Immunomodulatory Role of Urolithin A on Metabolic Diseases
Abstract
:1. Introduction
2. Current Status of Knowledge
2.1. Pharmacokinetics of UroA
2.2. Immunomodulatory Function of UroA
2.3. Modulation of Autophagy by UroA
3. Impact of UroA on Immunometabolic Diseases
3.1. Neuroinflammation and Neurodegenerative Diseases
3.2. Cardiovascular Disease
3.3. Obesity, Type 2 Diabetes, and Metabolic Syndrome
3.4. Nephrotoxicity
4. Development of UroA as a Therapeutic
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
Akt | protein kinase B |
AMPKa | AMP-activated protein kinase alpha |
Ab | amyloid beta |
APP | amyloid precursor protein |
BBB | blood–brain barrier |
C. elegans | Caenorhabditis elegans |
CRP | C-reactive protein |
EA | ellagic acid |
ET | ellagitannins |
eNOS | endothelial nitric oxide synthase |
FABP4 | fatty acid-binding protein 4 |
FMT | fecal microbiota transplantation |
GLUT4 | glucose transporter type 4 |
HDL | high-density lipoprotein |
IL1b | interleukin 1-beta |
IL6 | interleukin 6 |
IL10 | interleukin 10 |
iNOS | inducible nitric oxide synthase |
LPS | lipopolysaccharide |
MAPK | mitogen-activated protein kinase |
MPO | myeloperoxidase |
NF-κB | nuclear factor-kappa B |
NO | nitric oxide |
oxLDL | oxidized low-density lipoprotein |
PMA | phorbol myristate acetate |
PPARg | peroxisome proliferator activated receptor gamma |
ROS | reactive oxygen species |
Sirt-1 | sirtuin 1 |
TLR4 | toll-like receptor 4 |
TNFa | tumor necrosis factor |
UM-A | urolithin metabotype A |
UM-B | urolithin metabotype B |
UM-0 | metabotype 0 |
Uro | urolithin |
UroA | urolithin A |
UroB | urolithin B |
References
- Anderson, K.J.; Teuber, S.S.; Gobeille, A.; Cremin, P.; Waterhouse, A.L.; Steinberg, F.M. Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. J. Nutr. 2001, 131, 2837–2842. [Google Scholar] [CrossRef]
- Zafrilla, P.; Ferreres, F.; Tomás-Barberán, F.A. Effect of Processing and Storage on the Antioxidant Ellagic Acid Derivatives and Flavonoids of Red Raspberry (Rubus Idaeus) Jams. J. Agric. Food Chem. 2001, 49, 3651–3655. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem. 2000, 48, 4581–4589. [Google Scholar] [CrossRef]
- Kang, I.; Buckner, T.; Shay, N.F.; Gu, L.; Chung, S. Improvements in Metabolic Health with Consumption of Ellagic Acid and Subsequent Conversion into Urolithins: Evidence and Mechanisms. Adv. Nutr. 2016, 7, 961–972. [Google Scholar] [CrossRef] [Green Version]
- Cerdá, B.; Espín, J.C.; Parra, S.; Martínez, P.; Tomás-Barberán, F.A. The potent in vitro antioxidant ellagitannins from pomegranate juice are metabolised into bioavailable but poor antioxidant hydroxy-6H-dibenzopyran-6-one derivatives by the colonic microflora of healthy humans. Eur. J. Nutr 2004, 43, 205–220. [Google Scholar] [CrossRef]
- García-Villalba, R.; Beltrán, D.; Espín, J.C.; Selma, M.V.; Tomás-Barberán, F.A. Time course production of urolithins from ellagic acid by human gut microbiota. J. Agric. Food Chem. 2013, 61, 8797–8806. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; González-Sarrías, A.; García-Villalba, R.; Núñez-Sánchez, M.A.; Selma, M.V.; García-Conesa, M.T.; Espín, J.C. Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol. Nutr. Food Res. 2017, 61, 1500901. [Google Scholar] [CrossRef]
- Garcia-Mantrana, I.; Calatayud, M.; Romo-Vaquero, M.; Espin, J.C.; Selma, M.V.; Collado, M.C. Urolithin Metabotypes Can Determine the Modulation of Gut Microbiota in Healthy Individuals by Tracking Walnuts Consumption over Three Days. Nutrients 2019, 11, 2483. [Google Scholar] [CrossRef] [Green Version]
- Espin, J.C.; Larrosa, M.; Garcia-Conesa, M.T.; Tomas-Barberan, F. Biological significance of urolithins, the gut microbial ellagic Acid-derived metabolites: The evidence so far. Evid. Based Complement Altern. Med. 2013, 2013, 270418. [Google Scholar] [CrossRef] [Green Version]
- Cerdá, B.; Periago, P.; Espín, J.C.; Tomás-Barberán, F.A. Identification of Urolithin A as a Metabolite Produced by Human Colon Microflora from Ellagic Acid and Related Compounds. J. Agric. Food Chem. 2005, 53, 5571–5576. [Google Scholar] [CrossRef]
