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Abstract: (1) Background: The ability of cancer cells to evade the immune system is due in part to their
capacity to induce and recruit T regulatory cells (Tregs) to the tumor microenvironment. Strategies
proposed to improve antitumor immunity by depleting Tregs generally lack specificity and raise the
possibility of autoimmunity. Therefore, we propose to control Tregs by their functional inactivation
rather than depletion. Tregs are characterized by the expression of the Forkhead box protein 3
(FOXP3) transcription factor, which is considered their “master regulator”. Its interaction with DNA
is assisted primarily by its interaction with other proteins in the so-called “Foxp3 interactome”, which
elicits much of the characteristic Treg cell transcriptional signature. We speculated that the disruption
of such a protein complex by using synthetic peptides able to bind Foxp3 might have an impact on the
functionality of Treg cells and thus have a therapeutic potential in cancer treatment. (2) Methods: By
using a phage-displayed peptide library, or short synthetic peptides encompassing Foxp3 fragments,
or by studying the crystal structure of the Foxp3:NFAT complex, we have identified a series of
peptides that are able to bind Foxp3 and inhibit Treg activity. (3) Results: We identified some peptides
encompassing fragments of the leuzin zipper or the C terminal domain of Foxp3 with the capacity to
inhibit Treg activity in vitro. The acetylation/amidation of linear peptides, head-to-tail cyclization,
the incorporation of non-natural aminoacids, or the incorporation of cell-penetrating peptide motifs
increased in some cases the Foxp3 binding capacity and Treg inhibitory activity of the identified
peptides. Some of them have shown antitumoral activity in vivo. (4) Conclusions: Synthetic peptides
constitute an alternative to inhibit Foxp3 protein—protein interactions intracellularly and impair Treg
immunosuppressive activity. These peptides might be considered as potential hit compounds on the
design of new immunotherapeutic approaches against cancer.

Keywords: T regulatory cells; Foxp3 transcription factor; immunotherapy of cancer; synthetic
peptides; inhibition of protein—protein interaction

1. Introduction

Cancer progression occurs when the immune system cannot constrain tumor growth.
The ability of cancer cells to evade the immunoprotective network is due in part to their
capacity to subvert the immune response by the induction and recruitment of T regulatory
cells (Tregs) into the tumor microenvironment. In fact, Treg are generally regarded as an
obstacle to the successful clinical application of tumor immunotherapy [1-5]. They are
characterized by the expression of CD25 and the Treg-specific FOXP3 transcription factor,
which is required for their development and function [6-8]. These cells can inhibit activation
of other T-cells [9] and are needed for protection against autoimmune diseases and against
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graft versus host reactions after an organ transplant. However, the immunoregulatory
function of Treg may hinder the induction of immune responses against cancer. Indeed,
Tregs capable of suppressing the in vitro function of tumor-reactive T-cells have been found
in humans in many types of tumors and have been associated with a high death hazard
and reduced survival [1,3]. These studies support the notion that targeting Treg cells,
either by depletion or functional modulation, may offer a significant therapeutic benefit,
particularly in combination with other immune modulatory interventions such as vaccines
and checkpoint blockade [10-15].

The FOXP3 transcription factor is essential for the programming and maintenance of
Treg cells, and thus, it was considered as the “master regulator” of Treg cells [6-8]. The
capacity of FOXP3 to bind DNA is critical for its functionality; however, it is clear that
FOXP3-DNA interaction is assisted by FOXP3 cofactors and by multimerization [16,17].
The proteomic analysis of FOXP3 complexes showed that the majority of FOXP3 partners
were proteins implicated in the regulation of transcription, including many sequence-
specific transcription factors. It has been postulated that Treg cell phenotype and function
is determined by the collective activity of this transcriptional network [17-19]. This hypoth-
esis has important implications on the functionality of Tregs, and it raises new possibilities
for the design of new therapies where Treg cells or FOXP3 expression have pathological
consequences. It is clear that those compounds able to bind FOXP3 and inhibit or modify
the FOXP3 interactome might have important consequences on the whole transcriptome
signature of the FOXP3-expressing cell and consequently, on its activity.

