRef]
- Nagy, A. Cre recombinase: The universal reagent for genome tailoring. Genesis 2000, 26, 99–109. [Google Scholar] [CrossRef]
- Lin, J.H.; Zhao, H.; Sun, T.-T. A tissue-specific promoter that can drive a foreign gene to express in the suprabasal urothelial cells of transgenic mice. Proc. Natl. Acad. Sci. USA 1995, 92, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.T.; Pak, J.; Shapiro, E.; Sun, T.-T.; Wu, X.-R. Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Res. 1999, 59, 3512–3517. [Google Scholar]
- Puzio-Kuter, A.M.; Castillo-Martin, M.; Kinkade, C.W.; Wang, X.; Shen, T.H.; Matos, T.; Shen, M.M.; Cordon-Cardo, C.; Abate-Shen, C. Inactivation of p53 and Pten promotes invasive bladder cancer. Genes Dev. 2009, 23, 675–680. [Google Scholar] [CrossRef]
- Seager, C.M.; Puzio-Kuter, A.M.; Patel, T.; Jain, S.; Cordon-Cardo, C.; Mc Kiernan, J.; Abate-Shen, C. Intravesical Delivery of Rapamycin Suppresses Tumorigenesis in a Mouse Model of Progressive Bladder Cancer. Cancer Prev. Res. 2009, 2, 1008–1014. [Google Scholar] [CrossRef]
- Yang, X.; La Rosa, F.G.; Genova, E.E.; Huber, K.; Schaack, J.; DeGregori, J.; Serkova, N.J.; Li, Y.; Su, L.-J.; Kessler, E.; et al. Simultaneous Activation of Kras and Inactivation of p53 Induces Soft Tissue Sarcoma and Bladder Urothelial Hyperplasia. PLoS ONE 2013, 8, e74809. [Google Scholar] [CrossRef]
- Kobayashi, T.; Owczarek, T.B.; McKiernan, J.M.; Abate-Shen, C. Modelling bladder cancer in mice: Opportunities and challenges. Nat. Rev. Cancer 2015, 15, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Delto, J.C.; Kobayashi, T.; Benson, M.C.; McKiernan, J.; Abate-Shen, C. Preclinical analyses of intravesical chemotherapy for prevention of bladder cancer progression. Oncotarget 2013, 4, 269–276. [Google Scholar] [CrossRef]
- Gabriel, U.; Bolenz, C.; Michel, M.S. Experimental models for therapeutic studies of transitional cell carcinoma. Anticancer. Res. 2007, 27, 3163–3171. [Google Scholar] [PubMed]
- Truschel, S.T.; Ruiz, W.G.; Shulman, T.; Pilewski, J.; Sun, T.T.; Zeidel, M.L.; Apodaca, G. Primary uroepithelial cultures. A model system to analyze umbrella cell barrier function. J. Biol. Chem. 1999, 274, 15020–15029. [Google Scholar] [CrossRef]
- Celis, A.; Rasmussen, H.H.; Celis, P.; Basse, B.; Lauridsen, J.B.; Ratz, G.; Hein, B.; Ostergaard, M.; Wolf, H.; Orntoft, T.; et al. Short-term culturing of low-grade superficial bladder transitional cell carcinomas leads to changes in the expression levels of several proteins involved in key cellular activities. Electrophoresis 1999, 20, 355–361. [Google Scholar] [CrossRef]
- Almeida, J.L.; Cole, K.D.; Plant, A.L. Standards for Cell Line Authentication and Beyond. PLoS Biol. 2016, 14, e1002476. [Google Scholar] [CrossRef] [PubMed]
- Parache, R.M.; Droulle, P.; Notter, D.; Vigneron, C. A new method of implanting orthotopic rat bladder tumor for experimental therapies. Int. J. Cancer 2002, 102, 280–285. [Google Scholar] [CrossRef]
- Chade, D.C.; Andrade, P.M.; Borra, R.C.; Leite, K.R.; Andrade, E.; Villanova, F.E.; Srougi, M. Histopathological characterization of a syngeneic orthotopic murine bladder cancer model. Int. Braz. J. Urol. 2008, 34, 220–229. [Google Scholar] [CrossRef]