- Larrosa, M.; Gonzalez-Sarrias, A.; Yanez-Gascon, M.J.; Selma, M.V.; Azorin-Ortuno, M.; Toti, S.; Tomas-Barberan, F.; Dolara, P.; Espin, J.C. Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on phenolic metabolism. J. Nutr. Biochem. 2010, 21, 717–725. [Google Scholar] [CrossRef]
- Gimenez-Bastida, J.A.; Gonzalez-Sarrias, A.; Larrosa, M.; Tomas-Barberan, F.; Espin, J.C.; Garcia-Conesa, M.T. Ellagitannin metabolites, urolithin A glucuronide and its aglycone urolithin A, ameliorate TNF-alpha-induced inflammation and associated molecular markers in human aortic endothelial cells. Mol. Nutr. Food Res. 2012, 56, 784–796. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, J.; Zheng, G.; Qiu, Z. Methylated urolithin A, the modified ellagitannin-derived metabolite, suppresses cell viability of DU145 human prostate cancer cells via targeting miR-21. Food Chem. Toxicol. 2016, 97, 375–384. [Google Scholar] [CrossRef]
- Cortes-Martin, A.; Garcia-Villalba, R.; Gonzalez-Sarrias, A.; Romo-Vaquero, M.; Loria-Kohen, V.; Ramirez-de-Molina, A.; Tomas-Barberan, F.A.; Selma, M.V.; Espin, J.C. The gut microbiota urolithin metabotypes revisited: The human metabolism of ellagic acid is mainly determined by aging. Food Funct. 2018, 9, 4100–4106. [Google Scholar] [CrossRef]
- Gonzalez-Sarrias, A.; Garcia-Villalba, R.; Romo-Vaquero, M.; Alasalvar, C.; Orem, A.; Zafrilla, P.; Tomas-Barberan, F.A.; Selma, M.V.; Espin, J.C. Clustering according to urolithin metabotype explains the interindividual variability in the improvement of cardiovascular risk biomarkers in overweight-obese individuals consuming pomegranate: A randomized clinical trial. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef]
- Selma, M.V.; Beltran, D.; Garcia-Villalba, R.; Espin, J.C.; Tomas-Barberan, F.A. Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food Funct. 2014, 5, 1779–1784. [Google Scholar] [CrossRef] [Green Version]
- Selma, M.V.; Tomas-Barberan, F.A.; Beltran, D.; Garcia-Villalba, R.; Espin, J.C. Gordonibacter urolithinfaciens sp. nov., a urolithin-producing bacterium isolated from the human gut. Int. J. Syst. Evol. Microbiol. 2014, 64, 2346–2352. [Google Scholar] [CrossRef]
- Henning, S.M.; Summanen, P.H.; Lee, R.-P.; Yang, J.; Finegold, S.M.; Heber, D.; Li, Z. Pomegranate ellagitannins stimulate the growth of Akkermansia muciniphila in vivo. Anaerobe 2017, 43, 56–60. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, A.; Sandhu, A.K.; Edirisinghe, I.; Burton-Freeman, B.M. Functional Deficits in Gut Microbiome of Young and Middle-Aged Adults with Prediabetes Apparent in Metabolizing Bioactive (Poly)phenols. Nutrients 2020, 12, 3595. [Google Scholar] [CrossRef]
- Gramec Skledar, D.; Tomasic, T.; Sollner Dolenc, M.; Peterlin Masic, L.; Zega, A. Evaluation of endocrine activities of ellagic acid and urolithins using reporter gene assays. Chemosphere 2019, 220, 706–713. [Google Scholar] [CrossRef]
- Muku, G.E.; Murray, I.A.; Espín, J.C.; Perdew, G.H. Urolithin A Is a Dietary Microbiota-Derived Human Aryl Hydrocarbon Receptor Antagonist. Metabolites 2018, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Sarrias, A.; Espin, J.C.; Tomas-Barberan, F.A.; Garcia-Conesa, M.T. Gene expression, cell cycle arrest and MAPK signalling regulation in Caco-2 cells exposed to ellagic acid and its metabolites, urolithins. Mol. Nutr. Food Res. 2009, 53, 686–698. [Google Scholar] [CrossRef]
- Avila-Galvez, M.A.; Gimenez-Bastida, J.A.; Gonzalez-Sarrias, A.; Espin, J.C. Tissue deconjugation of urolithin A glucuronide to free urolithin A in systemic inflammation. Food Funct. 2019, 10, 3135–3141. [Google Scholar] [CrossRef] [Green Version]
- Klebanoff, S.J. Myeloperoxidase: Friend and foe. J. Leukoc. Biol. 2005, 77, 598–625. [Google Scholar] [CrossRef]
- Davies, M.J. Myeloperoxidase-derived oxidation: Mechanisms of biological damage and its prevention. J. Clin. Biochem. Nutr. 2011, 48, 8–19. [Google Scholar] [CrossRef] [Green Version]
