Searching for Peptide Inhibitors of T Regulatory Cell Activity by Targeting Specific Domains of FOXP3 Transcription Factor
Abstract
:1. Introduction
2. Experimental Section
2.1. Production of Recombinant Proteins
2.2. Screening of FOXP3 Binder Peptides by Using Phage-Displayed Peptide Library and Biopanning
2.3. Peptide Synthesis
2.4. Biomolecular Interaction Analysis by Surface Plasmon Resonance and by Alphascreen Technology
2.5. Co-Immunoprecipitation and Western Blot Analysis
2.6. In Vitro Assays for Treg Inhibition
2.7. Tumor Cell Lines
2.8. In Vivo Tumor Experiments
2.9. Statistics
3. Results
3.1. Screening of FOXP3 Inhibitors by Using Phage-Displayed Peptide Library
3.2. Screening of Treg Inhibitors by Using Peptides Encompassing the Leucine Zipper Domain of FOXP3
3.3. Screening of Treg Inhibitors by Using Peptides Encompassing the AML/Runx1 Binding Domain of FOXP3
3.4. Screening of Treg Inhibitors Using Peptides Encompassing the FKH Domain of FOXP3
3.5. Peptide Modifications to Improve the Treg Inhibitory Capacity of Selected Peptides
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Curiel, T.J.; Coukos, G.; Zou, L.; Alvarez, X.; Cheng, P.; Mottram, P.; Evdemon-Hogan, M.; Conejo-Garcia, J.R.; Zhang, L.; Burow, M.; et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 2004, 10, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, U.K.; Moore, T.T.; Joo, H.-G.; Tanaka, Y.; Herrmann, V.; Doherty, G.; Drebin, J.A.; Strasberg, S.M.; Eberlein, T.J.; Goedegebuure, P.S.; et al. Prevalence of Regulatory T Cells Is Increased in Peripheral Blood and Tumor Microenvironment of Patients with Pancreas or Breast Adenocarcinoma. J. Immunol. 2002, 169, 2756–2761. [Google Scholar] [CrossRef] [PubMed]
- Viguier, M.; Lemaître, F.; Verola, O.; Cho, M.-S.; Gorochov, G.; Dubertret, L.; Bachelez, H.; Kourilsky, P.; Ferradini, L. Foxp3 Expressing CD4+CD25high Regulatory T Cells Are Overrepresented in Human Metastatic Melanoma Lymph Nodes and Inhibit the Function of Infiltrating T Cells. J. Immunol. 2004, 173, 1444–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, E.Y.; Chu, C.S.; Goletz, T.J.; Schlienger, K.; Yeh, H.; Coukos, G.; Rubin, S.C.; Kaiser, L.R.; June, C.H. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 2001, 61, 4766–4772. [Google Scholar] [PubMed]
- Zou, W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol. 2006, 6, 295–307. [Google Scholar] [CrossRef] [PubMed]
- E Lopes, J.; Soper, D.M.; Ziegler, S.F. Foxp3 Is Required Throughout the Life of a Regulatory T Cell. Sci. STKE 2007, 2007, pe36. [Google Scholar] [CrossRef]
- Wan, Y.Y.; Flavell, R.A. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nat. Cell Biol. 2007, 445, 766–770. [Google Scholar] [CrossRef]
- Williams, L.M.; Rudensky, A.Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat. Immunol. 2007, 8, 277–284. [Google Scholar] [CrossRef]
- Shevach, E.M. Certified professionals: CD4(+)CD25(+) suppressor T cells. J. Exp. Med. 2001, 193, F41–F46. [Google Scholar] [CrossRef]
- Casares, N.; Arribillaga, L.; Sarobe, P.; Dotor, J.; De Cerio, A.L.-D.; Melero, I.; Prieto, J.; Borrás-Cuesta, F.; Lasarte, J.J. CD4+/CD25+ Regulatory Cells Inhibit Activation of Tumor-Primed CD4+ T Cells with IFN-γ-Dependent Antiangiogenic Activity, as well as Long-Lasting Tumor Immunity Elicited by Peptide Vaccination. J. Immunol. 2003, 171, 5931–5939. [Google Scholar] [CrossRef] [Green Version]