- Gunther, J.H.; Frambach, M.; Deinert, I.; Brandau, S.; Jocham, D.; Bohle, A. Effects of acetylic salicylic acid and pentoxifylline on the efficacy of intravesical BCG therapy in orthotopic murine bladder cancer (MB49). J. Urol. 1999, 161, 1702–1706. [Google Scholar] [CrossRef]
- Werthman, P.E.; Drazan, K.E.; Rosenthal, J.T.; Khalili, R.; Shaked, A. Adenoviral-p53 gene transfer to orthotopic and peritoneal murine bladder cancer. J. Urol. 1996, 155, 753–756. [Google Scholar] [CrossRef]
- Dobek, G.L.; Godbey, W.T. An Orthotopic Model of Murine Bladder Cancer. J. Vis. Exp. 2011, 48, 2535. [Google Scholar] [CrossRef] [PubMed]
- Soloway, M.S.; Masters, S. Urothelial susceptibility to tumor cell implantation influence of cauterization. Cancer 1980, 46, 1158–1163. [Google Scholar] [CrossRef]
- Yang, X.; Ren, L.; Wang, G.; Zhao, L.; Zhang, H.; Mi, Z.; Bai, X. A New Method of Establishing Orthotopic Bladder Transplantable Tumor in Mice. Cancer Biol. Med. 2012, 9, 261–265. [Google Scholar] [PubMed]
- Soloway, M.S. Intravesical and systemic chemotherapy of murine bladder cancer. Cancer Res. 1977, 37, 2918–2929. [Google Scholar]
- Zhang, Z.; Xu, X.; Zhang, X.; Chen, X.; Chen, Q.; Dong, L.; Hu, Z.; Li, J.; Gao, J. The therapeutic potential of SA-sCD40L in the orthotopic model of superficial bladder cancer. Acta Oncol. 2011, 50, 1111–1118. [Google Scholar] [CrossRef]
- Weldon, T.E.; Soloway, M.S. Susceptibility of urothelium to neoplastic cellular implantation. Urology 1975, 5, 824–827. [Google Scholar] [CrossRef]
- Chan, E.; Patel, A.; Heston, W.; Larchian, W. Mouse orthotopic models for bladder cancer research. BJU Int. 2009, 104, 1286–1291. [Google Scholar] [CrossRef]
- Cheon, J.; Moon, D.G.; Cho, H.Y.; Park, H.S.; Kim, J.J.; Gardner, T.A.; Kao, C. Adenovirus-mediated suicide-gene therapy in an orthotopic murine bladder tumor model. Int. J. Urol. 2002, 9, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.B.; Schwartz, M.; Kawamoto, H.; You, X.; Hwang, D.; Liu, H.; Scherr, D.S. Antitumor Effects of Imidazoquinolines in Urothelial Cell Carcinoma of the Bladder. J. Urol. 2007, 177, 2347–2351. [Google Scholar] [CrossRef]
- Talmadge, J.E.; Singh, R.K.; Fidler, I.J.; Raz, A. Murine Models to Evaluate Novel and Conventional Therapeutic Strategies for Cancer. Am. J. Pathol. 2007, 170, 793–804. [Google Scholar] [CrossRef]
- Soloway, M.S.; Martino, C.; Hyatt, C.; Marrone, J.C. Immunogenicity of N-[-4-(5-nitro-2-furyl)-2-thiazolyl]formamide-induced bladder cancer. Natl. Cancer Inst. Monogr. 1978, 49, 293–300. [Google Scholar]
- Summerhayes, I.C.; Franks, L.M. Effects of Donor Age on Neoplastic Transformation of Adult Mouse Bladder Epithelium In Vitro. J. Natl. Cancer Inst. 1979, 62, 1017–1023. [Google Scholar] [CrossRef]
- Fodor, I.; Timiryasova, T.; Denes, B.; Yoshida, J.; Ruckle, H.; Lilly, M. Vaccinia virus mediated p53 gene therapy for bladder cancer in an orthotopic murine model. J. Urol. 2005, 173, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Hanel, E.G.; Xiao, Z.; Wong, K.K.; Lee, P.W.; Britten, R.A.; Moore, R.B. A novel intravesical therapy for superficial bladder cancer in an orthotopic model: Oncolytic reovirus therapy. J. Urol. 2004, 172, 2018–2022. [Google Scholar] [CrossRef]