Historically, peptides have not been considered as drug candidates even though there
are thousands of naturally occurring peptides with crucial roles in human physiology.
So far, applications of chemically synthesized peptides have been importantly limited
by their low systemic stability, poor specific biodistribution, high clearance, and poor
membrane permeability [20,21]. However, there is an increasing interest in their use
in therapy because of their high selectivity, efficacy, and tolerability (reviewed in [22]).
In this work, we have undertaken the search for possible inhibitors of Foxp3 functions
using different strategies. First, using a phage-displayed random peptide library, we
identified 20 peptides able to bind with high affinity to FOXP3. Among them, we discovered
P60, which is a peptide that is able to enter into the cells, bind to Foxp3, and impair its
functions in vivo and in vitro [11,23]. Second, we synthesized short synthetic peptides
encompassing different regions of FOXP3 with the aim to generate decoy molecules that
are able to compete with FOXP3 in the generation of its protein interactome. In some of
these identified peptides, we introduced chemical modifications such as N-term acetylation
or C-term amidation, cyclizations, or the introduction of D-aminoacids and evaluated
their effect of their inhibitory activity. This work has allowed us to identify potential hits
for future development of Treg inhibitors for their use in immunotherapeutic approaches
against cancer.

2. Experimental Section
2.1. Production of Recombinant Proteins

FOXP3, NFAT (Nuclear Factor Activated T cells), and AML1 (Acute Myeloid Leukemia
1 Protein) proteins were produced as described in previous works [11,12,23]. Briefly, plas-
mids pET20b-FOXP3, pET20b-AML1, and pET20b-NFAT were transfected into Escherichia
coli BL21 bacteria competent for the expression and subsequent purification of the protein.
The bacterial pellet was lysed in a French press (Thermo Electron Corporation), and protein
purification was carried out from the resulted supernantant (for AML1 and NFAT) or from
the inclusion bodies (FOXP3) by means of affinity chromatography using Histrap affinity
columns and the platform of an FPLC. For alpha screen assays of FOXP3/AML1 interaction,
a FOXP3-GST fusion protein was produced in Escherichia coli BL21 bacteria transfected
with plasmid pDEST15-FOXP3 (provided by Dr. Casal, Centro Nacional de Investigaciones
Oncolégicas, Madrid, Spain) and purified as described previously [11].
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2.2. Screening of FOXP3 Binder Peptides by Using Phage-Displayed Peptide Library
and Biopanning

The technique associated to phage libraries has been used to initially identify peptides
with the capacity to bind to FOXP3 by biopanning as previously described [24] with some
modifications [11]. The phage library used contained 2 x 108 different clones and was
provided by the laboratory of George P. Smith (Division of Biological Sciences Tucker
Hall, University of Missouri, USA). The biopanning process was carried out by three bind-
ing/elution rounds, each time with a lower amount of FOXP3 adhered to the wells (being
progressively reduced in each round from 2.5 to 0.02 Pg/mL, and finally to 0.002 Pg/mL).
After the last round, colonies of bacteria infected by a single phage were grown, DNA
were isolated, and the portion of the genome including the region corresponding to the
peptides displayed in the pllI protein of the phage was sequenced. To restrict the number
of peptides to be assayed, a commercial ELISA was carried out, based on an anti-M13
monoclonal antibody of the phage (HRP/Anti-M13, Amersham Pharmacia Biotech), for
the purpose of only selecting the phages with higher affinity for FOXP3.

2.3. Peptide Synthesis

Peptides were synthesized using the Apex 396 Automated Multiple Peptide Syn-
thesizer (Aapptec, Kentucky, VA, US) by the solid phase method of Merrifield using the
fluorenylmethyloxycarbonyl alternative as previously described [25]. Cyclic peptides
were synthesized by Wuxi AppTech (Shanghai, China). The purity of peptides was 90%
as judged by HPLC. Sequences of peptides derived from the phage-displayed peptide
library screening campaign are shown in Table 1. Overlapping peptides derived from the
forkhead (FKH) domain from FOXP3 are shown in Table 2. They have been named using
numbers corresponding to their location within the FOXP3 sequence (accession number
NP_054728.2). In some experiments, peptide 254-267 from ovalbumin (OVA) was used as
a control peptide (Ctrl pept).

