Validity of Anti-PSMA ScFvD2B as a Theranostic Tool: A Narrative-Focused Review
Abstract
:1. Background
2. PSMA-Targeted Diagnosis/Therapy with Monoclonal Antibodies
3. ScFvD2B Characterization and Development
4. ScfvD2B as a Diagnostic Agent
5. ScFv as a Therapeutic Agent
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAR T | Chimeric Antigen Receptor T cell. |
CT | computed tomography. |
DOTA | 1:4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid. |
18F-FDG | 18F-fluorodeoxyglucose. |
FMT | fluorescence molecular tomography. |
FRI | fluorescent reflectance imaging. |
GAMD | Gaussian Accelerated Molecular Dynamics. |
GLP | good laboratory practice. |
Mab | monoclonal antibody. |
NIRF | near-infrared fluorescence. |
NOTA | 2-(p-isothiocyanato benzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid. |
NK | natural killer. |
Pca | Prostate Cancer. |
PCA | Principal component analysis. |
PET | positron emission tomography. |
PSMA | prostate-specific membrane antigen. |
RMSD | root mean square deviation. |
RMSF | root mean square fluctuation. |
scFv | single-chain fragment variable. |
SPECT | single-photon emission computed tomography. |
TAA | tumor-associated antigen. |
VH | heavy chain. |
VL | light chains. |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Kitajima, K.; Murphy, R.C.; Nathan, M.A. Choline PET/CT for Imaging Prostate Cancer: An Update. Ann. Nucl. Med. 2013, 27, 581–591. [Google Scholar] [CrossRef]
- Umbehr, M.H.; Müntener, M.; Hany, T.; Sulser, T.; Bachmann, L.M. The Role of 11C-Choline and 18F-Fluorocholine Positron Emission Tomography (PET) and PET/CT in Prostate Cancer: A Systematic Review and Meta-Analysis. Eur. Urol. 2013, 64, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Krause, B.J.; Souvatzoglou, M.; Treiber, U. Imaging of Prostate Cancer with PET/CT and Radioactively Labeled Choline Derivates. Urol. Oncol. 2013, 31, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Bauman, G.; Belhocine, T.; Kovacs, M.; Ward, A.; Beheshti, M.; Rachinsky, I. 18F-Fluorocholine for Prostate Cancer Imaging: A Systematic Review of the Literature. Prostate Cancer Prostatic Dis. 2012, 15, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.S.; Sheehan, C.E.; Fisher, H.A.G.; Kaufman, R.P.J.; Kaur, P.; Gray, K.; Webb, I.; Gray, G.S.; Mosher, R.; Kallakury, B.V.S. Correlation of Primary Tumor Prostate-Specific Membrane Antigen Expression with Disease Recurrence in Prostate Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2003, 9, 6357–6362. [Google Scholar]
- Ghosh, A.; Heston, W.D.W. Tumor Target Prostate Specific Membrane Antigen (PSMA) and Its Regulation in Prostate Cancer. J. Cell. Biochem. 2004, 91, 528–539. [Google Scholar] [CrossRef]
- Kawakami, M.; Nakayama, J. Enhanced Expression of Prostate-Specific Membrane Antigen Gene in Prostate Cancer as Revealed by in Situ Hybridization. Cancer Res. 1997, 57, 2321–2324. [Google Scholar]
- Mhawech-Fauceglia, P.; Zhang, S.; Terracciano, L.; Sauter, G.; Chadhuri, A.; Herrmann, F.R.; Penetrante, R. Prostate-Specific Membrane Antigen (PSMA) Protein Expression in Normal and Neoplastic Tissues and Its Sensitivity and Specificity in Prostate Adenocarcinoma: An Immunohistochemical Study Using Mutiple Tumour Tissue Microarray Technique. Histopathology 2007, 50, 472–483. [Google Scholar] [CrossRef]