- Casares, N.; Rudilla, F.; Arribillaga, L.; Llopiz, D.; Riezu-Boj, J.-I.; Lozano, T.; López-Sagaseta, J.; Guembe, L.; Sarobe, P.; Prieto, J.; et al. A Peptide Inhibitor of FOXP3 Impairs Regulatory T Cell Activity and Improves Vaccine Efficacy in Mice. J. Immunol. 2010, 185, 5150–5159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano, T.; Villanueva, L.; Durantez, M.; Gorraiz, M.; Ruiz, M.; Belsue, V.; Riezu-Boj, J.-I.; Hervás-Stubbs, S.; Oyarzabal, J.; Bandukwala, H.; et al. Inhibition of FOXP3/NFAT Interaction Enhances T Cell Function after TCR Stimulation. J. Immunol. 2015, 195, 3180–3189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, M.; Khong, H.; Fa’Ak, F.; Bentebibel, S.-E.; Janssen, L.M.E.; Chesson, B.C.; Creasy, C.A.; Forget, M.-A.; Kahn, L.M.S.; Pazdrak, B.; et al. Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sutmuller, R.P.; Van Duivenvoorde, L.M.; Van Elsas, A.; Schumacher, T.N.; Wildenberg, M.E.; Allison, J.P.; Toes, R.E.; Offringa, R.; Melief, C.J. Synergism of Cytotoxic T Lymphocyte–Associated Antigen 4 Blockade and Depletion of Cd25+ Regulatory T Cells in Antitumor Therapy Reveals Alternative Pathways for Suppression of Autoreactive Cytotoxic T Lymphocyte Responses. J. Exp. Med. 2001, 194, 823–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, N.A.; Vick, S.C.; Iglesia, M.D.; Brickey, W.J.; Midkiff, B.R.; McKinnon, K.P.; Reisdorf, S.; Anders, C.K.; Carey, L.A.; Parker, J.S.; et al. Treg depletion potentiates checkpoint inhibition in claudin-low breast cancer. J. Clin. Investig. 2017, 127, 3472–3483. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Samanta, A.; Song, X.; Iacono, K.T.; Bembas, K.; Tao, R.; Basu, S.; Riley, J.L.; Hancock, W.W.; Shen, Y.; et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl. Acad. Sci. USA 2007, 104, 4571–4576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudra, D.; DeRoos, P.; Chaudhry, A.; E Niec, R.; Arvey, A.; Samstein, R.M.; Leslie, C.; Shaffer, S.A.; Goodlett, D.R.; Rudensky, A.Y. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat. Immunol. 2012, 13, 1010–1019. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.; Ergun, A.; Lu, T.; Hill, J.A.; Haxhinasto, S.; Fassett, M.S.; Gazit, R.; Adoro, S.; Glimcher, L.; Chan, S.; et al. A multiply redundant genetic switch ’locks in’ the transcriptional signature of regulatory T cells. Nat. Immunol. 2012, 13, 972–980. [Google Scholar] [CrossRef]
- Kwon, H.-K.; Chen, H.-M.; Mathis, D.; Benoist, C. Different molecular complexes that mediate transcriptional induction and repression by FoxP3. Nat. Immunol. 2017, 18, 1238–1248. [Google Scholar] [CrossRef] [Green Version]
- Otvos, L., Jr.; Wade, J.D. Current challenges in peptide-based drug discovery. Front Chem. 2014, 2, 62. [Google Scholar] [CrossRef]
- Pernot, M.; Vanderesse, R.; Frochot, C.; Guillemin, F.; Barberi-Heyob, M. Stability of peptides and therapeutic success in cancer. Expert Opin. Drug Metab. Toxicol. 2011, 7, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015, 20, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano, T.; Gorraiz, M.; Lasarte-Cía, A.; Ruiz, M.; Rabal, O.; Oyarzabal, J.; Hervás-Stubbs, S.; Llopiz, D.; Sarobe, P.; Prieto, J.; et al. Blockage of FOXP3 transcription factor dimerization and FOXP3/AML1 interaction inhibits T regulatory cell activity: Sequence optimization of a peptide inhibitor. Oncotarget 2017, 8, 71709–71724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parmley, S.F.; Smith, G.P. Antibody-selectable filamentous fd phage vectors: Affinity purification of target genes. Gene 1988, 73, 305–318. [Google Scholar] [CrossRef]