Table 1. Peptide sequences derived from phage-displayed peptide library screening.

SEQ ID Ner: Peptide Sequence
p45 RDGKWGSWRGRLMAP
p46 PKAFQYGGRAVGGLW
p47 GMRFFPWLGVGFAMR
p48 ARATFYFGGIVTSKV
p49 GLRERMRLPFFVFGG
p50 IRGLRFGPGFMWPTL
p51 RFRGLISLSQVYLSP
p52 RRQIHLVLPWRAVQS
p53 RSRFFAPFAFLSSGL
p54 LAFRPSSFFARLAYL
p55 SSKSLAAPLGLFVVG
p56 GRVSFSFVAHTWSSV
p57 ADLFLLFLDAVGRSG
P58 GMRFFPWLGVGFAMR
p59 RFWDYDLMLRVLRPL
p60 RDFQSFRKMWPFFAM
po6l RRIVSQLLHPLWSMP
p62 PLFTWSSSRFLRPGS
p63 PGNRLPLPARSFTRS
p64 AWAHSVDAILYLAGS
p65 GGFSLHPWWRFNHDR
p66 QRREAFLHSVLSKFG
po7 FRWVPKFFSAAALPR
p68 GGVHKHSPVGRVRIE
p69 GLSLLYRLSHGFRGV

Ctrl peptide (Ova 254-267) QLESIINFEKLTEV
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Table 2. Peptide sequences derived from FOXP3 protein.

Foxp3 Domain SEQ ID Ner: Peptide Sequence

F245 QLVLEKEKLSAMQAH

Leuzin zipper domain F250 KEKLSAMQAHLAGKM
F255 AMQAHLAGKMALTKA
F282 IVAAGSQGPVVPAWS
F287 QGPVVPAWSGPREAP

AML1 binding domain F299 REAPDSLFAVRRHLW
F304 SLFAVRRHLWGSHGN
F309 RRHLWGSHGNSTFPE
F323 FHNMRPPFTYATLIR
F338 PPFTYATLIRWAILE
F343 ATLIRWAILEAPEKQ
F348 WAILEAPEKQRTLNE
F353 APEKQRTLNEIYHWF
F358 RTLNETYHWFTRMFA
F363 IYHWFTRMFAFFRNH
F368 TRMFAFFRNHPATWK

FKH domain F373 FFRNHPATWKNAIRH
F378 PATWKNAIRHNLSLH
F383 NAIRHNLSLHKCFVR
F388 NLSLHKCFVRVESEK
F393 KCFVRVESEKGAVWT

F393-403 KCFVRVESEKG
F397-406 RVESEKGAVW
TAT-393-493 CGISYGRKKRRQRRR-KCFVRVESEKG
Ctrl peptide (Ova 254-267) QLESIINFEKLTEV

2.4. Biomolecular Interaction Analysis by Surface Plasmon Resonance and by
Alphascreen Technology

The screening of peptide binders to FOXP3 was performed by surface plasmon res-
onance (SPR) using a ProteOn XPR36 (Bio-Rad, Hercules CA, USA) optical biosensor.
Recombinant protein FOXP3-6His produced and purified from E-coli was immobilized
covalently onto a GLC sensor chip (Bio-Rad) using the coupling reagents sulfo-NHS (N-
Hydroxysulfosuccinimide) and EDC (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide,
(Bio-Rad) as previously described [23]. Peptide solutions (10 uM) were injected by triplicate
in running buffer (phosphate-buffered saline, 0.005% (v/v) Tween 20, pH 7.4) at a flow of
30 pL/min. The interspot signal (obtained in the chip surface not immobilized with pro-
tein) was used as reference. FOXP3/NFAT1 and FOXP3/AMLI interactions were analyzed
by Alphascreen technology as previously described [23] according to the manufacturer’s
protocol (Perkin Elmer, Benelux). Reactions were performed in a 40 puL final volume in
96-well Optiwell microtiter plates (Perkin Elmer). The reaction buffer contained 20 mM
HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), pH 7.9, 200 mM KCl, 1 mM
MgCl2 and 0.05% bovine serum albumin (BSA). Recombinant NFAT1 expressed with a
hexa-Histidine tag was captured by nickel chelate acceptor beads, whereas recombinant
FOXP3 expressed with a GST (glutathione S-transferase) tag was captured by glutathione
donor beads (Perkin Elmer). For FOXP3 dimerization assays, GST-tagged FOXP3 and His-
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tagged FOXP3 were co-cultured in the presence or absence of the indicated peptides for
1 h. Then, donor and acceptor beads were added as described above and incubated for 2 h.
FOXP3/AML1 interaction was measured following a similar protocol using FOXP3-GST
and AML1-His proteins. Exposure of the reaction to direct light was avoided as much as
possible, and the emission of light from the acceptor beads was measured in the EnVision
plate reader after the indicated incubation period (Perkin Elmer, Benelux).

