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Abstract: Hu-antigen R (HuR) is a post-transcriptional regulator that belongs to the embryonic lethal
abnormal vision Drosophila-like family (ELAV). HuR regulates the stability, translation, subcellular
localization, and degradation of several target mRNAs, which are implicated in carcinogenesis and
could affect therapeutic options. HuR protein is consistently highly expressed in hepatocellular carci-
noma (HCC) compared to the adjacent normal liver tissue and is involved in the post-transcriptional
regulation of various genes implicated in liver malignant transformation. Additionally, HuR protein
seems to be a putative prognosticator in HCC, predicting worse survival. This review summarizes
the recent evidence regarding the role of HuR in primary liver tumors, as presented in clinical studies,
in vitro experiments and in vivo animal models. In conclusion, our review supports the consistent
role of HuR protein in the development, prognosis, and treatment of HCC. Additional studies are
expected to expand current information and exploit its putative employment as a future candidate
for more personalized treatment in these tumors.
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1. Introduction

Hu-antigen R (HuR) or ELAV (embryonic lethal, abnormal vision Drosophila)-like
protein 1 (ELAVL1) is a ubiquitously expressed RNA-binding post-transcriptional regulator,
which contains three highly conserved RNA binding domains and belongs to the RNA
recognition motif (RRM) superfamily [1,2]; RRM-1 and -2 bind to AU-rich elements (AREs),
while RRM3, by binding to the mRNA poly(A) tail, mediates canonical RNA interactions
and exists a dimerization interface localized on the α-helical face of RRM3. Significantly,
HuR binds to a U-rich sequence, usually located within the 3’ untranslated region (UTR)
of the target mRNAs and regulates directly or indirectly their stability, translation, and
nucleo-cytoplasmic translocation [3,4].

It is well-established that HuR protein translocates from the cell nucleus (abundantly
expressed) to the cytoplasm along with mRNA binding [5], and this translocation is strongly
associated with its regulatory function [6]. In addition, a plethora of proteins, microRNAs,
hormones [7], cyclic GMP (cGMP)- elevating agents [8], and several drugs appear to alter
HuR mRNA and protein levels. Moreover, the ubiquitin-mediated proteasome system’s
initiation leads to HuR protein degradation and to caspase-depended mechanisms during
apoptotic cell death [9].
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Several research studies suggest that alterations in HuR protein levels or its subcellular
localization associate with several human diseases, such as pathological inflammation [10],
atherosclerosis [11], tissue ischemia [12] and, most significantly, carcinogenesis [13,14].
Moreover, HuR appears to regulate proteins that are involved in several cancer cell func-
tions such as cell cycle regulation, apoptotic cell death, cell signaling, stress response and
inflammation [15–17].

Many clinical studies have shown that HuR protein levels correlate with a malignant
phenotype and/or patients’ prognosis in various cancer types (oral, esophageal, gastric, col-
orectal, gallbladder, renal, urothelial, pancreatic, lung, breast, cervical, and ovarian cancer).
Furthermore, current data suggest the HuR molecule acts as a potential therapeutic target
in various carcinomas (glioblastoma, breast cancer), including those of the liver [14,18].

According to the above considerations, the goal of this review is to present the current
information regarding the role of HuR protein in hepatocellular carcinoma (HCC), as
described by in vitro experiments, in vivo animal models and clinical trials. Initially, an
outline of HuR protein expression in liver cell lines and tissues is presented. Afterwards,
the unique gene products modulated by HuR protein, either directly (physical interaction
among HuR and the target mRNA) or indirectly, are referred. Last, the clinical significance
of HuR protein expression and its potential use as a therapeutic intervention against HCC
is assessed.

2. Hepatocellular Carcinoma (HCC)

HCC is the fifth most frequent cancer worldwide and the third leading cause of
cancer death, showing an increased incidence during the last decade [19]. Eight percent
(8%) of HCC cases develop in cirrhotic livers and this pre-neoplastic condition represents
the most substantial predisposing factor [20]. The molecular pathogenesis of HCC is
multifarious [21,22]. The most accepted established hypothesis is a gradual process through
which external stimuli provoke genetic modifications in mature hepatocytes, leading to cell
death and cellular proliferation/regeneration [19]. Another theory supports that cancer
cells are reprogrammed and subjected to metabolic changes, in order to respond to new
conditions through post-translational modification (PTM) [23].