- Reis, L.O.; Ferreira, U.; Billis, A.; Cagnon, V.; Favaro, W.J. Anti-Angiogenic Effects of the Superantigen Staphylococcal Enterotoxin B and Bacillus Calmette-Guérin Immunotherapy for Nonmuscle Invasive Bladder Cancer. J. Urol. 2012, 187, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, J.; Nishiyama, H.; Yano, I.; Nakaya, A.; Kohama, H.; Kawai, K.; Joraku, A.; Nakamura, T.; Harashima, H.; Akaza, H. The therapeutic effects of R8-liposome-BCG-CWS on BBN-induced rat urinary bladder carcinoma. Anticancer Res. 2011, 31, 2065–2071. [Google Scholar]
- Shen, Z.-J.; Wang, Y.; Ding, G.-Q.; Pan, C.-W.; Zheng, R.-M. Study on enhancement of fibronectin-mediated bacillus Calmette-Guérin attachment to urinary bladder wall in rabbits. World J. Urol. 2007, 25, 525–529. [Google Scholar] [CrossRef]
- Black, P.C.; Dinney, C.P.N. Bladder cancer angiogenesis and metastasis—Translation from murine model to clinical trial. Cancer Metastasis Rev. 2007, 26, 623–634. [Google Scholar] [CrossRef]
- Loskog, A.S.; Fransson, M.E.; Totterman, T.T. AdCD40L gene therapy counteracts T regulatory cells and cures aggressive tumors in an orthotopic bladder cancer model. Clin Cancer Res. 2005, 11, 8816–8821. [Google Scholar] [CrossRef]
- Said, N.; Sanchez-Carbayo, M.; Smith, S.C.; Theodorescu, D. RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration. J. Clin. Investig. 2012, 122, 1503–1518. [Google Scholar] [CrossRef]
- Said, N.; Smith, S.; Sanchez-Carbayo, M.; Theodorescu, D. Tumor endothelin-1 enhances metastatic colonization of the lung in mouse xenograft models of bladder cancer. J. Clin. Investig. 2011, 121, 132–147. [Google Scholar] [CrossRef]
- Lodillinsky, C.; Rodriguez, V.; Vauthay, L.; Sandes, E.; Casabé, A.; Eiján, A.M. Novel Invasive Orthotopic Bladder Cancer Model With High Cathepsin B Activity Resembling Human Bladder Cancer. J. Urol. 2009, 182, 749–755. [Google Scholar] [CrossRef]
- Wilmanns, C.; Fan, D.; Obrian, C.; Radinsky, R.; Bucana, C.; Tsan, R.; Fidler, I. Modulation of Doxorubicin Sensitivity and Level of P-Glycoprotein Expression in Human Colon-Carcinoma Cells by Ectopic and Orthotopic Environments in Nude-Mice. Int. J. Oncol. 1993, 3, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Overdevest, J.B.; Thomas, S.; Kristiansen, G.; Hansel, D.E.; Smith, S.C.; Theodorescu, D. CD24 Offers a Therapeutic Target for Control of Bladder Cancer Metastasis Based on a Requirement for Lung Colonization. Cancer Res. 2011, 71, 3802–3811. [Google Scholar] [CrossRef]
- Smith, S.C.; Nicholson, B.; Nitz, M.; Frierson, H.F.; Smolkin, M.; Hampton, G.; El-Rifai, W.; Theodorescu, D. Profiling Bladder Cancer Organ Site-Specific Metastasis Identifies LAMC2 as a Novel Biomarker of Hematogenous Dissemination. Am. J. Pathol. 2009, 174, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Casciari, J.J.; Hollingshead, M.G.; Alley, M.C.; Mayo, J.G.; Malspeis, L.; Miyauchi, S.; Grever, M.R.; Weinstein, J.N. Growth and Chemotherapeutic Response of Cells in a Hollow-Fiber In Vitro Solid Tumor Model. J. Natl. Cancer Inst. 1994, 86, 1846–1852. [Google Scholar] [CrossRef] [PubMed]