- Borrás-Cuesta, F.; Golvano, J.; Sarobe, P.; Lasarte, J.J.; Prieto, I.; Szabo, A.; Guillaume, J.; Guillet, J. Insights on the amino acid side-chain interactions of a synthetic T-cell determinant. Biology 1991, 19, 187–190. [Google Scholar] [CrossRef] [Green Version]
- Wolke, C.; Tadje, J.; Bukowska, A.; Täger, M.; Bank, U.; Ittenson, A.; Ansorge, S.; Lendeckel, U. Assigning the phenotype of a natural regulatory T-cell to the human T-cell line, KARPAS-299. Int. J. Mol. Med. 2006, 17, 275–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, D.; Eastaff-Leung, N.; Bresatz-Atkins, S.; Warner, N.; Ruitenberg, J.; Krumbiegel, D.; Pederson, S.; McInnes, N.; Brown, C.Y.; Sadlon, T.; et al. Inhibition of activation induced CD154 on CD4 + CD25 − cells: A valid surrogate for human Treg suppressor function. Immunol. Cell Biol. 2012, 90, 812–821. [Google Scholar] [CrossRef] [Green Version]
- Kashima, H.; Momose, F.; Umehara, H.; Miyoshi, N.; Ogo, N.; Muraoka, D.; Shiku, H.; Harada, N.; Asai, A. Epirubicin, Identified Using a Novel Luciferase Reporter Assay for Foxp3 Inhibitors, Inhibits Regulatory T Cell Activity. PLoS ONE 2016, 11, e0156643. [Google Scholar] [CrossRef]
- Katoh, H.; Zheng, P.; Liu, Y. Signalling through FOXP3 as an X-linked tumor suppressor. Int. J. Biochem. Cell Biol. 2010, 42, 1784–1787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, J.E.; Torgerson, T.R.; Schubert, L.A.; Anover, S.D.; Ocheltree, E.L.; Ochs, H.D.; Ziegler, S.F. Analysis of FOXP3 Reveals Multiple Domains Required for Its Function as a Transcriptional Repressor. J. Immunol. 2006, 177, 3133–3142. [Google Scholar] [CrossRef] [Green Version]
- Heinze, E.; Chan, G.; Mory, R.; Khavari, R.; Alavi, A.; Chung, S.Y.; Nishimura, R.N.; Weisbart, R.H. Tumor suppressor and T-regulatory functions of Foxp3 are mediated through separate signaling pathways. Oncol. Lett. 2011, 2, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Jia, H.; Yu, J.; Liu, Y.; Ren, J.; Yang, S.; Hu, B.; Liu, L.; Lai, P.B.S.; Chen, G.G. Nuclear FOXP3 inhibits tumor growth and induced apoptosis in hepatocellular carcinoma by targeting c-Myc. Oncogenesis 2020, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Li, B.; Xiao, Y.; Chen, C.; Wang, Q.; Liu, Y.; Berezov, A.; Xu, C.; Gao, Y.; Li, Z.; et al. Structural and Biological Features of FOXP3 Dimerization Relevant to Regulatory T Cell Function. Cell Rep. 2012, 1, 665–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chae, W.-J.; Henegariu, O.; Lee, S.-K.; Bothwell, A.L.M. The mutant leucine-zipper domain impairs both dimerization and suppressive function of Foxp3 in T cells. Proc. Natl. Acad. Sci. USA 2006, 103, 9631–9636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ono, M.; Yaguchi, H.; Ohkura, N.; Kitabayashi, I.; Nagamura, Y.; Nomura, T.; Miyachi, Y.; Tsukada, T.; Sakaguchi, S. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 2007, 446, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Luo, C.; Hogan, P.G. Transcription Factors of the Nfat Family: Regulation and Function. Annu. Rev. Immunol. 1997, 15, 707–747. [Google Scholar] [CrossRef] [PubMed]