2.5. Co-Immunoprecipitation and Western Blot Analysis

HEK293 cells were cultured in Dulbecco modified Eagle medium (Invitrogen) sup-
plemented with 8% heat-inactivated fetal calf serum (FCS), penicillin, and streptomycin
(Invitrogen) at 37 °C and 5% CO2. Plasmids cells were grown to 50% confluence in 6-well
plates (Nunc) and transfected with a mixture of 2 ug of DNA plasmids (1 ug of FLAG-
FOXP3 (expressing Foxp3 linked to the DYKDDDDK peptide tag and 1 ug of HA-NFAT
expressing NFAT linked to the YPYDVPDYA peptide tag), kindly provided by Dr Paul,
Coffer, Utrech, The Netherlands)) and 8 pL PEI (polyethylenimine) overnight; the next day,
cells were treated with 393—403 L, 397—406 C, or an irrelevant peptide at 100 uM. Twenty
four hour later, HEK 293 cells were lysed in NP40 lysis buffer (0.05 M Tris-HC1 pH 7.5,
0.5% Nonidet P40, 0.15 M NaCl, 0.01 M EDTA) containing a HALT™ protease inhibitor
cocktail (ThermoScientific), and immunoprecipitation was performed utilizing anti-FLAG
coupled beads (Sigma) during 2 h at 4 C. Beads were washed 3x in lysis buffer, boiled, and
samples were separated by SDS-PAGE, electrophoretically transferred to polyvinylidene di-
fluoride membrane (Millipore, Bedford, MA), and hybridized with antibodies as indicated.
Immunocomplexes were detected using enhanced chemiluminescence (Biorad).

2.6. In Vitro Assays for Treg Inhibition

In vitro assays were carried out using (i) the Karpas 299 human cell line (ACC-31,
DSMZ, Germany), derived from a human lymphoma with a regulatory T cell profile [26]
or (ii) using natural Treg cells isolated from the murine splenocytes. To evaluate the
effect of peptides on the immunosuppressive activity of the Karpas 299 cell line, a “mixed
lymphocyte reaction” (MLR) assay was carried out using peripheral blood mononuclear
cells (PBMCs) from two donors (previously tested to induce a strong MLR reaction in
co-culture) (1 x 10° cells/well per each PBMC) in the presence or absence of Karpas 299
(1 x 10* cells/well). Peptides were added at 50 uM to the co-cultures to evaluate their
capacity to restore the production of interferon-gamma (IFN-y) inhibited by Karpas 299.
After 48 hours, the supernatants were extracted to measure interferon-gamma (IFN-y) by
means of a commercial ELISA (Pharmingen, San Diego, CA, US). In vitro assays for Treg
inhibition using natural Treg cells: Murine CD4+CD25+ (Treg cells), and CD4+CD25-T-cells
(effector T cells) were purified from murine spleen cells by using a murine regulatory T-cell
isolation kit (Miltenyi Biotec, Bergisch Gladbach, Germany) according to the manufacturer’s
instructions. The purity of the resulting T-cell populations was confirmed to be >95% by
flow cytometry. Inhibition of murine T regulatory cell function was measured in an
in vitro assay of T-cell stimulation. Effector T cells (10° cells/well) from BALB/c mice
were stimulated in vitro with 2, 5 ug/mL of anti-mouse CD3 antibody (Pharmingen) in the
presence/absence of purified Treg cells (10* cells/well) and the indicated peptides (50 M).
T-cell proliferation was measured 3 days later as previously described [23]. Percentage of
Treg inhibition was calculated using the following formula: % inhibition= 100*((cpm of
Teff&Treg co-cultures in the presence of peptide - cpm of Teff&Treg co-cultures)/(cpm of
Teff - cpm of Teff&Treg co-cultures)). The Institutional Review Board on Human Subjects
(Clinica Universidad de Navarra, Ref 2016.118) approved this research, and informed
consent was obtained from all blood donors.

