Genomic Context and Mechanisms of the ACVR1 Mutation in Fibrodysplasia Ossificans Progressiva
Abstract
:1. Introduction
2. The ACVR1 Mutation in FOP
3. Regulatory Genetic Variants in cis
4. A General Approach to Investigate Genetic Modifiers of FOP
5. Conclusions
6. Methods
- -
- Genotype-Tissue Expression (GTEx)https://gtexportal.org/home/ (accessed on 4 February 2021)
- -
- dbSNP at the NCBIhttps://www.ncbi.nlm.nih.gov/snp/ (accessed on 4 February 2021)
- -
- ENCODE consortiumhttps://www.genome.gov/Funded-Programs-Projects/ENCODE-Project-ENCyclopedia-Of-DNA-Elements (accessed on 4 February 2021)
- -
- ENCODE at the UCSC Genome Browserhttps://genome.ucsc.edu/ENCODE/ (accessed on 4 February 2021)
- -
- PROMO 3.0http://alggen.lsi.upc.edu (accessed on 4 February 2021)
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cappato, S.; Gamberale, R.; Bocciardi, R.; Brunelli, S. Genetic and Acquired Heterotopic Ossification: A Translational Tale of Mice and Men. Biomedicines 2020, 8, 611. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.B.; Hong, C.C.; Sachidanandan, C.; Babitt, J.L.; Deng, D.Y.; Hoyng, S.A.; Lin, H.Y.; Bloch, K.D.; Peterson, R.T. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 2008, 4, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.S.; Tajer, B.; Shore, E.M.; Mullins, M.C. Fibrodysplasia ossificans progressiva mutant ACVR1 signals by multiple modalities in the developing zebrafish. Elife 2020, 9, e53761. [Google Scholar] [CrossRef] [PubMed]
- Le, V.; Anderson, E.; Akiyama, T.; Wharton, K.A. Drosophila models of FOP provide mechanistic insight. Bone 2018, 109, 192–200. [Google Scholar] [CrossRef]
- Hino, K.; Ikeya, M.; Horigome, K.; Matsumoto, Y.; Ebise, H.; Nishio, M.; Sekiguchi, K.; Shibata, M.; Nagata, S.; Matsuda, S.; et al. Neofunction of ACVR1 in fibrodysplasia ossificans progressiva. Proc. Natl. Acad. Sci. USA 2015, 112, 15438–15443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatsell, S.J.; Idone, V.; Wolken, D.M.; Huang, L.; Kim, H.J.; Wang, L.; Wen, X.; Nannuru, K.C.; Jimenez, J.; Xie, L.; et al. ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci. Transl. Med. 2015, 7, 303ra137. [Google Scholar] [CrossRef] [PubMed]
- Hino, K.; Horigome, K.; Nishio, M.; Komura, S.; Nagata, S.; Zhao, C.; Jin, Y.; Kawakami, K.; Yamada, Y.; Ohta, A.; et al. Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva. J. Clin. Investig. 2017, 127, 3339–3352. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, T.; Ikeya, M. Insights into the biology of fibrodysplasia ossificans progressiva using patient-derived induced pluripotent stem cells. Regen. Ther. 2019, 11, 25–30. [Google Scholar] [CrossRef]
- Medici, D.; Shore, E.M.; Lounev, V.Y.; Kaplan, F.S.; Kalluri, R.; Olsen, B.R. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat. Med. 2010, 16, 1400–1406. [Google Scholar] [CrossRef]
- Pignolo, R.J.; Shore, E.M. Circulating osteogenic precursor cells. Crit. Rev. Eukaryot Gene Expr. 2010, 20, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Dey, D.; Bagarova, J.; Hatsell, S.J.; Armstrong, K.A.; Huang, L.; Ermann, J.; Vonner, A.J.; Shen, Y.; Mohedas, A.H.; Lee, A.; et al. Two tissue-resident progenitor lineages drive distinct phenotypes of heterotopic ossification. Sci. Transl. Med. 2016, 8, 366ra163. [Google Scholar] [CrossRef]
- Lees-Shepard, J.B.; Yamamoto, M.; Biswas, A.A.; Stoessel, S.J.; Nicholas, S.E.; Cogswell, C.A.; Devarakonda, P.M.; Schneider, M.J., Jr.; Cummins, S.M.; Legendre, N.P.; et al. Activin-dependent signaling in fibro/adipogenic progenitors causes fibrodysplasia ossificans progressiva. Nat. Commun. 2018, 9, 471–485. [Google Scholar] [CrossRef] [Green Version]