- Bandukwala, H.S.; Wu, Y.; Feuerer, M.; Chen, Y.; Barboza, B.; Ghosh, S.; Stroud, J.C.; Benoist, C.; Mathis, D.; Rao, A.; et al. Structure of a domain-swapped FOXP3 dimer on DNA and its function in regulatory T cells. Immunity 2011, 34, 479–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacchetta, R.; Passerini, L.; Gambineri, E.; Dai, M.; Allan, S.E.; Perroni, L.; Dagna-Bricarelli, F.; Sartirana, C.; Matthes-Martin, S.; Lawitschka, A.; et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J. Clin. Investig. 2006, 116, 1713–1722. [Google Scholar] [CrossRef]
- Wildin, R.S.; Ramsdell, F.; Peake, J.; Faravelli, F.; Casanova, J.-L.; Buist, N.; Levy-Lahad, E.; Mazzella, M.; Goulet, O.; Perroni, L.; et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 2001, 27, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.G.; Caridade, M.; Paiva, R.S.; Demengeot, J.; Graca, L. Sub-optimal CD4+ T-cell activation triggers autonomous TGF-beta-dependent conversion to Foxp3+ regulatory T cells. Eur J Immunol. 2011, 41, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ioan-Facsinay, A.; Van Der Voort, E.I.H.; Huizinga, T.W.J.; Toes, R.E.M. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol. 2007, 37, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Lozano, T.; Soldevilla, M.M.; Casares, N.; Villanueva, H.; Bendandi, M.; Lasarte, J.J.; Pastor, F. Targeting inhibition of Foxp3 by a CD28 2′-Fluro oligonucleotide aptamer conjugated to P60-peptide enhances active cancer immunotherapy. Biomater. 2016, 91, 73–80. [Google Scholar] [CrossRef]
- Moreno Ayala, M.A.; Gottardo, M.F.; Imsen, M.; Asad, A.S.; Bal de Kier Joffe, E.; Casares, N.; Lasarte, J.J.; Seilicovich, A.; Candolfi, M. Therapeutic blockade of Foxp3 in experimental breast cancer models. Breast Cancer Res Treat. 2017, 166, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Setiawan, M.F.; Rudan, O.; Vogt, A.; Gonzalez-Carmona, M.A.; Langhans, B.; Schmidt-Wolf, R.; Garofano, F.; Strassburg, C.P.; Lasarte, J.J.; Casares, N.; et al. FOXP3 Inhibitory Peptide P60 Increases Efficacy of Cytokine-induced Killer Cells Against Renal and Pancreatic Cancer Cells. Anticancer. Res. 2019, 39, 5369–5374. [Google Scholar] [CrossRef] [PubMed]
- Niesner, U.; Halin, C.; Lozzi, L.; Günthert, M.; Neri, P.; Wunderli-Allenspach, H.; Zardi, L.; Neri, D. Quantitation of the Tumor-Targeting Properties of Antibody Fragments Conjugated to Cell-Permeating HIV-1 TAT Peptides. Bioconjugate Chem. 2002, 13, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Lozano, T.; Casares, N.; Lasarte, J.J. Searching for the Achilles Heel of FOXP3. Front. Oncol. 2013, 3, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, T.; Liu, R.; Zhang, H.; Chang, X.; Liu, Y.; Wang, L.; Zheng, P.; Liu, Y. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J. Clin. Investig. 2007, 117, 3765–3773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, T.; Wang, L.; Morrison, C.; Chang, X.; Zhang, H.; Li, W.; Liu, Y.; Wang, Y.; Liu, X.; Chan, M.W.; et al. FOXP3 Is an X-Linked Breast Cancer Suppressor Gene and an Important Repressor of the HER-2/ErbB2 Oncogene. Cell 2007, 129, 1275–1286. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, R.; Li, W.; Chen, C.; Katoh, H.; Chen, G.-Y.; McNally, B.; Lin, L.; Zhou, P.; Zuo, T.; et al. Somatic Single Hits Inactivate the X-Linked Tumor Suppressor FOXP3 in the Prostate. Cancer Cell 2009, 16, 336–346. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.-F.; Chen, S.-Y.; Sun, Z.-R.; Miao, Q.; Liu, Y.-M.; Zeng, X.-Q.; Luo, T.-C.; Ma, L.-L.; Lian, J.-J.; Song, D.-L. FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway. Biochem. Biophys. Res. Commun. 2013, 430, 804–809. [Google Scholar] [CrossRef]