- Saha, P.; Yeoh, B.S.; Singh, R.; Chandrasekar, B.; Vemula, P.K.; Haribabu, B.; Vijay-Kumar, M.; Jala, V.R. Gut Microbiota Conversion of Dietary Ellagic Acid into Bioactive Phytoceutical Urolithin A Inhibits Heme Peroxidases. PLoS ONE 2016, 11, e0156811. [Google Scholar] [CrossRef] [Green Version]
- Piwowarski, J.P.; Granica, S.; Kiss, A.K. Influence of gut microbiota-derived ellagitannins’ metabolites urolithins on pro-inflammatory activities of human neutrophils. Planta Med. 2014, 80, 887–895. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, W.; Kishi, H.; Yagasaki, K.; Ohhira, S. Urolithin A attenuates pro-inflammatory mediator production by suppressing PI3-K/Akt/NF-κB and JNK/AP-1 signaling pathways in lipopolysaccharide-stimulated RAW264 macrophages: Possible involvement of NADPH oxidase-derived reactive oxygen species. Eur. J. Pharm. 2018, 833, 411–424. [Google Scholar] [CrossRef]
- Fu, X.; Gong, L.F.; Wu, Y.F.; Lin, Z.; Jiang, B.J.; Wu, L.; Yu, K.H. Urolithin A targets the PI3K/Akt/NF-kappaB pathways and prevents IL-1beta-induced inflammatory response in human osteoarthritis: In vitro and in vivo studies. Food Funct. 2019, 10, 6135–6146. [Google Scholar] [CrossRef]
- Ding, S.L.; Pang, Z.Y.; Chen, X.M.; Li, Z.; Liu, X.X.; Zhai, Q.L.; Huang, J.M.; Ruan, Z.Y. Urolithin a attenuates IL-1beta-induced inflammatory responses and cartilage degradation via inhibiting the MAPK/NF-kappaB signaling pathways in rat articular chondrocytes. J. Inflamm. 2020, 17, 13. [Google Scholar] [CrossRef] [Green Version]
- Ronning, S.B.; Voldvik, V.; Bergum, S.K.; Aaby, K.; Borge, G.I.A. Ellagic acid and urolithin A modulate the immune response in LPS-stimulated U937 monocytic cells and THP-1 differentiated macrophages. Food Funct. 2020, 11, 7946–7959. [Google Scholar] [CrossRef]
- Piwowarski, J.P.; Kiss, A.K.; Granica, S.; Moeslinger, T. Urolithins, gut microbiota-derived metabolites of ellagitannins, inhibit LPS-induced inflammation in RAW 264.7 murine macrophages. Mol. Nutr. Food Res. 2015, 59, 2168–2177. [Google Scholar] [CrossRef]
- Bobowska, A.; Granica, S.; Filipek, A.; Melzig, M.F.; Moeslinger, T.; Zentek, J.; Kruk, A.; Piwowarski, J.P. Comparative studies of urolithins and their phase II metabolites on macrophage and neutrophil functions. Eur. J. Nutr. 2020. [Google Scholar] [CrossRef]
- Boakye, Y.D.; Groyer, L.; Heiss, E.H. An increased autophagic flux contributes to the anti-inflammatory potential of urolithin A in macrophages. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 61–70. [Google Scholar] [CrossRef]
- Ryu, D.; Mouchiroud, L.; Andreux, P.A.; Katsyuba, E.; Moullan, N.; Nicolet-Dit-Félix, A.A.; Williams, E.G.; Jha, P.; Lo Sasso, G.; Huzard, D.; et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 2016, 22, 879–888. [Google Scholar] [CrossRef]
- Ghosh, N.; Das, A.; Biswas, N.; Gnyawali, S.; Singh, K.; Gorain, M.; Polcyn, C.; Khanna, S.; Roy, S.; Sen, C.K. Urolithin A augments angiogenic pathways in skeletal muscle by bolstering NAD(+) and SIRT1. Sci. Rep. 2020, 10, 20184. [Google Scholar] [CrossRef]
- Yuan, T.; Ma, H.; Liu, W.; Niesen, D.B.; Shah, N.; Crews, R.; Rose, K.N.; Vattem, D.A.; Seeram, N.P. Pomegranate’s Neuroprotective Effects against Alzheimer’s Disease Are Mediated by Urolithins, Its Ellagitannin-Gut Microbial Derived Metabolites. ACS Chem. Neurosci. 2016, 7, 26–33. [Google Scholar] [CrossRef]
- Garcia, G.; Nanni, S.; Figueira, I.; Ivanov, I.; McDougall, G.J.; Stewart, D.; Ferreira, R.B.; Pinto, P.; Silva, R.F.; Brites, D.; et al. Bioaccessible (poly)phenol metabolites from raspberry protect neural cells from oxidative stress and attenuate microglia activation. Food Chem. 2017, 215, 274–283. [Google Scholar] [CrossRef]
- Kujawska, M.; Jourdes, M.; Kurpik, M.; Szulc, M.; Szaefer, H.; Chmielarz, P.; Kreiner, G.; Krajka-Kuzniak, V.; Mikolajczak, P.L.; Teissedre, P.L.; et al. Neuroprotective Effects of Pomegranate Juice against Parkinson’s Disease and Presence of Ellagitannins-Derived Metabolite-Urolithin A-In the Brain. Int. J. Mol. Sci. 2019, 21, 202. [Google Scholar] [CrossRef] [Green Version]
- Cherry, J.D.; Olschowka, J.A.; O’Banion, M.K. Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. J. Neuroinflamm. 2014, 11, 98. [Google Scholar] [CrossRef] [Green Version]