3. HuR Expression in Normal Liver Tissue and Related Tumor Cell Lines

HuR protein expression has been studied in several human and mouse liver cell
lines; mouse liver progenitor 29 cell line MLP29, mouse HCC cell line SAMe-D, human
hepatoma cell line HepG2, human HCC cell lines Hep3B, SNU-182, SNU-398, SNU-449,
and SNU-475, as well as primary mouse hepatocytes isolated from a male C57BL6 and
mainly immortalized normal hepatocytes CRL4020 [24,25]. Embade et al. reported sig-
nificantly higher HuR protein levels in MLP29 and SAMe-D cell lines than in primary
mouse hepatocytes and high HuR expression in the human hepatoma HepG2 cell line [24].
The same applied to the mouse HCC-derived SAMe-D cell line [26] and all human HCC
cell lines examined, which showed higher HuR expression levels than normal CRL4020
cells [25]. Furthermore, immunofluorescent analyses of normal versus malignant liver
tissue revealed that HuR protein is down-regulated in normal human liver samples and
up-regulated in HCC samples of different aetiologies [cirrhotic patients with Hepatitis
C (HCV), alcoholic steatohepatitis, and non-alcoholic steatohepatitis (NASH)], and are
increased proportionately to their transformation status [27]. Similar observations were
reported by Zhu et al. [25]. These findings suggested that HuR protein plays a significant
role during malignant hepatocyte transformation and could also represent a novel target
for intervention in diverse liver pathologies [27].

4. HuR Target Genes and Modulators in Liver Cancer

A summary of mRNA targets of HuR protein is presented in Table 1. Recent in-
formation suggests that HuR plays a crucial role in hepatocyte proliferation, differentia-
tion and HCC transformation through post-transcriptional regulation of key transcripts
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involved in liver function. In particular, HuR protein is associated with the 3′UTR of
Methionine adenosyltransferase MAT2A mRNA, which along with MAT1A, regulates
S-adenosylmethionine synthesis (SAMe), an essential molecule that is associated with
hepatocytes’ proliferation and differentiation [27]. Several studies in HCC highlighted the
correlation of MAT2A expression with de-differentiation and rapid proliferation of cancer
cells. MAT2A up-regulation has been associated with liver regeneration during hepatocyte
de-differentiation [28,29]. HuR/methyl-HuR and AUF1 have been identified as crucial
regulators of hepatic SAMe levels during liver proliferation, de-differentiation and tumor
development. This correlation was revealed by studying the expression pattern of specific
mRNAs (AU-rich RNA binding factor 1 or AUF1 and HuR) and its association with MAT1A
and MAT2A, mRNA levels. Therefore, HuR/methyl-HuR and AUF1 appeared to control
the switch between MAT1A and MAT2A expression [27].

Table 1. HuR mRNA targets in liver tissue.

mRNA Target Function of mRNA Target Result of HuR Intervention REF

MAT2A catalyse the synthesis of
S-adenosylmethionine (SAMe)

• ↑MAT2A
• promotes hepatocyte

de-differentiation in liver
regeneration and human HCC

[27]

Mdm2 cell cycle regulator

• ↑Mdm2
• growth advantage of cancer

cells
• HuR is also stabilized by

Mdm2-mediated
NEDDylation

[24]

cyclin A and cyclin D1 cell cycle regulator
• ↑cyclin A and D1
• growth advantage of cancer

cells
[24]

caspase 3 involved in apoptosis
• ↓ caspase-3
• inhibition of apoptosis [24]

HAUSP along with Mdm2 modulate p53 function
• p53 stabilization
• regulation of apoptotic

response
[26]

Fas involved in apoptosis
• ↓ Fas
• inhibition of Fas-mediated

apoptosis
[25]

PDGF and TGFb hepatic stellate cell activators promotion of liver fibrosis [30]