- Raff, A.B.; Gray, A.; Kast, W.M. Prostate Stem Cell Antigen: A Prospective Therapeutic and Diagnostic Target. Cancer Lett. 2009, 277, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Perico, M.E.; Grasso, S.; Brunelli, M.; Martignoni, G.; Munari, E.; Moiso, E.; Fracasso, G.; Cestari, T.; Naim, H.Y.; Bronte, V.; et al. Prostate-Specific Membrane Antigen (PSMA) Assembles a Macromolecular Complex Regulating Growth and Survival of Prostate Cancer Cells “in Vitro” and Correlating with Progression “in Vivo”. Oncotarget 2016, 7, 74189–74202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinoshita, Y.; Kuratsukuri, K.; Landas, S.; Imaida, K.; Rovito, P.M.J.; Wang, C.Y.; Haas, G.P. Expression of Prostate-Specific Membrane Antigen in Normal and Malignant Human Tissues. World J. Surg. 2006, 30, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Kasoha, M.; Unger, C.; Solomayer, E.-F.; Bohle, R.M.; Zaharia, C.; Khreich, F.; Wagenpfeil, S.; Juhasz-Böss, I. Prostate-Specific Membrane Antigen (PSMA) Expression in Breast Cancer and Its Metastases. Clin. Exp. Metastasis 2017, 34, 479–490. [Google Scholar] [CrossRef]
- Salas Fragomeni, R.A.; Amir, T.; Sheikhbahaei, S.; Harvey, S.C.; Javadi, M.S.; Solnes, L.B.; Kiess, A.P.; Allaf, M.E.; Pomper, M.G.; Gorin, M.A.; et al. Imaging of Nonprostate Cancers Using PSMA-Targeted Radiotracers: Rationale, Current State of the Field, and a Call to Arms. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2018, 59, 871–877. [Google Scholar] [CrossRef] [Green Version]
- Nimmagadda, S.; Pullambhatla, M.; Chen, Y.; Parsana, P.; Lisok, A.; Chatterjee, S.; Mease, R.; Rowe, S.P.; Lupold, S.; Pienta, K.J.; et al. Low-Level Endogenous PSMA Expression in Nonprostatic Tumor Xenografts Is Sufficient for In Vivo Tumor Targeting and Imaging. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2018, 59, 486–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.S.; Reuter, V.E.; Heston, W.D.; Bander, N.H.; Grauer, L.S.; Gaudin, P.B. Five Different Anti-Prostate-Specific Membrane Antigen (PSMA) Antibodies Confirm PSMA Expression in Tumor-Associated Neovasculature. Cancer Res. 1999, 59, 3192–3198. [Google Scholar] [PubMed]
- Silver, D.A.; Pellicer, I.; Fair, W.R.; Heston, W.D.; Cordon-Cardo, C. Prostate-Specific Membrane Antigen Expression in Normal and Malignant Human Tissues. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1997, 3, 81–85. [Google Scholar]
- Mullard, A. FDA Approves 100th Monoclonal Antibody Product. Nat. Rev. Drug Discov. 2021, 20, 491–495. [Google Scholar] [CrossRef]
- Vezina, H.E.; Cotreau, M.; Han, T.H.; Gupta, M. Antibody-Drug Conjugates as Cancer Therapeutics: Past, Present, and Future. J. Clin. Pharmacol. 2017, 57, S11–S25. [Google Scholar] [CrossRef]
- Diamantis, N.; Banerji, U. Antibody-Drug Conjugates--an Emerging Class of Cancer Treatment. Br. J. Cancer 2016, 114, 362–367. [Google Scholar] [CrossRef]
- Rosenthal, S.A.; Haseman, M.K.; Polascik, T.J. Utility of Capromab Pendetide (ProstaScint) Imaging in the Management of Prostate Cancer. Tech. Urol. 2001, 7, 27–37. [Google Scholar] [PubMed]