- Behl, C. Apoptosis and Alzheimer’s disease. J. Neural. Transm. 2000, 107, 1325–1344. [Google Scholar] [CrossRef]
- DaSilva, N.A.; Nahar, P.P.; Ma, H.; Eid, A.; Wei, Z.; Meschwitz, S.; Zawia, N.H.; Slitt, A.L.; Seeram, N.P. Pomegranate ellagitannin-gut microbial-derived metabolites, urolithins, inhibit neuroinflammation in vitro. Nutr. Neurosci. 2019, 22, 185–195. [Google Scholar] [CrossRef]
- Xu, J.; Yuan, C.; Wang, G.; Luo, J.; Ma, H.; Xu, L.; Mu, Y.; Li, Y.; Seeram, N.P.; Huang, X.; et al. Urolithins Attenuate LPS-Induced Neuroinflammation in BV2Microglia via MAPK, Akt, and NF-κB Signaling Pathways. J. Agric. Food Chem. 2018, 66, 571–580. [Google Scholar] [CrossRef]
- Kim, K.B.; Lee, S.; Kim, J.H. Neuroprotective effects of urolithin A on H2O2-induced oxidative stress-mediated apoptosis in SK-N-MC cells. Nutr. Res. Pr. 2020, 14, 3–11. [Google Scholar] [CrossRef]
- Lin, X.H.; Ye, X.J.; Li, Q.F.; Gong, Z.; Cao, X.; Li, J.H.; Zhao, S.T.; Sun, X.D.; He, X.S.; Xuan, A.G. Urolithin A Prevents Focal Cerebral Ischemic Injury via Attenuating Apoptosis and Neuroinflammation in Mice. Neuroscience 2020, 448, 94–106. [Google Scholar] [CrossRef]
- Casedas, G.; Les, F.; Choya-Foces, C.; Hugo, M.; Lopez, V. The Metabolite Urolithin-A Ameliorates Oxidative Stress in Neuro-2a Cells, Becoming a Potential Neuroprotective Agent. Antioxidants 2020, 9, 177. [Google Scholar] [CrossRef] [Green Version]
- Swerdlow, R.H. Pathogenesis of Alzheimer’s disease. Clin. Interv. Aging 2007, 2, 347–359. [Google Scholar]
- Gong, Z.; Huang, J.; Xu, B.; Ou, Z.; Zhang, L.; Lin, X.; Ye, X.; Kong, X.; Long, D.; Sun, X.; et al. Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice. J. Neuroinflamm. 2019, 16, 62. [Google Scholar] [CrossRef] [Green Version]
- Velagapudi, R.; Lepiarz, I.; El-Bakoush, A.; Katola, F.O.; Bhatia, H.; Fiebich, B.L.; Olajide, O.A. Induction of Autophagy and Activation of SIRT-1 Deacetylation Mechanisms Mediate Neuroprotection by the Pomegranate Metabolite Urolithin A in BV2 Microglia and Differentiated 3D Human Neural Progenitor Cells. Mol. Nutr. Food Res 2019, 63, e1801237. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Chen, F.; Lei, J.; Li, Q.; Zhou, B. Activation of the miR-34a-Mediated SIRT1/mTOR Signaling Pathway by Urolithin A Attenuates D-Galactose-Induced Brain Aging in Mice. Neurotherapeutics 2019, 16, 1269–1282. [Google Scholar] [CrossRef]
- Ahsan, A.; Zheng, Y.-R.; Wu, X.-L.; Tang, W.-D.; Liu, M.-R.; Ma, S.-J.; Jiang, L.; Hu, W.-W.; Zhang, X.-N.; Chen, Z. Urolithin A-activated autophagy but not mitophagy protects against ischemic neuronal injury by inhibiting ER stress in vitro and in vivo. CNS Neurosci. Ther. 2019, 25, 976–986. [Google Scholar] [CrossRef] [Green Version]
- Dirimanov, S.; Högger, P. Screening of Inhibitory Effects of Polyphenols on Akt-Phosphorylation in Endothelial Cells and Determination of Structure-Activity Features. Biomolecules 2019, 9, 219. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zhang, C.; Zheng, G.-H.; Qiu, Z. Emblic Leafflower (Phyllanthus emblica L.) Fruits Ameliorate Vascular Smooth Muscle Cell Dysfunction in Hyperglycemia: An Underlying Mechanism Involved in Ellagitannin Metabolite Urolithin. A Evid. Based Complementary Altern. Med. Ecam. 2018, 2018, 8478943. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Mo, Y.; Li, Y.; Zhong, Y.; He, S.; Zhang, Y.; Tang, Y.; Fu, S.; Wang, X.; Chen, A. Urolithin A alleviates myocardial ischemia/reperfusion injury via PI3K/Akt pathway. Biochem. Biophys. Res. Commun. 2017, 486, 774–780. [Google Scholar] [CrossRef]
- Han, Q.A.; Yan, C.; Wang, L.; Li, G.; Xu, Y.; Xia, X. Urolithin A attenuates ox-LDL-induced endothelial dysfunction partly by modulating microRNA-27 and ERK/PPAR-γ pathway. Mol. Nutr. Food Res. 2016, 60, 1933–1943. [Google Scholar] [CrossRef]
- Cui, G.H.; Chen, W.Q.; Shen, Z.Y. Urolithin A shows anti-atherosclerotic activity via activation of class B scavenger receptor and activation of Nef2 signaling pathway. Pharm. Rep. 2018, 70, 519–524. [Google Scholar] [CrossRef]