Furthermore, HuR protein was found to be overexpressed in primary human HCC.
Additionally, a significant association between Mdm2 and HuR proteins’ expression in
HCC cases related to HCV infection, was noted. Moreover, high HuR protein levels in
different cell lines such as SAMe-D and MLP29 were correlated with other cell cycle regula-
tors belonging to HuR targets, such as cyclin A and cyclin D1. Furthermore, knockdown of
Mdm2 in HepG2 and MLP29 cell lines led to a substantial reduction of HuR and cyclin-A
protein levels. Also, HuR silencing triggered the induction of caspase-3 activation and
lowered the number of cells in the S-phase of the cell cycle in several cell lines (MLP29,
SAMe-D, HepG2), suggesting that HuR ablation promotes apoptosis and cell cycle ar-
rest. Consequently, a cross-talk between Mdm2 and HuR functionality was observed.
Interestingly, it has also been demonstrated that HuR was stabilized by Mdm2-depended
NEDDylation (NEDDylation is a post-translational modification and it is analogous to
ubiquitylation) in at least three lysine amino acid residues, securing its subcellular local-
ization in the nucleus and protection from degradation. Mdm2/NEDD8/HuR axis plays
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an important role in liver malignant transformation and tumor progression, potentially
amenable for cancer therapy [24].

An interesting interaction between HuR protein and LKB1 (serine/threonine-protein
kinase 11), a tumor suppressor with recently reported oncogenic functions, has been
reported. LKB1 has a crucial role in hepatocyte proliferation and liver regeneration, and
its activation in mice lacking the MAT1A gene is related to spontaneous development of
NASH and HCC. Martinez-Lopez et al. reported that LKB1 phosphorylation regulates the
cytoplasmic localization of HuR protein, which in turn, specifically binds to the 3’UTR of
HAUSP, therefore stabilizing it and raising its levels [26]. HAUSP is a nuclear ubiquitin-
specific protease that targets p53 and Mdm2 proteins as substrates and, in parallel with
Mdm2, has a vital role in p53 functionality [31]. The cytoplasmic accumulation of HAUSP
allows HAUSP-p53 interaction and leads to a more steady cytoplasmic p53 form, thus,
controlling the apoptotic response through this molecule [26].

The interference of HuR protein in the apoptosis of HCC cells was also investigated in
another study, which analyzed the interaction between HuR and Fas death receptor [25].
According to this study, HCC cell lines were found to express low FasL levels and were
resistant to Fas-FasL stimulation, in contrast to immortalized hepatocytes, which were FasL
sensitive. Moreover, it was demonstrated that HuR was interacting with the 3′-UTR of Fas
mRNA, blocking its translation. On the contrary, HuR silencing increased the levels of Fas
and sensitized HCC cells to FasL. HuR protein seemed to effectively prevent Fas-mediated
apoptosis in HCC, suggesting that targeting HuR would stimulate cell apoptosis and
reverse tumorigenic properties [25].

Several studies have supported the association between HuR protein levels and
cirrhosis, highly increasing the risk of HCC development. Woodhoo et al. suggested that
the silence of HuR in a cholestatic liver injury model reduced chemoattractant and pro-
inflammatory genes’ expression. This led to a reduction of oxidative stress, macrophage
infiltration, inflammation, liver damage, and consequently, liver fibrosis. Furthermore,
HuR appeared to regulate the activation of hepatic stellate cells (HSC) through PDGF and
TGFb [30]. Consequently, the association between HuR protein expression and liver fibrosis
is conducted by controlling HSC activation, liver damage, and inflammation.

Other studies also suggested the association between HuR protein and cellular pro-
cesses such as apoptosis and ferroptosis. Ferroptosis has been recognized as a novel cell
death mechanism, characterized by reduced cell size and increased mitochondrial mem-
brane thickness, without the classical apoptotic or necrotic morphology [32]. Increasing
protein levels of HuR triggered the initiation of autophagy and autophagosome forma-
tion [33], the key mechanism for ELAVL1-depended ferroptosis. Inhibition of autophagy
through siRNA against BECN1 led to ELAVL1-enhanced ferroptosis. The interaction
between BECN1 mRNA and HuR is the primary molecular event, initiating autophagy,
increasing autophagic ferritin degradation and consequently leading to ferroptosis. Increas-
ing knowledge on ferroptosis and related molecular mechanisms might lead to putative
therapeutic strategies for HSC and liver fibrosis [34].