- Botman, E.; Teunissen, B.P.; Raijmakers, P.; de Graaf, P.; Yaqub, M.; Treurniet, S.; Schoenmaker, T.; Bravenboer, N.; Micha, D.; Pals, G.; et al. Diagnostic Value of Magnetic Resonance Imaging in Fibrodysplasia Ossificans Progressiva. JBMR Plus 2020, 4, e10363. [Google Scholar] [CrossRef] [Green Version]
- Shore, E.M.; Kaplan, F.S. Inherited human diseases of heterotopic bone formation. Nat. Rev. Rheumatol. 2010, 6, 518–527. [Google Scholar] [CrossRef] [Green Version]
- Barruet, E.; Morales, B.M.; Cain, C.J.; Ton, A.N.; Wentworth, K.L.; Chan, T.V.; Moody, T.A.; Haks, M.C.; Ottenhoff, T.H.; Hellman, J.; et al. NF-κB/MAPK activation underlies ACVR1-mediated inflammation in human heterotopic ossification. JCI Insight 2018, 3, e122958. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Lindborg, C.; Lounev, V.; Kim, J.H.; McCarrick-Walmsley, R.; Xu, M.; Mangiavini, L.; Groppe, J.C.; Shore, E.M.; Schipani, E.; et al. Cellular Hypoxia Promotes Heterotopic Ossification by Amplifying BMP Signaling. J. Bone Miner. Res. 2016, 31, 1652–1665. [Google Scholar] [CrossRef] [Green Version]
- Haupt, J.; Stanley, A.; McLeod, C.M.; Cosgrove, B.D.; Culbert, A.L.; Wang, L.; Mourkioti, F.; Mauck, R.L.; Shore, E.M. ACVR1(R206H) FOP mutation alters mechanosensing and tissue stiffness during heterotopic ossification. Mol. Biol. Cell 2019, 30, 17–29. [Google Scholar] [CrossRef]
- Stanley, A.; Heo, S.J.; Mauck, R.L.; Mourkioti, F.; Shore, E.M. Elevated BMP and Mechanical Signaling Through YAP1/RhoA Poises FOP Mesenchymal Progenitors for Osteogenesis. J. Bone Miner. Res. 2019, 34, 1894–1909. [Google Scholar] [CrossRef]
- Shore, E.M.; Xu, M.; Feldman, G.J.; Fenstermacher, D.A.; Cho, T.J.; Choi, I.H.; Connor, J.M.; Delai, P.; Glaser, D.L.; LeMerrer, M.; et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat. Genet. 2006, 38, 525–527. [Google Scholar] [CrossRef]
- Pacifici, M.; Shore, E.M. Common mutations in ALK2/ACVR1, a multi-faceted receptor, have roles in distinct pediatric musculoskeletal and neural orphan disorders. Cytokine Growth Factor Rev. 2016, 27, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Katagiri, T.; Tsukamoto, S.; Nakachi, Y.; Kuratani, M. Recent Topics in Fibrodysplasia Ossificans Progressiva. Endocrinol. Metab. 2018, 33, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Valer, J.A.; Sánchez-de-Diego, C.; Pimenta-Lopes, C.; Rosa, J.L.; Ventura, F. ACVR1 Function in Health and Disease. Cells 2019, 8, 1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janoff, H.B.; Muenke, M.; Johnson, L.O.; Rosenberg, A.; Shore, E.M.; Okereke, E.; Zasloff, M.; Kaplan, F.S. Fibrodysplasia ossificans progressiva in two half-sisters: Evidence for maternal mosaicism. Am. J. Med. Genet. 1996, 61, 320–324. [Google Scholar] [CrossRef]
- Youk, J.; An, Y.; Park, S.; Lee, J.K.; Ju, Y.S. The genome-wide landscape of C:G > T:A polymorphism at the CpG contexts in the human population. BMC Genom. 2020, 21, 270–281. [Google Scholar] [CrossRef]
- Casal, M.L.; Engiles, J.B.; Zakošek Pipan, M.; Berkowitz, A.; Porat-Mosenco, Y.; Mai, W.; Wurzburg, K.; Xu, M.Q.; Allen, R.; ODonnell, P.A.; et al. Identification of the Identical Human Mutation in ACVR1 in 2 Cats With Fibrodysplasia Ossificans Progressiva. Vet. Pathol. 2019, 56, 614–618. [Google Scholar] [CrossRef]
- Buczkowicz, P.; Hawkins, C. Pathology, Molecular Genetics, and Epigenetics of Diffuse Intrinsic Pontine Glioma. Front. Oncol. 2015, 5, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Han, H.J.; Jain, P.; Resnick, A.C. Shared ACVR1 mutations in FOP and DIPG: Opportunities and challenges in extending biological and clinical implications across rare diseases. Bone 2018, 109, 91–100. [Google Scholar] [CrossRef]