- Hall, L.A.; Krauthauser, C.M.; Wexler, R.S.; Hollingshead, M.G.; Slee, A.M.; Kerr, J.S. The hollow fiber assay: Continued characterization with novel approaches. Anticancer Res. 2000, 20, 903–911. [Google Scholar]
- Mi, Q.; Lantvit, D.; Reyes-Lim, E.; Chai, H.; Zhao, W.; Lee, I.-S.; Peraza-Sánchez, S.; Ngassapa, O.; Kardono, L.B.S.; Riswan, S.; et al. Evaluation of the Potential Cancer Chemotherapeutic Efficacy of Natural Product Isolates Employing In Vivo Hollow Fiber Tests1. J. Nat. Prod. 2002, 65, 842–850. [Google Scholar] [CrossRef]
- Morrell, A.; Jayaraman, M.; Nagarajan, M.; Fox, B.M.; Meckley, M.R.; Ioanoviciu, A.; Pommier, Y.; Antony, S.; Hollingshead, M.; Cushman, M. Evaluation of indenoisoquinoline topoisomerase I inhibitors using a hollow fiber assay. Bioorganic Med. Chem. Lett. 2006, 16, 4395–4399. [Google Scholar] [CrossRef]
- Moon, K.H.; Han, B.K.; Jeong, S.J.; Hong, S.K.; Byun, S.-S.; Lee, S.E. In Vivo Hollow Fiber Assay for Anticancer Drugs’ Responsiveness in a Bladder Cancer Model. Korean J. Urol. 2008, 49, 392–397. [Google Scholar] [CrossRef]
- de Visser, K.E.; Eichten, A.; Coussens, L.M. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 2006, 6, 24–37. [Google Scholar] [CrossRef]
- Mitra, A.P.; Cote, R.J. Molecular Pathogenesis and Diagnostics of Bladder Cancer. Annu. Rev. Pathol. Mech. Dis. 2009, 4, 251–285. [Google Scholar] [CrossRef] [PubMed]
- Knowles, M.A. Molecular pathogenesis of bladder cancer. Int. J. Clin. Oncol. 2008, 13, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Goebell, P.J.; Knowles, M.A. Bladder cancer or bladder cancers? Genetically distinct malignant conditions of the urothelium. Urol. Oncol. Semin. Orig. Investig. 2010, 28, 409–428. [Google Scholar] [CrossRef]
- Esrig, D.; Elmajian, D.; Groshen, S.; Freeman, J.A.; Stein, J.P.; Chen, S.-C.; Nichols, P.W.; Skinner, D.G.; Jones, P.A.; Cote, R.J. Accumulation of nuclear p53 and tumor progression in bladder cancer. N. Engl. J. Med. 1994, 331, 1259–1264. [Google Scholar] [CrossRef] [PubMed]
- Dyrskjøt, L.; Thykjaer, T.; Kruhøffer, M.; Jensen, J.L.; Marcussen, N.; Hamilton-Dutoit, S.; Wolf, H.; Ørntoft, T.F. Identifying distinct classes of bladder carcinoma using microarrays. Nat. Genet. 2002, 33, 90–96. [Google Scholar] [CrossRef]
- Sanchez-Carbayo, M.; Socci, N.D.; Lozano, J.J.; Li, W.; Charytonowicz, E.; Belbin, T.J.; Prystowsky, M.B.; Ortiz, A.R.; Childs, G.; Cordon-Cardo, C. Gene Discovery in Bladder Cancer Progression using cDNA Microarrays. Am. J. Pathol. 2003, 163, 505–516. [Google Scholar] [CrossRef]
- Blaveri, E.; Brewer, J.L.; Roydasgupta, R.; Fridlyand, J.; Devries, S.; Koppie, T.; Pejavar, S.; Mehta, K.; Carroll, P.; Simko, J.P.; et al. Bladder Cancer Stage and Outcome by Array-Based Comparative Genomic Hybridization. Clin. Cancer Res. 2005, 11, 7012–7022. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Tuziak, T.; Hu, L.; Wang, Z.; Bondaruk, J.; Kim, M.; Fuller, G.; Dinney, C.; Grossman, H.B.; Baggerly, K.; et al. Alterations in transcription clusters underlie development of bladder cancer along papillary and nonpapillary pathways. Lab. Investig. 2005, 85, 532–549. [Google Scholar] [CrossRef]