2.7. Tumor Cell Lines

The cell line 4T1-FOXP3 expressing FOXP3 was generated. 4T1-WT cells were trans-
fected with empty pcDNA3.1 or with pcDNA3.1 FOXP3, expressing FOXP3 gene and
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neomycin (which confers resistance to G418 antibiotic) to generate 4T1-Ctrl and 4T1-Foxp3
cells. Briefly, 8 x 10° cells were seeded in 6-well culture plates one day prior to transfection.
The cultures were 60-80% confluent at the time of transfection. Cells were transfected
with 5 ug plasmid DNA per well for 6 hours using lipofectimine 2000 transfection reagent
(Invitrogen). After 48 hours, 0.3 mg/mL of G418 drug (GIBCO) was added to the culture
during 14 days for the selection of resistant cells. These cells were used in vitro to mea-
sure the effect of peptides to overcome the proliferative capacity inhibited by FOXP3. In
addition, 4T1-FOXP3 and 4T1-Ctrl cells were injected in vivo (10° cells/ mouse) subcuta-
neously or intravenously to compare their capacity to induce tumors and lung metastases.
Murine Lewis lung carcinoma expressing OVA, LLCOVA were kindly provided by Dr.
Daniel Ajona (CIMA). The murine colon adenocarcinoma cell line MC38, LLOOVA, 4T1-
Ctrl, and 4T1-FOXP3 were cultured in mouse medium (RPMI 1640, 10% fetal calf serum
(Sigma), 100 U/mL penicillin, 100 pg/mL streptomycin (Invitrogene), 10 mg/mL Gentam-
icin (Gibco), 2 mM L-Glutamine (Lifetechnologies), 5 mM (3-mercaptoethanol (Sigma), and
fungizone (GIBCO). All cell lines were cultured at 37 °C in a humidified atmosphere with
6.5% CO2.

2.8. In Vivo Tumor Experiments

MC38 cells (5 x 10° cells/mouse), LLCOVA (1.5 x 10° cells/mouse), or TC1 (P3A15)
cells (5 x 10° cells/mouse), were injected subcutaneously (sc) in C57/BL6 mice (n = 8 mice
per experimental group). Ten days later, when the tumor reached 5 mm in diameter,
mice were randomly divided into different experimental groups. A group of mice were
treated intraperitoneally (i.p.) with the indicated peptide (one dose of 50 pg/mouse per
day during 10 consecutive days). Tumor volume in mm?, calculated using the formula
V = (length x widthz)/ 2, was measured at regular intervals. Mice were sacrificed when
tumor size reached a volume greater than 4 cm®. Immune cells characterization in LLCOVA
tumor model. Mice bearing LLCOVA tumors and treated with the peptides were sacrificed
three day after the last peptide administration. Spleens and tumors were collected and pro-
cessed for analysis. ELISPOT: 8*10° splenocytes were stimulated with SIINFEKL peptide
(1 ug/mL) for 16 hours. Numbers of IFN-y spots were measured by the ELISPOT technique
(BD bioscience) as previously described [23]. Antibodies and flow cytometry. The following
fluorochrome-conjugated antibodies to surface and intracellular antigens (BD Biosciences)
were used at 0.25-1 pg/mL: CD8« (53-6.7), CD4, (RM4-5), CD45.2 (104), and NKP46
(29A1.4). Cells were incubated with a Zombie NIR™ Fixable Viability kit (Biolegend) for
15 min at room temperature and then washed once with washing buffer (PBS without
Ca/Mg, 0.5 M EDTA, 10% of fetal bovine serum and 1% penicillin/streptomycin). Subse-
quently, cells were incubated with specific antibodies for 30 min on ice in the presence of
2.4G2 monoclonal antibody (mAb) to block unspecific FcyR binding. Cells were fixed and
permeabilized with the FOXP3/Transcription Factor Staining kit buffers (ebioscences) and
then stained intracellularly (15 min at room temperature) with fluorochrome-conjugated
mAbs against mouse, IFN-y (XMG1.2) and FOXP3 (FJK-16s). Data acquisition was per-
formed with a FACS Canto II flow cytometer (Becton Dickinson) and analyzed by Flow]Jo
software (TreeStar). Mice were housed in appropriated animal care facilities during the
experimental period and handled following the international guidelines required for ex-
perimentation with animals. An institutional ethical committee approved the experiments
(Refs R-131-16GN and R-018-19GN).