- Han, Q.A.; Su, D.; Shi, C.; Liu, P.; Wang, Y.; Zhu, B.; Xia, X. Urolithin A attenuated ox-LDL-induced cholesterol accumulation in macrophages partly through regulating miR-33a and ERK/AMPK/SREBP1 signaling pathways. Food Funct. 2020, 11, 3432–3440. [Google Scholar] [CrossRef]
- Savi, M.; Bocchi, L.; Mena, P.; Dall’Asta, M.; Crozier, A.; Brighenti, F.; Stilli, D.; Del Rio, D. In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc. Diabetol. 2017, 16, 80. [Google Scholar] [CrossRef]
- Kang, I.; Kim, Y.; Tomas-Barberan, F.A.; Espin, J.C.; Chung, S. Urolithin A, C, and D, but not iso-urolithin A and urolithin B, attenuate triglyceride accumulation in human cultures of adipocytes and hepatocytes. Mol. Nutr. Food Res. 2016, 60, 1129–1138. [Google Scholar] [CrossRef] [Green Version]
- Les, F.; Arbonés-Mainar, J.M.; Valero, M.S.; López, V. Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. J. Ethnopharmacol. 2018, 220, 67–74. [Google Scholar] [CrossRef]
- Cisneros-Zevallos, L.; Bang, W.Y.; Delgadillo-Puga, C. Ellagic Acid and Urolithins A and B Differentially Regulate Fat Accumulation and Inflammation in 3T3-L1 Adipocytes While Not Affecting Adipogenesis and Insulin Sensitivity. Int. J. Mol. Sci. 2020, 21, 2086. [Google Scholar] [CrossRef] [Green Version]
- Xia, B.; Shi, X.C.; Xie, B.C.; Zhu, M.Q.; Chen, Y.; Chu, X.Y.; Cai, G.H.; Liu, M.; Yang, S.Z.; Mitchell, G.A.; et al. Urolithin A exerts antiobesity effects through enhancing adipose tissue thermogenesis in mice. PLoS Biol. 2020, 18, e3000688. [Google Scholar] [CrossRef] [Green Version]
- Toney, A.M.; Fan, R.; Xian, Y.; Chaidez, V.; Ramer-Tait, A.E.; Chung, S. Urolithin A, a Gut Metabolite, Improves Insulin Sensitivity Through Augmentation of Mitochondrial Function and Biogenesis. Obesity 2019, 27, 612–620. [Google Scholar] [CrossRef]
- Abdulrahman, A.O.; Kuerban, A.; Alshehri, Z.A.; Abdulaal, W.H.; Khan, J.A.; Khan, M.I. Urolithins Attenuate Multiple Symptoms of Obesity in Rats Fed on a High-Fat Diet. Diabetes Metab. Syndr. Obes. 2020, 13, 3337–3348. [Google Scholar] [CrossRef]
- Yang, J.; Guo, Y.; Henning, S.M.; Chan, B.; Long, J.; Zhong, J.; Acin-Perez, R.; Petcherski, A.; Shirihai, O.; Heber, D.; et al. Ellagic Acid and Its Microbial Metabolite Urolithin A Alleviate Diet-Induced Insulin Resistance in Mice. Mol. Nutr. Food Res. 2020, 64, e2000091. [Google Scholar] [CrossRef]
- Rajaram, M.V.; Ganesan, L.P.; Parsa, K.V.; Butchar, J.P.; Gunn, J.S.; Tridandapani, S. Akt/Protein kinase B modulates macrophage inflammatory response to Francisella infection and confers a survival advantage in mice. J. Immunol. 2006, 177, 6317–6324. [Google Scholar] [CrossRef] [Green Version]
- Vergadi, E.; Ieronymaki, E.; Lyroni, K.; Vaporidi, K.; Tsatsanis, C. Akt Signaling Pathway in Macrophage Activation and M1/M2 Polarization. J. Immunol. 2017, 198, 1006–1014. [Google Scholar] [CrossRef] [Green Version]
- Davignon, J.; Ganz, P. Role of Endothelial Dysfunction in Atherosclerosis. Circulation 2004, 109, III-27–III-32. [Google Scholar] [CrossRef] [Green Version]
- Kolluru, G.K.; Bir, S.C.; Kevil, C.G. Endothelial dysfunction and diabetes: Effects on angiogenesis, vascular remodeling, and wound healing. Int. J. Vasc. Med. 2012, 2012, 918267. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith Jr, S.C. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Mora-Cubillos, X.; Tulipani, S.; Garcia-Aloy, M.; Bullo, M.; Tinahones, F.J.; Andres-Lacueva, C. Plasma metabolomic biomarkers of mixed nuts exposure inversely correlate with severity of metabolic syndrome. Mol. Nutr. Food Res. 2015, 59, 2480–2490. [Google Scholar] [CrossRef] [Green Version]
- Guada, M.; Ganugula, R.; Vadhanam, M.; Ravi Kumar, M.N.V. Urolithin A Mitigates Cisplatin-Induced Nephrotoxicity by Inhibiting Renal Inflammation and Apoptosis in an Experimental Rat Model. J. Pharm. Exp. 2017, 363, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Jing, T.; Liao, J.; Shen, K.; Chen, X.; Xu, Z.; Tian, W.; Wang, Y.; Jin, B.; Pan, H. Protective effect of urolithin a on cisplatin-induced nephrotoxicity in mice via modulation of inflammation and oxidative stress. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2019, 129, 108–114. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, H.; Jin, Y.; Shen, K.; Chen, X.; Xu, Z.; Jin, B.; Pan, H. Role of TFEB in autophagic modulation of ischemia reperfusion injury in mice kidney and protection by urolithin A. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2019, 131, 110591. [Google Scholar] [CrossRef]