- Mitra, A.P.; Pagliarulo, V.; Yang, D.; Waldman, F.M.; Datar, R.H.; Skinner, D.G.; Groshen, S.; Cote, R.J. Generation of a Concise Gene Panel for Outcome Prediction in Urinary Bladder Cancer. J. Clin. Oncol. 2009, 27, 3929–3937. [Google Scholar] [CrossRef]
- Riester, M.; Taylor, J.M.; Feifer, A.; Koppie, T.; Rosenberg, J.; Downey, R.J.; Bochner, B.; Michor, F. Combination of a Novel Gene Expression Signature with a Clinical Nomogram Improves the Prediction of Survival in High-Risk Bladder Cancer. Clin. Cancer Res. 2012, 18, 1323–1333. [Google Scholar] [CrossRef] [PubMed]
- Lauss, M.; Ringnér, M.; Höglund, M. Prediction of Stage, Grade, and Survival in Bladder Cancer Using Genome-wide Expression Data: A Validation Study. Clin. Cancer Res. 2010, 16, 4421–4433. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, D.; Frigyesi, A.; Gudjonsson, S.; Sjödahl, G.; Hallden, C.; Chebil, G.; Veerla, S.; Ryden, T.; Månsson, W.; Liedberg, F.; et al. Combined Gene Expression and Genomic Profiling Define Two Intrinsic Molecular Subtypes of Urothelial Carcinoma and Gene Signatures for Molecular Grading and Outcome. Cancer Res. 2010, 70, 3463–3472. [Google Scholar] [CrossRef]
- Zieger, K.; Marcussen, N.; Borre, M.; Ørntoft, T.F.; Dyrskjøt, L. Consistent genomic alterations in carcinoma in situ of the urinary bladder confirm the presence of two major pathways in bladder cancer development. Int. J. Cancer 2009, 125, 2095–2103. [Google Scholar] [CrossRef] [PubMed]
- Hurst, C.D.; Platt, F.M.; Taylor, C.F.; Knowles, M.A. Novel Tumor Subgroups of Urothelial Carcinoma of the Bladder Defined by Integrated Genomic Analysis. Clin. Cancer Res. 2012, 18, 5865–5877. [Google Scholar] [CrossRef]
- Lindgren, D.; Sjödahl, G.; Lauss, M.; Staaf, J.; Chebil, G.; Lövgren, K.; Gudjonsson, S.; Liedberg, F.; Patschan, O.; Månsson, W.; et al. Integrated Genomic and Gene Expression Profiling Identifies Two Major Genomic Circuits in Urothelial Carcinoma. PLoS ONE 2012, 7, e38863. [Google Scholar] [CrossRef]
- Sjodahl, G.; Lauss, M.; Lövgren, K.; Chebil, G.; Gudjonsson, S.; Veerla, S.; Patschan, O.; Aine, M.; Fernö, M.; Ringnér, M.; et al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 2012, 18, 3377–3386. [Google Scholar] [CrossRef] [PubMed]
- Nordentoft, I.; Lamy, P.; Birkenkamp-Demtröder, K.; Shumansky, K.; Vang, S.; Hornshøj, H.; Juul, M.; Villesen, P.; Hedegaard, J.; Roth, A.; et al. Mutational Context and Diverse Clonal Development in Early and Late Bladder Cancer. Cell Rep. 2014, 7, 1649–1663. [Google Scholar] [CrossRef]
- Pan, C.-X.; Zhang, H.; Tepper, C.G.; Lin, T.-Y.; Davis, R.; Keck, J.; Ghosh, P.M.; Gill, P.; Airhart, S.; Bult, C.; et al. Development and Characterization of Bladder Cancer Patient-Derived Xenografts for Molecularly Guided Targeted Therapy. PLoS ONE 2015, 10, e0134346. [Google Scholar] [CrossRef]
- Chan, K.S.; Espinosa, I.; Chao, M.; Wong, D.; Ailles, L.; Diehn, M.; Gill, H.; Presti, J.; Chang, H.Y.; van de Rijn, M.; et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc. Natl. Acad. Sci. USA 2009, 106, 14016–14021. [Google Scholar] [CrossRef]