- Wilkinson, S.; Chodak, G. The Role of 111indium-Capromab Pendetide Imaging for Assessing Biochemical Failure after Radical Prostatectomy. J. Urol. 2004, 172, 133–136. [Google Scholar] [CrossRef]
- Nováková, Z.; Foss, C.A.; Copeland, B.T.; Morath, V.; Baranová, P.; Havlínová, B.; Skerra, A.; Pomper, M.G.; Barinka, C. Novel Monoclonal Antibodies Recognizing Human Prostate-Specific Membrane Antigen (PSMA) as Research and Theranostic Tools. Prostate 2017, 77, 749–764. [Google Scholar] [CrossRef]
- Moffett, S.; Mélançon, D.; DeCrescenzo, G.; St-Pierre, C.; Deschénes, F.; Saragovi, H.U.; Gold, P.; Cuello, A.C. Preparation and Characterization of New Anti-PSMA Monoclonal Antibodies with Potential Clinical Use. Hybridoma 2007, 26, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.T.; Guo, X.; Bařinka, C.; Lupold, S.E.; Pomper, M.G.; Gabrielson, K.; Raman, V.; Artemov, D.; Hapuarachchige, S. Development of 5D3-DM1: A Novel Anti-Prostate-Specific Membrane Antigen Antibody-Drug Conjugate for PSMA-Positive Prostate Cancer Therapy. Mol. Pharm. 2020, 17, 3392–3402. [Google Scholar] [CrossRef]
- Frigerio, B.; Fracasso, G.; Luison, E.; Cingarlini, S.; Mortarino, M.; Coliva, A.; Seregni, E.; Bombardieri, E.; Zuccolotto, G.; Rosato, A.; et al. A Single-Chain Fragment against Prostate Specific Membrane Antigen as a Tool to Build Theranostic Reagents for Prostate Cancer. Eur. J. Cancer 2013, 49, 2223–2232. [Google Scholar] [CrossRef]
- Roumeguère, T.; Aoun, F.; Albisinni, S.; Mjaess, G. Antibodies Targeting Prostate-Specific Membrane Antigen Positive Prostate Cancer: From Diagnostic Imaging to Theranostics. Curr. Opin. Oncol. 2021, 33, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Lütje, S.; van Rij, C.M.; Franssen, G.M.; Fracasso, G.; Helfrich, W.; Eek, A.; Oyen, W.J.; Colombatti, M.; Boerman, O.C. Targeting Human Prostate Cancer with 111In-Labeled D2B IgG, F(Ab’)2 and Fab Fragments in Nude Mice with PSMA-Expressing Xenografts. Contrast Media Mol. Imaging 2015, 10, 28–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lütje, S.; Rijpkema, M.; Franssen, G.M.; Fracasso, G.; Helfrich, W.; Eek, A.; Oyen, W.J.; Colombatti, M.; Boerman, O.C. Dual-Modality Image-Guided Surgery of Prostate Cancer with a Radiolabeled Fluorescent Anti-PSMA Monoclonal Antibody. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2014, 55, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Lütje, S.; Heskamp, S.; Franssen, G.M.; Frielink, C.; Kip, A.; Hekman, M.; Fracasso, G.; Colombatti, M.; Herrmann, K.; Boerman, O.C.; et al. Development and Characterization of a Theranostic Multimodal Anti-PSMA Targeting Agent for Imaging, Surgical Guidance, and Targeted Photodynamic Therapy of PSMA-Expressing Tumors. Theranostics 2019, 9, 2924–2938. [Google Scholar] [CrossRef]
- Lucío, M.I.; Opri, R.; Pinto, M.; Scarsi, A.; Fierro, J.L.G.; Meneghetti, M.; Fracasso, G.; Prato, M.; Vázquez, E.; Herrero, M.A. Targeted Killing of Prostate Cancer Cells Using Antibody-Drug Conjugated Carbon Nanohorns. J. Mater. Chem. B 2017, 5, 8821–8832. [Google Scholar] [CrossRef]