- Shi, J.Y.; Ma, L.J.; Zhang, J.W.; Duan, M.; Ding, Z.B.; Yang, L.X.; Cao, Y.; Zhou, J.; Fan, J.; Zhang, X.; et al. FOXP3 Is a HCC suppressor gene and Acts through regulating the TGF-beta/Smad2/3 signaling pathway. BMC Cancer 2017, 17, 648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, B.S.; Anaka, M.R.; Deb, S.; Freyer, C.; Ebert, L.M.; Chueh, A.C.; Al-Obaidi, S.; Behren, A.; Jayachandran, A.; Cebon, J.; et al. FOXP3 over-expression inhibits melanoma tumorigenesis via effects on proliferation and apoptosis. Oncotarget 2013, 5, 264–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.-Y.; Sun, H. Up-regulation of Foxp3 inhibits cell proliferation, migration and invasion in epithelial ovarian cancer. Cancer Lett. 2010, 287, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.L.; Brunkow, M.E.; Ramsdell, F.; O’Briant, K.C.; Zhu, Q.; Fuleihan, R.L.; Shigeoka, A.O.; Ochs, H.D.; Chance, P.F. A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA→AAUGAA) leads to the IPEX syndrome. Immunogenetics 2001, 53, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Harbuz, R.; Lespinasse, J.; Boulet, S.; Francannet, C.; Creveaux, I.; Benkhelifa, M.; Jouk, P.-S.; Lunardi, J.; Ray, P.F. Identification of new FOXP3 mutations and prenatal diagnosis of IPEX syndrome. Prenat. Diagn. 2010, 30, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Owen, C.J.; Jennings, C.E.; Imrie, H.; Lachaux, A.; Bridges, N.A.; Cheetham, T.D.; Pearce, S.H.S. Mutational Analysis of the FOXP3 Gene and Evidence for Genetic Heterogeneity in the Immunodysregulation, Polyendocrinopathy, Enteropathy Syndrome. J. Clin. Endocrinol. Metab. 2003, 88, 6034–6039. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Cabezas, O.; Minton, J.A.; Caswell, R.; Shield, J.P.; Deiss, R.; Sumnik, Z.; Cayssials, A.; Herr, M.; Loew, A.; Lewis, V.; et al. Clinical Heterogeneity in Patients With FOXP3 Mutations Presenting With Permanent Neonatal Diabetes. Diabetes Care 2008, 32, 111–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torgerson, T.R.; Linane, A.; Moes, N.; Anover, S.; Mateo, V.; Rieux–Laucat, F.; Hermine, O.; Vijay, S.; Gambineri, E.; Cerf–Bensussan, N.; et al. Severe Food Allergy as a Variant of IPEX Syndrome Caused by a Deletion in a Noncoding Region of the FOXP3 Gene. Gastroenterology 2007, 132, 1705–1717. [Google Scholar] [CrossRef]
- Koh, K.P.; Sundrud, M.S.; Rao, A. Domain requirements and sequence specificity of DNA binding for the forkhead transcription factor FOXP3. PLoS ONE 2009, 4, e8109. [Google Scholar] [CrossRef]
- Schubert, L.A.; Jeffery, E.; Zhang, Y.; Ramsdell, F.; Ziegler, S.F. Scurfin (FOXP3) Acts as a Repressor of Transcription and Regulates T Cell Activation. J. Biol. Chem. 2001, 276, 37672–37679. [Google Scholar] [CrossRef] [Green Version]
- Torgerson, T.R.; Genin, A.; Chen, C.; Zhang, M.; Zhou, B.; Añover-Sombke, S.; Frank, M.B.; Dozmorov, I.; Ocheltree, E.; Kulmala, P.; et al. FOXP3 Inhibits Activation-Induced NFAT2 Expression in T Cells Thereby Limiting Effector Cytokine Expression. J. Immunol. 2009, 183, 907–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bettelli, E.; Dastrange, M.; Oukka, M. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc. Natl. Acad. Sci. USA 2005, 102, 5138–5143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.-M.; Gao, B.; Fang, D. FoxP3 maintains Treg unresponsiveness by selectively inhibiting the promoter DNA-binding activity of AP-1. Blood 2008, 111, 3599–3606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Borde, M.; Heissmeyer, V.; Feuerer, M.; Lapan, A.D.; Stroud, J.C.; Bates, D.L.; Guo, L.; Han, A.; Ziegler, S.F.; et al. FOXP3 Controls Regulatory T Cell Function through Cooperation with NFAT. Cell 2006, 126, 375–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