It is well-known that HuR can bind and regulate the mechanisms of subsets of mRNAs
such as miRNAs and lncRNAs [35]. Several studies highlighted that HuR mediated the
function of MIR22HG lncRNA in HCC cells. Recent studies suggested alterations of HuR
nucleus/cytoplasm ratio strongly correlated with tumorigenesis [36]. The accumulation of
HuR protein within the cytoplasm was associated with negative clinical cancer patients’
outcome [34,37]. In a recent study, Zhang et al. suggested that the MIR22HG regulates
HuR subcellular localization. Moreover, wild type or mutated MIR22HG up-regulation
triggered the HuR translocation from the cytoplasm to the cell nucleus. Besides, HuR also
appeared to control the MIR22HG stability and intervened in the function of MIR22HG in
HCC. HuR regulated the stabilization of certain tumor suppressors; thus, it may constitute
a noticeable target for therapeutic strategies in cancer [38]. HuR protein molecular targets
in the liver are represented in Table 1 and Figure 1.
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Figure 1. Molecular mechanisms that trigger the activation of HuR and its downstream axis that are participated in the
progression of hepatocellularcarcinoma (HCC).

5. Clinical Significance of HuR Expression

The clinical significance of HuR expression has been studied in both HCC and other
cancers. In HCC, HuR expression levels were significantly associated with advanced clinical
stage and were related to low survival rates in patients with early disease stage (I or II) [25].
HuR proved upregulated in breast cancer, and the elevated cytoplasmic HuR expression
levels were correlated with high-grade tumors and poor patients’ overall survival (OS) and
disease-free survival (DFS) [39]. The elevated cytoplasmic HuR expression levels were also
significantly linked to higher tumor stage in colorectal cancer. In gastric cancer, the high
nuclear HuR expression levels were correlated with the depth of tumor invasion, TNM
stage, and tumor size, while the cytoplasmic HuR subcellular localization was linked to
poor patients’ survival [40,41]. Cytoplasmic HuR expression was linked to histological
grade, lymph node and distant metastasis in Oral Squamous Cell Carcinoma (OSCC) and
lymphatic invasion in thyroid carcinoma [16]. HuR nuclear expression was also associated
with reduced DFS in ovarian carcinoma patients. The opposite effect was noted in prostate
carcinoma [42]. In lung adenocarcinoma, the elevated cytoplasmic HuR protein expression
was linked to poor patients’ clinical outcome [43].

HuR expression levels also influenced chemotherapy resistance. Pancreatic cancer
patients with high HuR protein expressing tumors, treated with gemcitabine, showed a sig-
nificantly longer DFS rate than those with low HuR expression [44]. On the other hand, HuR
overexpression in glioma was correlated with drug resistance and increased tumor growth
affecting Bcl-2 expression [45]. Additionally, HuR was found to reduce the sensitivity of
liver cancer cells to radiotherapy by upregulaing the mRNA expression of mitochondrial
transcription factor A (TFAM), which is linked to decreased radiosensitivity [46].

According to the above mentioned studies, it is prominent that HuR overexpression
and cytoplasmic localization is related to worse cancer patients’ prognosis. This is due
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to the fact that the many stress stimulators, shown to induce HuR shuttling, such as
hypoxia [47] and inflammation [48], were found in precancerous and cancerous condi-
tions. The abundantly produced HuR protein binds to mRNAs encoding proto-oncogenes,
cytokines, growth factors, and invasion related factors, stabilizing them and eventually
establishing a more aggressive cancer phenotype [42]. However, since HuR protein is
essential for the differentiation, proliferation, metastasis and survival of HCC cancer cells,
the therapeutic employment of HuR targeting might offer us the ability to regulate a wide
range of HuR-mediated pro-tumorigenic effects (Figure 2).
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6. HuR Treatment

A recent article by Liu R et al. summarized different modes of HuR protein function
targeting [49]. Targeting HuR protein with small molecules, mainly natural products,
have been previously reported, although the exact mechanistic characterization of such
compounds and their extensive use in experimental cellular and animal models is still
lacking [38,49].