- Romo-Vaquero, M.; Cortés-Martín, A.; Loria-Kohen, V.; Ramírez-de-Molina, A.; García-Mantrana, I.; Collado, M.C.; Espín, J.C.; Selma, M.V. Deciphering the Human Gut Microbiome of Urolithin Metabotypes: Association with Enterotypes and Potential Cardiometabolic Health Implications. Mol. Nutr. Food Res. 2019, 63, e1800958. [Google Scholar] [CrossRef]
- Selma, M.V.; González-Sarrías, A.; Salas-Salvadó, J.; Andrés-Lacueva, C.; Alasalvar, C.; Örem, A.; Tomás-Barberán, F.A.; Espín, J.C. The gut microbiota metabolism of pomegranate or walnut ellagitannins yields two urolithin-metabotypes that correlate with cardiometabolic risk biomarkers: Comparison between normoweight, overweight-obesity and metabolic syndrome. Clin. Nutr. 2018, 37, 897–905. [Google Scholar] [CrossRef]
- Singh, R.; Chandrashekharappa, S.; Bodduluri, S.R.; Baby, B.V.; Hegde, B.; Kotla, N.G.; Hiwale, A.A.; Saiyed, T.; Patel, P.; Vijay-Kumar, M.; et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat. Commun. 2019, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Andreux, P.A.; Blanco-Bose, W.; Ryu, D.; Burdet, F.; Ibberson, M.; Aebischer, P.; Auwerx, J.; Singh, A.; Rinsch, C. The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nat. Metab. 2019, 1, 595–603. [Google Scholar] [CrossRef]
- Zou, D.; Ganugula, R.; Arora, M.; Nabity, M.B.; Sheikh-Hamad, D.; Kumar, M. Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. Am. J. Physiol. Ren. Physiol. 2019, 317, F1255–F1264. [Google Scholar] [CrossRef]
- Shirode, A.B.; Bharali, D.J.; Nallanthighal, S.; Coon, J.K.; Mousa, S.A.; Reliene, R. Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention. Int. J. Nanomed. 2015, 10, 475–484. [Google Scholar] [CrossRef]
- Gupta, S.; Allen-Vercoe, E.; Petrof, E.O. Fecal microbiota transplantation: In perspective. Ther. Adv. Gastroenterol. 2016, 9, 229–239. [Google Scholar] [CrossRef] [Green Version]
Category | Test Model | Disease Type/Treatment | Dose (UroA) | Metabolic Response | Ref. |
---|---|---|---|---|---|
Immune | C57BL/6 mice | Edema | 40 mg/kg/BW orally | ↓ MPO activity and LPO activity with iron chelation ↓ ear edema weight (mg) | [26] |
BMDM | 10 μM (BMDM) | ||||
Immune | Ex vivo human neutrophils | LPS inflammation | 20 μM | ↓ IL-18 production (%), MMP-9 production (%), MPO release (%) ↓ ROS release (%) ↓ Superoxide anion production activity (%) and ↑ uric acid production activity (%) | [27] |
Immune | RAW265 murine macrophages and peritoneal macrophages | LPS inflammation | 2–40 μM | ↓ TNFα, IL-6, nitrite, iNOS ↓ DNA binding response to LPS, LPS induced translocation of p65 ↑ IkBα ↓ AP-1 DNA binding activity, c-JUN and p-c-JUN ↓ p-Akt, p-JNK, p-p38 ↓ NOX (ROS) | [28] |
Immune | Human osteoarthritis chondrocytes | Osteoarthritis | 3–30 μM | ↓ Il-1β, iNOS, Cox-2, NO generation, PG32 ↓ IkBα degradation and translocation of P65 to nucleus ↓ PI3K/Akt signaling pathway ↓ p-PI3K and p-AKT-positive chondrocytes in mouse ↓ p65-positive nuclei in UA mouse chondrocytes; milder narrowing of joint space compared to OA group | [29] |
DMM mouse model | 20 mg/kg/day intragastric administration | ||||
Immune | Rat chondrocytes | Osteoarthritis | 1–15 μM | ↓ MMP13, MMP3, iNOS, Cox2, ADAMST4, MMP9 ↑ Col2a1 ↑ Collagen II, Aggrecan, Sox9 ↓ p65, p-ERK1/2, p-JNK, p-P38 | [30] |
Immune | U937 cell THP-1 | LPS inflammation | 1.5, 30 μM | ↓ Tnfα ↓ NFκB signaling, p50 and p60 subunits | [31] |
Immune | RAW 264.7 murine macrophages | LPS inflammation | 2–40 μM | ↓ NO production, nitrite, iNOS ↓ NF-κB p65 nuclear translocation ↓ binding to NFκB p50 binding ↓ IL-1β, TNFα, IL-6 | [32] |
Immune | THP-1, RAW 264.7 PBMCs, neutrophils | LPS inflammation | 40 μM | ↓ Tnfα ↑ TGFβ1 ↓ p65, ↑ p-ERK ↓ iNOS | [33] |