SEQ ID Ner: | Peptide Sequence |
---|---|
p45 | RDGKWGSWRGRLMAP |
p46 | PKAFQYGGRAVGGLW |
p47 | GMRFFPWLGVGFAMR |
p48 | ARATFYFGGIVTSKV |
p49 | GLRERMRLPFFVFGG |
p50 | IRGLRFGPGFMWPTL |
p51 | RFRGLISLSQVYLSP |
p52 | RRQIHLVLPWRAVQS |
p53 | RSRFFAPFAFLSSGL |
p54 | LAFRPSSFFARLAYL |
p55 | SSKSLAAPLGLFVVG |
p56 | GRVSFSFVAHTWSSV |
p57 | ADLFLLFLDAVGRSG |
p58 | GMRFFPWLGVGFAMR |
p59 | RFWDYDLMLRVLRPL |
p60 | RDFQSFRKMWPFFAM |
p61 | RRIVSQLLHPLWSMP |
p62 | PLFTWSSSRFLRPGS |
p63 | PGNRLPLPARSFTRS |
p64 | AWAHSVDAILYLAGS |
p65 | GGFSLHPWWRFNHDR |
p66 | QRREAFLHSVLSKFG |
p67 | FRWVPKFFSAAALPR |
p68 | GGVHKHSPVGRVRIE |
p69 | GLSLLYRLSHGFRGV |
Ctrl peptide (Ova 254–267) | QLESIINFEKLTEV |
Foxp3 Domain | SEQ ID Ner: | Peptide Sequence |
---|---|---|
Leuzin zipper domain | F245 | QLVLEKEKLSAMQAH |
F250 | KEKLSAMQAHLAGKM | |
F255 | AMQAHLAGKMALTKA | |
AML1 binding domain | F282 | IVAAGSQGPVVPAWS |
F287 | QGPVVPAWSGPREAP | |
F299 | REAPDSLFAVRRHLW | |
F304 | SLFAVRRHLWGSHGN | |
F309 | RRHLWGSHGNSTFPE | |
F323 | FHNMRPPFTYATLIR | |
FKH domain | F338 | PPFTYATLIRWAILE |
F343 | ATLIRWAILEAPEKQ | |
F348 | WAILEAPEKQRTLNE | |
F353 | APEKQRTLNEIYHWF | |
F358 | RTLNEIYHWFTRMFA | |
F363 | IYHWFTRMFAFFRNH | |
F368 | TRMFAFFRNHPATWK | |
F373 | FFRNHPATWKNAIRH | |
F378 | PATWKNAIRHNLSLH | |
F383 | NAIRHNLSLHKCFVR | |
F388 | NLSLHKCFVRVESEK | |
F393 | KCFVRVESEKGAVWT | |
F393–403 | KCFVRVESEKG | |
F397–406 | RVESEKGAVW | |
TAT-393–493 | CGISYGRKKRRQRRR-KCFVRVESEKG | |
Ctrl peptide (Ova 254–267) | QLESIINFEKLTEV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano, T.; Casares, N.; Martil-Otal, C.; Anega, B.; Gorraiz, M.; Parker, J.; Ruiz, M.; Belsúe, V.; Pineda-Lucena, A.; Oyarzabal, J.; et al. Searching for Peptide Inhibitors of T Regulatory Cell Activity by Targeting Specific Domains of FOXP3 Transcription Factor. Biomedicines 2021, 9, 197. https://doi.org/10.3390/biomedicines9020197
Lozano T, Casares N, Martil-Otal C, Anega B, Gorraiz M, Parker J, Ruiz M, Belsúe V, Pineda-Lucena A, Oyarzabal J, et al. Searching for Peptide Inhibitors of T Regulatory Cell Activity by Targeting Specific Domains of FOXP3 Transcription Factor. Biomedicines. 2021; 9(2):197. https://doi.org/10.3390/biomedicines9020197
Chicago/Turabian StyleLozano, Teresa, Noelia Casares, Celia Martil-Otal, Blanca Anega, Marta Gorraiz, Jonathan Parker, Marta Ruiz, Virginia Belsúe, Antonio Pineda-Lucena, Julen Oyarzabal, and et al. 2021. "Searching for Peptide Inhibitors of T Regulatory Cell Activity by Targeting Specific Domains of FOXP3 Transcription Factor" Biomedicines 9, no. 2: 197. https://doi.org/10.3390/biomedicines9020197
APA StyleLozano, T., Casares, N., Martil-Otal, C., Anega, B., Gorraiz, M., Parker, J., Ruiz, M., Belsúe, V., Pineda-Lucena, A., Oyarzabal, J., & Lasarte, J. J. (2021). Searching for Peptide Inhibitors of T Regulatory Cell Activity by Targeting Specific Domains of FOXP3 Transcription Factor. Biomedicines, 9(2), 197. https://doi.org/10.3390/biomedicines9020197