- Kurtova, A.V.; Xiao, J.; Mo, Q.; Pazhanisamy, S.K.; Krasnow, R.; Lerner, S.P.; Chen, F.; Roh, T.; Lay, E.; Ho, P.L.; et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nat. Cell Biol. 2015, 517, 209–213. [Google Scholar] [CrossRef]
- Suh, Y.S.; Jeong, K.-C.; Lee, S.-J.; Seo, H.K. Establishment and application of bladder cancer patient-derived xenografts as a novel preclinical platform. Transl. Cancer Res. 2017, 6, S733–S743. [Google Scholar] [CrossRef]
- Tentler, J.J.; Tan, A.C.; Weekes, C.D.; Jimeno, A.; Leong, S.; Pitts, T.M.; Arcaroli, J.J.; Messersmith, W.A.; Eckhardt, S.G. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 2012, 9, 338–350. [Google Scholar] [CrossRef]
- Kerbel, R.S. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: Better than commonly perceived-but they can be improved. Cancer Biol. Ther. 2003, 2, 133–138. [Google Scholar] [CrossRef]
- Shorthouse, A.J.; Smyth, J.F.; Steel, G.G.; Ellison, M.; Mills, J.; Peckham, M.J. The human tumour xenograft—A valid model in experimental chemotherapy? Br. J. Surg. 2005, 67, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Shimosato, Y.; Kameya, T.; Nagai, K.; Hirohashi, S.; Koide, T.; Hayashi, H.; Nomura, T. Transplantation of Human Tumors in Nude Mice23. J. Natl. Cancer Inst. 1976, 56, 1251–1260. [Google Scholar] [CrossRef]
- Brehm, M.A.; Cuthbert, A.; Yang, C.; Miller, D.M.; DiIorio, P.; Laning, J.; Burzenski, L.; Gott, B.; Foreman, O.; Kavirayani, A. Parameters for establishing humanized mouse models to study human immunity: Analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rγnull mutation. Clin. Immunol. 2010, 135, 84–98. [Google Scholar] [CrossRef]
- Ruddell, A.; Mezquita, P.; Brandvold, K.A.; Farr, A.; Iritani, B.M. B Lymphocyte-Specific c-Myc Expression Stimulates Early and Functional Expansion of the Vasculature and Lymphatics during Lymphomagenesis. Am. J. Pathol. 2003, 163, 2233–2245. [Google Scholar] [CrossRef]
- Qian, B.-Z.; Pollard, J.W. Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell 2010, 141, 39–51. [Google Scholar] [CrossRef]
- Park, B.; Jeong, B.C.; Choi, Y.-L.; Kwon, G.Y.; Lim, J.E.; Seo, S.I.; Jeon, S.S.; Lee, H.M.; Choi, H.Y.; Lee, K.-S. Development and characterization of a bladder cancer xenograft model using patient-derived tumor tissue. Cancer Sci. 2013, 104, 631–638. [Google Scholar] [CrossRef]
- Cirone, P.; Andresen, C.J.; Eswaraka, J.R.; Lappin, P.B.; Bagi, C.M. Patient-derived xenografts reveal limits to PI3K/mTOR- and MEK-mediated inhibition of bladder cancer. Cancer Chemother. Pharmacol. 2014, 73, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Bolenz, C.; Wenzel, M.; Cao, Y.; Trojan, L.; Häcker, A.; Arancibia, M.F.; Alken, P.; Michel, M.S. Newly Developed Mini-Endoscope for Diagnosis and Follow-Up of Orthotopic Bladder Transitional-Cell Carcinoma In Vivo. J. Endourol. 2007, 21, 789–794. [Google Scholar] [CrossRef]
- Zlatev, D.V.; Altobelli, E.; Liao, J.C. Advances in Imaging Technologies in the Evaluation of High-Grade Bladder Cancer. Urol. Clin. N. Am. 2015, 42, 147–157. [Google Scholar] [CrossRef]
- Kikuchi, E.; Xu, S.; Ohori, M.; Matei, C.; Lupu, M.; Menendez, S.; Koutcher, J.A.; Bochner, B.H. Detection and Quantitative Analysis of Early Stage Orthotopic Murine Bladder Tumor Using In Vivo Magnetic Resonance Imaging. J. Urol. 2003, 170, 1375–1378. [Google Scholar] [CrossRef] [PubMed]