- Czerwińska, M.; Fracasso, G.; Pruszyński, M.; Bilewicz, A.; Kruszewski, M.; Majkowska-Pilip, A.; Lankoff, A. Design and Evaluation of (223)Ra-Labeled and Anti-PSMA Targeted NaA Nanozeolites for Prostate Cancer Therapy—Part I. Materials 2020, 13, 3875. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Rajasekaran, A.K.; Moy, P.; Xia, Y.; Kim, S.; Navarro, V.; Rahmati, R.; Bander, N.H. Constitutive and Antibody-Induced Internalization of Prostate-Specific Membrane Antigen. Cancer Res. 1998, 58, 4055–4060. [Google Scholar]
- Smith-Jones, P.M.; Vallabhajosula, S.; Navarro, V.; Bastidas, D.; Goldsmith, S.J.; Bander, N.H. Radiolabeled Monoclonal Antibodies Specific to the Extracellular Domain of Prostate-Specific Membrane Antigen: Preclinical Studies in Nude Mice Bearing LNCaP Human Prostate Tumor. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2003, 44, 610–617. [Google Scholar]
- Lütje, S.; Boerman, O.C.; van Rij, C.M.; Sedelaar, M.; Helfrich, W.; Oyen, W.J.G.; Mulders, P.F.A. Prospects in Radionuclide Imaging of Prostate Cancer. Prostate 2012, 72, 1262–1272. [Google Scholar] [CrossRef] [PubMed]
- Rudnick, S.I.; Lou, J.; Shaller, C.C.; Tang, Y.; Klein-Szanto, A.J.P.; Weiner, L.M.; Marks, J.D.; Adams, G.P. Influence of Affinity and Antigen Internalization on the Uptake and Penetration of Anti-HER2 Antibodies in Solid Tumors. Cancer Res. 2011, 71, 2250–2259. [Google Scholar] [CrossRef] [Green Version]
- Bates, A.; Power, C.A. David vs. Goliath: The Structure, Function, and Clinical Prospects of Antibody Fragments. Antibodies 2019, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Dijkers, E.C.F.; Kosterink, J.G.W.; Rademaker, A.P.; Perk, L.R.; van Dongen, G.A.M.S.; Bart, J.; de Jong, J.R.; de Vries, E.G.E.; Lub-de Hooge, M.N. Development and Characterization of Clinical-Grade 89Zr-Trastuzumab for HER2/Neu ImmunoPET Imaging. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2009, 50, 974–981. [Google Scholar] [CrossRef] [Green Version]
- Vasiliauskaité-Brooks, I.; Sounier, R.; Rochaix, P.; Bellot, G.; Fortier, M.; Hoh, F.; De Colibus, L.; Bechara, C.; Saied, E.M.; Arenz, C.; et al. Structural Insights into Adiponectin Receptors Suggest Ceramidase Activity. Nature 2017, 544, 120–123. [Google Scholar] [CrossRef] [Green Version]
- Miao, Y.; Feher, V.A.; McCammon, J.A. Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation. J. Chem. Theory Comput. 2015, 11, 3584–3595. [Google Scholar] [CrossRef]
- Cheng, L.S.; Liu, A.P.; Yang, J.H.; Dong, Y.Q.; Li, L.W.; Wang, J.; Wang, C.C.; Liu, J. Construction, Expression and Characterization of the Engineered Antibody against Tumor Surface Antigen, P185(c-ErbB-2). Cell Res. 2003, 13, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Arndt, K.M.; Müller, K.M.; Plückthun, A. Factors Influencing the Dimer to Monomer Transition of an Antibody Single-Chain Fv Fragment. Biochemistry 1998, 37, 12918–12926. [Google Scholar] [CrossRef] [PubMed]
- Röthlisberger, D.; Honegger, A.; Plückthun, A. Domain Interactions in the Fab Fragment: A Comparative Evaluation of the Single-Chain Fv and Fab Format Engineered with Variable Domains of Different Stability. J. Mol. Biol. 2005, 347, 773–789. [Google Scholar] [CrossRef]
- Garousi, J.; Orlova, A.; Frejd, F.Y.; Tolmachev, V. Imaging Using Radiolabelled Targeted Proteins: Radioimmunodetection and Beyond. EJNMMI Radiopharm. Chem. 2020, 5, 16. [Google Scholar] [CrossRef]