- Goldmann, J.M.; Veltman, J.A.; Gilissen, C. De Novo Mutations Reflect Development and Aging of the Human Germline. Trends Genet. 2019, 35, 828–839. [Google Scholar] [CrossRef] [Green Version]
- Rogers, J.G.; Chase, G.A. Paternal age effect in fibrodysplasia ossificans progressiva. J. Med. Genet. 1979, 16, 147–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jónsson, H.; Sulem, P.; Kehr, B.; Kristmundsdottir, S.; Zink, F.; Hjartarson, E.; Hardarson, M.T.; Hjorleifsson, K.E.; Eggertsson, H.P.; Gudjonsson, S.A.; et al. Parental influence on human germline de novo mutations in 1,548 trios from Iceland. Nature 2017, 549, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Goldmann, J.M.; Seplyarskiy, V.B.; Wong, W.S.W.; Vilboux, T.; Neerincx, P.B.; Bodian, D.L.; Solomon, B.D.; Veltman, J.A.; Deeken, J.F.; Gilissen, C.; et al. Germline de novo mutation clusters arise during oocyte aging in genomic regions with high double-strand-break incidence. Nat. Genet. 2018, 50, 487–492. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Moorjani, P.; Sasani, T.A.; Pedersen, B.S.; Quinlan, A.R.; Jorde, L.B.; Amster, G.; Przeworski, M. Overlooked roles of DNA damage and maternal age in generating human germline mutations. Proc. Natl. Acad. Sci. USA 2019, 116, 9491–9500. [Google Scholar] [CrossRef] [Green Version]
- Acuna-Hidalgo, R.; Veltman, J.A.; Hoischen, A. New insights into the generation and role of de novo mutations in health and disease. Genome Biol. 2016, 17, 241–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Sousa Lopes, S.M.; Roelen, B.A.; Monteiro, R.M.; Emmens, R.; Lin, H.Y.; Li, E.; Lawson, K.A.; Mummery, C.L. BMP signaling mediated by ALK2 in the visceral endoderm is necessary for the generation of primordial germ cells in the mouse embryo. Genes Dev. 2004, 18, 1838–1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bocciardi, R.; Bordo, D.; Di Duca, M.; Di Rocco, M.; Ravazzolo, R. Mutational analysis of the ACVR1 gene in Italian patients affected with fibrodysplasia ossificans progressiva: Confirmations and advancements. Eur. J. Hum. Genet. 2009, 17, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, M.; Tsukamoto, S.; Orihara, Y.; Kawamura, R.; Kuratani, M.; Haga, N.; Ikebuchi, K.; Katagiri, T. Design of primers for direct sequencing of nine coding exons in the human ACVR1 gene. Bone 2020, 138, 115469. [Google Scholar] [CrossRef] [PubMed]
- Claussnitzer, M.; Dankel, S.N.; Kim, K.H.; Quon, G.; Meuleman, W.; Haugen, C.; Glunk, V.; Sousa, I.S.; Beaudry, J.L.; Puviindran, V.; et al. FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. N. Engl. J. Med. 2015, 373, 895–907. [Google Scholar] [CrossRef] [Green Version]
- The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 2020, 369, 1318–1330. [CrossRef]
- Gamazon, E.R.; Segrè, A.V.; van de Bunt, M.; Wen, X.; Xi, H.S.; Hormozdiari, F.; Ongen, H.; Konkashbaev, A.; Derks, E.M.; Aguet, F.; et al. Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nat. Genet. 2018, 50, 956–967. [Google Scholar] [CrossRef] [Green Version]
- Castel, S.E.; Aguet, F.; Mohammadi, P.; Ardlie, K.G.; Lappalainen, T. A vast resource of allelic expression data spanning human tissues. Genome Biol. 2020, 21, 234–246. [Google Scholar] [CrossRef]