Among such molecules, the most extensively examined MS-444 [50], exerted anti-
cancer effects by affecting HuR protein trafficking and inhibiting its homodimerization and
subsequently its ability for RNA binding in different cancer types [51–54]. Another small
molecule with HuR inhibitory activity, KH-3, can inhibit the growth of cancer cells, as well
as their metastatic potential in in vitro and in vivo experimental models, by mediating the
HuR-FOXQ1 connection [39].

Recently, CMLD-2, a small-agent that directly inhibits HuR protein, seems to dis-
play antitumor activity in non-small cell lung cancer (NSCLC) [55,56] and thyroid cancer
(TC) [57]. In addition, treatment of NSCLC cell lines (such as A549, HCC827, H1299, H1975)
with CMLD-2 triggered G1 phase cell-cycle arrest and apoptosis in a dose-dependent pat-
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tern, when compared to its minimal effect on normal fibroblastic cells (MRC-9 and CCD-16
cell lines). CMLD-2 seemed to reduce both HuR mRNA and mRNAs for other HuR-
dependent proteins in NSCLC cell lines. Furthermore, CMLD-2 treatment reduced the
expression levels of several genes, such as cyclin E, Bcl2, Bcl-XL and HuR, while augmented
those of Bax and p27 in NSCLC cells [55,58]. CMLD-2 treatment also activated caspase-9
and -3 and induced PARP cleavage, reduced cell viability and induced apoptosis in TC cell
lines (such as BCPAP, K1, 8505 C and/or SW1736), also affecting their migration and colony
formation ability. Additionally, CMLD-2 treatment reduced the HuR target protein levels,
microtubules-associated protein MAD2, which is upregulated in cancer [57,59]. Similarly, it
was also shown that latrunculin A, an actin-depolymerizing macrolide, and a well-known
myosin II ATPase inhibitor, blebbistatin, reduced the increased the HuR protein content of
HCC cell lines, Huh7 and HepG2, in a time- and dose-dependent pattern. Both inhibitors
strongly decreased the abundance of cytoskeletal and membrane-bound HuR protein and
conversely triggered its nuclear cell fractions in HCC [60]. In addition, both agents seemed
to reduce the expression levels of COX-2, cyclin A and cyclin D1 mRNAs in HepG2 cells.
The decreasing levels of cytoplasmic HuR by blebbistatin or latrunculin-A were correlated
with an important sub-cellular localization of HuR mRNA cargo from polysomes to ribonu-
cleoprotein (RNP) particles [61]. In addition, HuR-knockdown seemed to negatively affect
the synthesis and migration of prostaglandin E2 in HepG2 cells. Thus, interaction with the
actomyosin-dependent HuR sub-cellular trafficking might represent a putative therapeutic
option by antagonizing the pathologic posttranscriptional gene expression by HuR protein,
and consequently highlighting the beneficial effect of HuR inhibition as chemotherapeutic
HCC strategy [60].

Another study investigated the inhibitory effects of N-benzylcantharidinamide, among
a number of synthetic analogs of cantharidin agents, on matrix metalloproteinase (MMP)-
9-dependent invasive capacity of Hep3B cells. N-benzylcantharidinamide treatment sup-
pressed, dose-dependently, Hep3B cells invasive capacity, due to HuR-mediated reduced
MMP-9 mRNA stability [62,63].

Several studies widely used siRNAs against HuR in order to investigate its patho-
physiological role [14,64]. Recently, Muralidharan et al., developed nanoparticles (NPs)
in order to specifically create siRNA, targeting HuR. The therapeutic benefits of folate
receptor(FR)-α (FRA)-targeted DOTAP:Cholesterol lipid nanoparticles, which carry siRNA
against HuR (HuR-FNP) was tested in H1299 lung cancer cell line, characterized by high
levels of FRA, and in normal lung fibroblast cells (CCD16) with low or negative FRA gene
expression [65].