- Tsai, W.-T.K.; Wu, A.M. Aligning Physics and Physiology: Engineering Antibodies for Radionuclide Delivery. J. Label. Compd. Radiopharm. 2018, 61, 693–714. [Google Scholar] [CrossRef] [PubMed]
- Mazzocco, C.; Fracasso, G.; Germain-Genevois, C.; Dugot-Senant, N.; Figini, M.; Colombatti, M.; Grenier, N.; Couillaud, F. In Vivo Imaging of Prostate Cancer Using an Anti-PSMA ScFv Fragment as a Probe. Sci. Rep. 2016, 6, 23314. [Google Scholar] [CrossRef] [PubMed]
- Frigerio, B.; Benigni, F.; Luison, E.; Seregni, E.; Pascali, C.; Fracasso, G.; Morlino, S.; Valdagni, R.; Mezzanzanica, D.; Canevari, S.; et al. Effect of Radiochemical Modification on Biodistribution of ScFvD2B Antibody Fragment Recognising Prostate Specific Membrane Antigen. Immunol. Lett. 2015, 168, 105–110. [Google Scholar] [CrossRef]
- Frigerio, B.; Franssen, G.; Luison, E.; Satta, A.; Seregni, E.; Colombatti, M.; Fracasso, G.; Valdagni, R.; Mezzanzanica, D.; Boerman, O.; et al. Full Preclinical Validation of The123I-Labeled Anti-PSMA Antibody Fragment ScFvD2B for Prostate Cancer Imaging. Oncotarget 2017, 8, 10919–10930. [Google Scholar] [CrossRef] [Green Version]
- Frigerio, B.; Morlino, S.; Luison, E.; Seregni, E.; Lorenzoni, A.; Satta, A.; Valdagni, R.; Bogni, A.; Chiesa, C.; Mira, M.; et al. Anti-PSMA (124)I-ScFvD2B as a New Immuno-PET Tool for Prostate Cancer: Preclinical Proof of Principle. J. Exp. Clin. Cancer Res. CR 2019, 38, 326. [Google Scholar] [CrossRef]
- Carpanese, D.; Ferro-Flores, G.; Ocampo-Garcia, B.; Santos-Cuevas, C.; Salvarese, N.; Figini, M.; Fracasso, G.; De Nardo, L.; Bolzati, C.; Rosato, A.; et al. Development of (177)Lu-ScFvD2B as a Potential Immunotheranostic Agent for Tumors Overexpressing the Prostate Specific Membrane Antigen. Sci. Rep. 2020, 10, 9313. [Google Scholar] [CrossRef]
- Ullah, K.; Addai Peprah, F.; Yu, F.; Shi, H. The Application of Prostate Specific Membrane Antigen in CART-cell Therapy for Treatment of Prostate Carcinoma (Review). Oncol. Rep. 2018, 40, 3136–3143. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Shao, Y.; Zhang, X.; Lu, G.; Liu, B. IL-23 and PSMA-Targeted Duo-CAR T Cells in Prostate Cancer Eradication in a Preclinical Model. J. Transl. Med. 2020, 18, 23. [Google Scholar] [CrossRef] [PubMed]
- Zuccolotto, G.; Penna, A.; Fracasso, G.; Montagner, I.M.; Carpanese, D.; Tosi, A.; Rosato, A. PSMA-Specific Car-Engineered T Cells for Prostate Cancer: CD28 outperforms combined CD28-41BB “Super-Stimulation”. Front. Oncol. 2021, 11, 708073. [Google Scholar] [CrossRef]
- Satta, A.; Mezzanzanica, D.; Turatti, F.; Canevari, S.; Figini, M. Redirection of T-Cell Effector Functions for Cancer Therapy: Bispecific Antibodies and Chimeric Antigen Receptors. Future Oncol. Lond. Engl. 2013, 9, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Zuccolotto, G.; Fracasso, G.; Merlo, A.; Montagner, I.M.; Rondina, M.; Bobisse, S.; Figini, M.; Cingarlini, S.; Colombatti, M.; Zanovello, P.; et al. PSMA-Specific CAR-Engineered T Cells Eradicate Disseminated Prostate Cancer in Preclinical Models. PLoS ONE 2014, 9, e109427. [Google Scholar] [CrossRef] [Green Version]
- Montagner, I.M.; Penna, A.; Fracasso, G.; Carpanese, D.; Dalla Pietà, A.; Barbieri, V.; Zuccolotto, G.; Rosato, A. Anti-PSMA CAR-Engineered NK-92 Cells: An Off-the-Shelf Cell Therapy for Prostate Cancer. Cells 2020, 9, 1382. [Google Scholar] [CrossRef]