Autophagy | J774.1 macrophage, HEK 293 CHO-ARE-LUC reporter | LPS inflammation | 20–40 μM | ↓ NO release, ROS, pro-IL-1β ↑ LC3 II activation ↓ p-AKT (T308), pTSC2 (T1462), p-p70S6k ↓ iNOS, pro-IL1β, COX2 ↓ nuclear p65 | [34] |
Autophagy | C. elegans | HF-diet induced obesity (60% kcal from fat) | 10–50 μM (C. elegans and C2C12 myoblasts) 25 mg/kg/day in food pellets (rat studies) 50 mg/kg/day in food pellets (mouse studies) | ↑ survival, pharyngeal pumping per min, mobility, muscle fiber organization ↑ cco-1, phi-37, mev-1, sdha-1, and O2 consumption by day 8 in C. elegans ↑ formation GFP-LGG-1-positive punctae, mitochondrial content in muscle and intestine by day 5 C. elegans | [35] |
C2C12 myoblasts | ↑ LC3-II/LC3-I ratio in intestinal cells and ubiquitination and p62/SQSTM in mitochondrial fraction of intestinal cells, phospho-AMPKα, LC3II in C2C12 myoblasts, formation of endogenous autophagosomes | ||||
Sprague-Dawley and Wistar rats | |||||
C57Bl/6 mice | ↓ basal O2 consumption, ATP content ↑ grip strength, running distance (km), p-AMPKα, LC3II, ↓ p-62, ↑ pik3c3, park2, ub/sdha, ub/vdac in rodent models | ||||
Autophagy | C57Bl/6 mice | Muscle angiogenesis | 10 mg/kg/BW gavage | ↑ VEGFA, CDH5 ↑ SIRT1, PGC-1a ↑ ATP and NAD+ levels | [36] |
C2C12 myoblasts | 10 μg/mL |
Category | Test Model | Disease Type/Treatment | Dose (UroA) | Metabolic Response | Ref. |
---|---|---|---|---|---|
Neuro | R1.40 mouse hippocampal tissue SH-SY5Y neuroblastoma BV-2 mouse microglia | LPS for AD model | 10 μM | ↓ total NO ↓ IL-6 and TNFα ↑ cell viability ↓ caspase 9, caspase 3/7 release | [42] |
Neuro | BV-2 mouse microglia | LPS inflammation | 3- 30μM | ↓ NO, TNFα, IL-6, iNOS, COX2, IL-1β ↓ supernatant TNFα, IL-6, IL-1β ↑ IkBα ↓ nuclear p65, p-p65, p-IkBα ↓ p-ERK 1/2, p-p38, p-Akt | [43] |
Neuro | SK-N-MC human neuroblastoma | Neuroblastoma | 1–5 μM | ↑ cell viability ↓ intracellular ROS levels ↓ Bax/Bcl2 ratio ↓ CytC, cleaved caspase9, cleaved caspase3, cleaved PARP ↓ p-p38/p38 | [44] |
Neuro | MCAO SPF mice | Cerebral ischemia | 1.5–2 mg/kg/BW in food pellets | ↑ mNSS, ↓ spatial memory deficits ↑ BrdU+ cells, DCX+ cells in dentate gyri ↓ TUNEL-positive cells ↓ Bax, Caspase 3, and ↑ Bcl2 ↓ Il-6, Iba1 cells in hippocampus, Tnfα, Il-1β, GFAP+ cells in hippocampus ↑ p-AMPKα, p-Ikbα ↓ p-Akt/Akt, p-p65 NFκB/p65NFκB, p-ERk1/2, p-JNK, p-p38 | [45] |
Neuro | Neuro-2a cells | H2O2 treatment | 0.5–20 μM | ↓ ROS ↓ TBARs ↑ catalase activity, SOD, GR activity, GPx activity ↑ Prdx1, Prdx3 | [46] |
Neuro | APP/PS1 transgenic mice | Neuroinflammation | 300 mg/kg BW UroA orally | ↑ learning and memory deficits ↓ cell death ↑ hippocampal neurogenesis ↓ Aβ plaque number ↓ Il-1β, Il-5, Tnfα ↑AMPKα ↓ p-p65 NFκb, p38 MAPK, Bace1, APP | [48] |
Neuro | BV-2 mouse microglia, HEK293, ReNcell VM cells | LPS inflammation | 2.5–10 μM | ↓ nitrite, TNFα, IL-6 ↓ phospho-p65, acetyl-p65 ↑ SIRT1 ↑ autophagy ↓ LDH release (p < 0.001) ↓ Aβ production | [49] |
Neuro | D-galactose mice | Brain aging | 150 mg/kg/day subcutaneous injection | ↑ miR-34a mediated SIRT1/mTOR signaling pathways | [50] |
PC12 rat cells | 50, 30, 10 μg/mL | Inhibit apoptosis by ↑ autophagy | |||
Neuro | C57Bl/6 mice | MCAO focal cerebral ischemia | 2.5 or 5 mg/kg/BW intraperitoneal injection | ↓ LDH (U/L) in N2a and primary neuronal cells ↑ autophagy LC3 puncta in mCherry-LC3 transfected N2a cells and primary neurons ↑ LC3 II protein (N2a and primary neurons) ↓ p62 in mice brains ↓ ATF6, CHOP mRNA in N2a cells and brains ↓ infarct volume (%) and Neurological Deficit Score in mice | [51] |
Neuro-2a neuroblastoma | 3–30 μM | ||||
CVD | Ea.hy926 HUVEC endothelial cell | Diabetic Vascular disease | 10 μM | ↓ p-Akt Ser473/Akt total | [52] |
CVD | A7r5 VSMC | Vascular smooth muscle dysfunction | 5–40 μM | ↓ p-Akt Thr308, total B-catenin, c-myc, cyclin D1 | [53] |
CVD | C57Bl/6 mice | Myocardial reperfusion injury | 1 mg/kg/BW UroA intraperitoneal injection | ↓ INF/AAR and INF/LV, TUNEL-positive cells, ↑ Ejection Fraction, Fractional Shortening, and ↓ CK, LDH ↓ ROS, MDA and ↑ SOD ↑ Cell viability ↑ p-PI3K/total PI3K, p-Akt/total AKT, Bcl-2/Bax, and ↓ cleaved caspase 3 | [54] |