- Pignolo, R.J.; Baujat, G.; Brown, M.A.; De Cunto, C.; Di Rocco, M.; Hsiao, E.C.; Keen, R.; Al Mukaddam, M.; Sang, K.L.Q.; Wilson, A.; et al. Natural history of fibrodysplasia ossificans progressiva: Cross-sectional analysis of annotated baseline phenotypes. Orphanet J. Rare Dis. 2019, 14, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Cheung, K.; Lee, A.; Sieberg, C.; Borsook, D.; Upadhyay, J. Longitudinal Evaluation of Pain, Flare-Up, and Emotional Health in Fibrodysplasia Ossificans Progressiva: Analyses of the International FOP Registry. JBMR Plus 2019, 3, e10181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pignolo, R.J.; Cheung, K.; Kile, S.; Fitzpatrick, M.A.; De Cunto, C.; Al Mukaddam, M.; Hsiao, E.C.; Bauja, G.; Delai, P.; Eekhoff, E.M.W.; et al. Self-reported baseline phenotypes from the International Fibrodysplasia Ossificans Progressiva (FOP) Association Global Registry. Bone 2020, 134, 115274. [Google Scholar] [CrossRef] [PubMed]
- Matharu, N.; Ahituv, N. Modulating gene regulation to treat genetic disorders. Nat. Rev. Drug Discov. 2020, 19, 757–775. [Google Scholar] [CrossRef]
- Matharu, N.; Rattanasopha, S.; Tamura, S.; Maliskova, L.; Wang, Y.; Bernard, A.; Hardin, A.; Eckalbar, W.L.; Vaisse, C.; Ahituv, N. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 2019, 363, eaau0629. [Google Scholar] [CrossRef]
- Dudakovic, A.; Nam, H.K.; Wijnen, A.J.V.; Hatch, N.E. Genetic background dependent modifiers of craniosynostosis severity. J. Struct. Biol. 2020, 212, 107629. [Google Scholar] [CrossRef]
- Talsness, D.M.; Owings, K.G.; Coelho, E.; Mercenne, G.; Pleinis, J.M.; Partha, R.; Hope, K.A.; Zuberi, A.R.; Clark, N.L.; Lutz, C.M.; et al. A Drosophila screen identifies NKCC1 as a modifier of NGLY1 deficiency. Elife 2020, 9, e57831. [Google Scholar] [CrossRef]
dbSNP ID | Position | Alleles | Conservation | CRE | Effect on TF Binding | |
---|---|---|---|---|---|---|
1 | rs7586274 | chr2:156896695 LOC107985955 intron | C/T 98/2 | C: Homo, Chimp, Rhesus T: Mouse, Rat, Dog | EH38E2043429 distal enhancer-like | No effect |
2 | rs568810076 | chr2:157866444 ACVR1 intron 1 | G repeat 7G/2G 97/35G/4G/3G | poor conservation | EH38E2043925 distal enhancer-like | Yes: alleles with 5G and 2G miss a WT1 bs compared to 7G |
3 | rs79473991 | chr2:158621197 PKP4 intron | A/G 98/2 | A: Homo, Rhesus, Mouse, Dog | EH38E2044280 distal enhancer-like | No effect |
4 | rs59520356 | chr2_158651353 PKP4 intron | A/G 93/7 | A: Homo, Rhesus, Mouse, Dog, Elephant | EH38E204429 distal enhancer-like | No effect |
5 | rs58540852 | chr2:158658609 PKP4 intron | A/T 93/7 | A: Homo, Rhesus T: Mouse, Elephant | EH38E2044304 distal enhancer-like | Yes: the minor allele acquires a GATA1 bs and loses a STAT5A bs |
6 | rs73006932 | chr2:158662549 PKP4 intron | G/C 92/8 | G: Homo, Rhesus, Mouse C: Dog, Elephant | EH38E2044306 distal enhancer-like | Yes: the minor allele loses ATF3, PR B, PR A bs |
7 | rs17231614 | chr2:158724233 PKP4-AS1 intron | G/T 96/4 | G: Homo, Rhesus, Mouse, Elephant | EH38E2044344 promoter-like | Yes: the minor allele loses ETF bs and acquires RXR-α bs |
8 | rs967380 | chr2:158766477 | T/C 20/80 | T: Homo, Rhesus, Dog, Elephant | EH38E2044392 distal enhancer-like | No effect |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravazzolo, R.; Bocciardi, R. Genomic Context and Mechanisms of the ACVR1 Mutation in Fibrodysplasia Ossificans Progressiva. Biomedicines 2021, 9, 154. https://doi.org/10.3390/biomedicines9020154
Ravazzolo R, Bocciardi R. Genomic Context and Mechanisms of the ACVR1 Mutation in Fibrodysplasia Ossificans Progressiva. Biomedicines. 2021; 9(2):154. https://doi.org/10.3390/biomedicines9020154
Chicago/Turabian StyleRavazzolo, Roberto, and Renata Bocciardi. 2021. "Genomic Context and Mechanisms of the ACVR1 Mutation in Fibrodysplasia Ossificans Progressiva" Biomedicines 9, no. 2: 154. https://doi.org/10.3390/biomedicines9020154
APA StyleRavazzolo, R., & Bocciardi, R. (2021). Genomic Context and Mechanisms of the ACVR1 Mutation in Fibrodysplasia Ossificans Progressiva. Biomedicines, 9(2), 154. https://doi.org/10.3390/biomedicines9020154