- Bruell, D.; Bruns, C.J.; Yezhelyev, M.; Huhn, M.; Müller, J.; Ischenko, I.; Fischer, R.; Finnern, R.; Jauch, K.-W.; Barth, S. Recombinant Anti-EGFR Immunotoxin 425(ScFv)-ETA’ Demonstrates Anti-Tumor Activity against Disseminated Human Pancreatic Cancer in Nude Mice. Int. J. Mol. Med. 2005, 15, 305–313. [Google Scholar] [CrossRef]
Purpose | Imaging | Imaging/Therapy | Therapy | Therapy |
---|---|---|---|---|
Compound name | 111In-IgGD2B | 111In-DTPA-D2B-IRDye700DX | D2B–cisplatin–CNH conjugate | 223RaA-silane-PEG-D2B |
IgGD2B manipulation | Conjugation with ITC-DTPA and 111In radiolabeling | Conjugation with IRDye700DX and DTPA and 111In radiolabeling | Conjugation with CNH and cisplatin in a prodrug form | Conjugation with NaA zeolite nanocarrier and 223Ra radiolabeling |
Model system | In vivo xenografts (PSMA+ vs. PSMA− | In vivo xenografts (PSMA+ vs. PSMA−) | In vitro cell lines (PSMA+ vs. PSMA−) | In vitro cell lines (PSMA+ vs. PSMA−) |
Results | Xenografts clearly visualized in SPECT/CT with specific differentiation of PSMA+ imaging at 168 h post-injection | Xenografts clearly visualized using µSPECT/CT. PSMA-tPDT efficiently inhibit growth of PSMA-expressing tumors and prolong median survival | Selective binding, uptake, and killing of PSMA+ activities are enhanced when the nanosystems are shielded with BSA | Selective binding, uptake, and killing of PSMA+ |
Main Conclusions | Intact IgGD2B can be used when high concentrations of the antibody in the tumor are required | Near-infrared imaging can be used to guide surgical removal. PSMA-targeted photodynamic therapy (tPDT) can act on tumor remnants not removable surgically | This new system allows the variation of the quantity of drug or antibody attached to the nanostructure to play with the killing efficacy | 223RaA-silane-PEG-D2B might be a promising agent for the targeted treatment of human PCa |
Reference | [28,29] | [30] | [31] | [32] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frigerio, B.; Luison, E.; Desideri, A.; Iacovelli, F.; Camisaschi, C.; Seregni, E.C.; Canevari, S.; Figini, M. Validity of Anti-PSMA ScFvD2B as a Theranostic Tool: A Narrative-Focused Review. Biomedicines 2021, 9, 1870. https://doi.org/10.3390/biomedicines9121870
Frigerio B, Luison E, Desideri A, Iacovelli F, Camisaschi C, Seregni EC, Canevari S, Figini M. Validity of Anti-PSMA ScFvD2B as a Theranostic Tool: A Narrative-Focused Review. Biomedicines. 2021; 9(12):1870. https://doi.org/10.3390/biomedicines9121870
Chicago/Turabian StyleFrigerio, Barbara, Elena Luison, Alessandro Desideri, Federico Iacovelli, Chiara Camisaschi, Ettore C. Seregni, Silvana Canevari, and Mariangela Figini. 2021. "Validity of Anti-PSMA ScFvD2B as a Theranostic Tool: A Narrative-Focused Review" Biomedicines 9, no. 12: 1870. https://doi.org/10.3390/biomedicines9121870
APA StyleFrigerio, B., Luison, E., Desideri, A., Iacovelli, F., Camisaschi, C., Seregni, E. C., Canevari, S., & Figini, M. (2021). Validity of Anti-PSMA ScFvD2B as a Theranostic Tool: A Narrative-Focused Review. Biomedicines, 9(12), 1870. https://doi.org/10.3390/biomedicines9121870