Neonatal rat cardiomyocytes | 10 μM | ||||
CVD | HAECs | oxLDL | 0.5–5 μM | ↓ LDH concentration ↑ NO and eNOS ↓ ICAM-1 and MCP-1 mRNA ↓ IL-6, ET-1 and ↑ PPARγ ↓ TNFα ↓ p-ERK/ERK, IL-6, ↑ PPARγ | [55] |
CVD | Wistar rats | Atherosclerosis | 3 mg/kg/BW orally | ↓ serum TC, TG, LDL ↓ p-Erk and AT1, ↑ SR-B1 aortic tissue ↓ chemotaxis by RANTES and MCP-1 ↑ HO-1, NQO-1, Nrf2 activity ↓ foam cells | [56] |
CVD | RAW 265.7 | Atherosclerosis | 5–20 μM | ↓ intracellular cholesterol ↑ extracellular cholesterol ↓ p-ERK, SREBP1 ↑ p-AMPKα ↓ miR-33a ↑ ABCA1 and ABCG1 | [57] |
CVD | Wistar rats | Diabetic cardiac dysfunction | 2.5 mg/kg/day intraperitoneal injection | ↓ CX3CL1 | [58] |
Obesity/MetS | hASC | Triglyceride accumulation | 30 μM | ↓ lipogenesis, Fas, aP2, PPARγ, CEBPα, ATGL, SCD-1 ↑ p-AMPKα ↑ FA oxidation | [59] |
Obesity/MetS | 3T3-L1 preadipocytes | Triglyceride accumulation | 10 and 50μM | ↓ Triglycerides ↓ PPARγ, Glut4, FAB4 | [60] |
Obesity/MetS | 3T3-L1 preadipocytes | Lipogenesis | 25 μM | ↓ intracellular triglyceride ↓ PREF-1 ↓ Glut4, Adiponectin, Leptin ↓ Tnfα, iNOS | [61] |
Obesity/MetS | C57BL/6 mice | High-fat-diet-induced obesity | 30 mg/kg/day gavage | ↓ BW gain, fat mass and plasma glucose ↑ glucose uptake ↑ EE ↑ thermogenesis ↑ T3 in BAT and iWAT, ↓ T4 in iWAT | [62] |
Obesity/MetS | C57BL/6 mice | High-fat-diet-induced obesity | 20 μg/mouse intraperitoneal injection | ↓ blood total cholesterol, LDL ↑ plasma adiponectin ↓ liver triglycerides, ↓ Huh7 lipogenesis ↓ epidydimal adipose hypertrophy ↑ mitochondrial biogenesis ↓ M1 macrophage markers Cd11c & Tnfα IL-6 & Mcp1 & IL1β ↑ M2 macrophage markers Chi3l3 (Ym1) & Mgl2 in peritoneal macrophages | [63] |
Huh7BMDM | 30 μM | ||||
Obesity/MetS | Wistar rats | Obesity | 2.5 mg/kg/BWintraperitoneal injection | ↓ body weight ↓ TBARS, ↑ SOD ↓ hepatic lipids, hepatic TG, hepatic chol, fecal lipid load ↓ LXRα, SREBP1c, P-ERK, IRE1a ↑ PPARα | [64] |
Obesity/MetS | DBA2/J mice | HF/HS diet induced IR and Obesity | 0.1% supplemented in diet | ↓ fasting glucose concentration ↓ serum FFA, ↑ serum adiponectin, ↑ Pink1, Prkn, Mfn2 in liver; Mfn2 in skeletal muscle | [65] |
Category | Test model | Disease Type/Treatment | Dose (UroA) | Metabolic Response | Ref. |
---|---|---|---|---|---|
Kidney | Sprague-Dawley rats | Cisplatin | 50 mg/kg BW orally | ↓ plasma creatinine levels ↑ protection against epithelial necrosis ↓ TIM-1, NFκB expression, Iba1, TNFα, IL-6, IFNγ, IL-1α, IL-1β, IL-13, IL-17A, IL-2 ↑ IL-10 and NOS-3 ↓ tubular cell apoptosis (number of TUNEL positive cells) | [72] |
Kidney | C57Bl/6 mice | Cisplatin | 100 mg/kg BW intraperitoneal injection | ↓ NGAL, BUN, Creatinine, Urinary KIM-1 ↓ tubular damage score ↓ TNFα, IL-23, IL-18, MIP2 ↓ CD11b positive cells in kidney ↓ HNE Protein Adducts Protein Nitration, Caspase 3 activity, DNA fragmentation ↑ GSH, GSH/GSSG ratio, ↑GSSG ↓ NOX2 ↑ Glutathione Peroxidase Activity and SOD activity | [73] |
Kidney | C57BL/6 mice | Ischemia reperfusion injury | 50 mg/kg BW (not specified) | ↓ BUN, NGAL, Creatinine, KIM-1 ↓ TNFα, IL-1β, MIP-1α, MIP2 | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toney, A.M.; Fox, D.; Chaidez, V.; Ramer-Tait, A.E.; Chung, S. Immunomodulatory Role of Urolithin A on Metabolic Diseases. Biomedicines 2021, 9, 192. https://doi.org/10.3390/biomedicines9020192
Toney AM, Fox D, Chaidez V, Ramer-Tait AE, Chung S. Immunomodulatory Role of Urolithin A on Metabolic Diseases. Biomedicines. 2021; 9(2):192. https://doi.org/10.3390/biomedicines9020192
Chicago/Turabian StyleToney, Ashley Mulcahy, Darius Fox, Virginia Chaidez, Amanda E. Ramer-Tait, and Soonkyu Chung. 2021. "Immunomodulatory Role of Urolithin A on Metabolic Diseases" Biomedicines 9, no. 2: 192. https://doi.org/10.3390/biomedicines9020192
APA StyleToney, A. M., Fox, D., Chaidez, V., Ramer-Tait, A. E., & Chung, S. (2021). Immunomodulatory Role of Urolithin A on Metabolic Diseases. Biomedicines, 9(2), 192. https://doi.org/10.3390/biomedicines9020192