In H1299 cells, FNP uptake was significantly higher than in CCD16 cells, implicating
a receptor-dose effect. In addition, HuR-FNPs internalization process in H1299 cells was
more effective through FRA-mediated endocytosis. HuR-FNP decreased HuR mRNA,
further augmenting G1 phase cell-cycle arrest and triggering apoptosis in H1299 cells. No
similar effect was observed when control siRNA (C-FNP) was applied [65].

Multi-functional NP-based drug delivery systems using folic acid (FA) that trigger
simultaneous delivery of several therapeutic agents, such as cisplatin and siRNA for
human HuR mRNA, were applied in cancer cells with FR-overexpression. The dendrimer-
polyethyleneimine-cis-diamminedichloroplatinum-siRNA-folic acid (Den-PEI-CDDP-
siRNA-FA) NP machinery was proved beneficial in NSCLC cell lines (A549and H1299),
while decreased toxicity to normal lung fibroblast cells (MRC9) [65].

It was documented that a short RNA with AU-rich elements, obtained from C/EBPβ
3’UTR, which bound explicitly to HuR and competed with C/EBPβ mRNA, suppressed liver
cancer cell growth. Such data support the hypothesis that the suppression of cancer cell
growth by 62 nt RNA, which contains the AU-rich elements, might explain the competitive
binding to HuR. It was noted that a 62 nt short RNA with 3′UTR derived from C/EBP
beta mRNA, significantly competed with C/EBP beta mRNA itself for the binding of HuR,
consituting the reason of C/EBP beta inhibition and consequent suppression of HCC tumor
growth [66]. According to this study, short RNA, which specifically inhibits the binding of
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HuR to its target genes (without affecting other HuR-mRNA binding interactions), might
be a putative strategy for HCC and should open novel approaches for the development of
anti HCC drugs. The function of the above molecules is summarized in Table 2.

Table 2. The different functions of the compounds targeting HuR.

Compound Function REF

MS-444 Inhibits the cytoplasmic translocation
of HuR, [50,53]

N-Benzylcantharidinamide Inhibits the cytoplasmic translocation
of HuR, [62]

Latrunculin A Inhibits the cytoplasmic translocation
of HuR, [60,61]

Blebbistatin Inhibits the cytoplasmic translocation
of HuR, [60,61]

HuR-FNP Targets HuR’s mRNA and regulates
its expression. [65]

CMLD2 Inhibits HuR binding to target mRNAs [57]

KH3 Inhibits HuR binding to target mRNAs [39]

Short RNA with AU-rich elements,
obtained from C/EBPβ 3′UTR Inhibits HuR binding to target mRNAs [66]

7. Conclusions

Increased HuR protein expression is observed in HCCs irrespective of its cause,
compared to adjacent normal tissue [25,27].

Current information suggests that in HCC, HuR protein binds to numerous mRNAs
encoding proteins implicated in liver function regulation and malignant transformation.
Typical examples are the post-transcriptional regulation of MAT2A mRNA, which catalyzes
the principal methyl donor’s synthesis and constitutes a crucial controller of hepatocyte
proliferation and differentiation SAMe. Another example includes its involvement in
the regulatory framework with Mdm2 and NEDD8, inducing growth advantage in HCC
cancer cells.

Importantly, HuR protein appears to have clinical importance in HCCs, being corre-
lated with advanced clinical stage. Furthermore, high HuR protein expression is linked to
low survival rates of early disease-stage HCC patients [25].

Based on the previously analyzed data, the current study elucidates the significance
of HuR protein in the development, prognosis, and treatment of HCC. Recent information
on HuR targeting in cell lines of different origin support the notion of future use of small
molecules or nanotechnology products in various cancer types, including HCC. Targeting
HuR protein, affecting its molecular interactions, represents a unique opportunity to
improve patients’ outcome.

In conclusion, further studies are necessary in order to lay the groundwork for setting
up a future, prospective and personalized patients’ treatment.
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