- Satoh, H.; Morimoto, Y.; Arai, T.; Asanuma, H.; Kawauchi, S.; Seguchi, K.; Kikuchi, M.; Murai, M. Intravesical Ultrasonography for Tumor Staging in an Orthotopically Implanted Rat Model of Bladder Cancer. J. Urol. 2007, 177, 1169–1173. [Google Scholar] [CrossRef]
- Foster, W.K.; Ford, N.L. Investigating the effect of longitudinal micro-CT imaging on tumour growth in mice. Phys. Med. Biol. 2010, 56, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Marcu, R.D.; Diaconu, C.C.; Constantin, T.; Socea, B.; Ionita-Radu, F.; Mischianu, D.L.D.; Bratu, O.G. Minimally invasive biopsy in retroperitoneal tumors (Review). Exp. Ther. Med. 2019, 18, 5016–5020. [Google Scholar] [CrossRef]
- Kolkman, R.G.M.; Brands, P.J.; Steenbergen, W.; van Leeuwen, T. Real-Time in vivo photoacoustic and ultrasound imaging. J. Biomed. Opt. 2008, 13, 050510. [Google Scholar] [CrossRef]
- Keyaerts, M.; Caveliers, V.; Lahoutte, T. Bioluminescence imaging: Looking beyond the light. Trends Mol. Med. 2012, 18, 164–172. [Google Scholar] [CrossRef]
- Iorga, R.A.; Bratu, O.G.; Marcu, R.D.; Constantin, T.; Mischianu, D.L.D.; Socea, B.; Găman, M.-A.; Diaconu, C.C. Venous thromboembolism in cancer patients: Still looking for answers (Review). Exp. Ther. Med. 2019, 18, 5026–5032. [Google Scholar] [CrossRef]
Classification | Subtype | Characteristics | Therapy |
---|---|---|---|
Luminal KRT20+ GATA3+ FOXA1+ | Luminal-papillary | FGFR3 mut, fusion, amp Papillary histology SHH+ Low CIS | Low risk NAC (low predicted likelihood of response) FGFR3 inhibitors |
Luminal-infiltrated | Low purity EMT markers (TWIST1, ZEB1) miR-200 family Medium CD274 (PD-L1), CTLA-4 Myofibroblast markers Wild type p53 | Anti-PD-L1, PD-1, CTLA-4 Cisplatin-based NAC (low response rate) | |
Luminal | UPKs KRT20 SNX31 | Targeted therapy? | |
Basal/Squamous KRT5,6,14+ GATA3- FOXA1- | Basal/Squamous | Female Squamous differentiation Basal keratin markers High CD274 (PD-L1), CTLA4 Immune infiltrates | Anti-PD-L1 PD-1 CTLA-4 Cisplatin-based NAC |
Neuronal | Neuronal | SOX2 DLX6 MSI1 PLEKHG4B E2F3/SOX4 amp High cell cycle | Etoposide/Cisplatin NAC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constantin, T.; Păvălean, M.; Bucur, Ș.; Constantin, M.M.; Nicolescu, A.C.; Pacu, I.; Mădan, V. RETRACTED: Animal Models in Bladder Cancer. Biomedicines 2021, 9, 1762. https://doi.org/10.3390/biomedicines9121762
Constantin T, Păvălean M, Bucur Ș, Constantin MM, Nicolescu AC, Pacu I, Mădan V. RETRACTED: Animal Models in Bladder Cancer. Biomedicines. 2021; 9(12):1762. https://doi.org/10.3390/biomedicines9121762
Chicago/Turabian StyleConstantin, Traian, Mihai Păvălean, Ștefana Bucur, Maria Magdalena Constantin, Alin Codruț Nicolescu, Irina Pacu, and Victor Mădan. 2021. "RETRACTED: Animal Models in Bladder Cancer" Biomedicines 9, no. 12: 1762. https://doi.org/10.3390/biomedicines9121762
APA StyleConstantin, T., Păvălean, M., Bucur, Ș., Constantin, M. M., Nicolescu, A. C., Pacu, I., & Mădan, V. (2021). RETRACTED: Animal Models in Bladder Cancer. Biomedicines, 9(12), 1762. https://doi.org/10.3390/biomedicines9121762