2.9. Statistics

Normality was assessed with the Shapiro-Wilk W test. Statistical analyses were
performed using parametric (Student’s t test and one-way ANOVA) and non-parametric
(Mann-Whitney U and Kruskal-Wallis) tests. For all tests, a p value < 0.05 was consid-
ered statistically significant. Descriptive data for continuous variables are reported as
means + SEM. GraphPad Prism for Windows was used for statistical analysis.
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3. Results
3.1. Screening of FOXP3 Inhibitors by Using Phage-Displayed Peptide Library

For the purpose of obtaining peptides capable of binding to FOXP3 with high affinity,
an M13-based phage library expressing 15-mer peptides fused to the N-terminal end of
the plII coat protein was used. The screening process was carried out by means of an
affinity assay or biopanning (see Methods). After the third round of selection, a total
of 100 bacterial clones (infected with unique phages expressing peptides able to bind to
FOXP3) were obtained. To reduce the number of peptides to be assayed, a commercial
ELISA based on an anti-M13 monoclonal antibody of the phage was carried out to select
the phages with higher affinity for FOXP3 (not shown). After this second filter, 47 phage-
infected bacteria clones were grown to isolate the DNA for sequencing the portion of
the genome corresponding to the peptides displayed in the plll protein of the phage.
Sequencing analyses allowed us to identify 20 fifteen-mer peptides that were synthesized
and tested on their capacity to bind FOXP3 coated to a chip by surface plasmon resonance
(Table 1). Figure 1A shows the results obtained by this screening. Peptides were classified
in two categories according to their capacity to bind FOXP3 coated to the chips by SPR.
Thus, peptides p47, p59, p60, p50, p52, p65, p49, and p55 were considered strong FOXP3
binders (>500 RU).
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2000
1500: R?=0.3102 -
_ p=0.0016
H g
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_—
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Figure 1. Screening of FOXP3 inhibitors. (A) FOXP3 binder peptides identified using phage-displayed
peptide library were tested on their capacity to bind FOXP3 in surface plasmon resonance (SPR)
using a chip coated with FOXP3 protein. (B) Capacity of the peptides to restore the interferon-gamma
(IFN-v) production of a mixed leukocyte reaction (MLR) co-cultured with the Karpas (K) T regulatory
cell (Treg) cell line. (C) Correlation between FOXP3 binding capacity of the peptides (measured in
(A) by SPR) and their Treg inhibitory capacity measured in (B). (D) Effect of selected peptides on
T cell proliferation of effector murine T cells in response to anti-CD3 antibody stimulation.

After this first biochemical assay, we then evaluated these peptides in a cell-based
assay. Thus, their capacity to inhibit the immunosuppressive activity of the regulatory
T cell line Karpas [26-28] in a mixed leukocyte reaction (MLR) was tested. PBMCs from
two different healthy donors (PBMC1 and PBMC2) were mixed in culture to stimulate the
production of IFN-y. The IFN-y production is significantly inhibited if the Treg cell line
Karpas is added to the cell culture. In this setting, individual peptides were added to see
if cytokine production inhibited by Karpas cell line was restored by the presence of the
peptide. After 48 h of cell co-culture, we measured the IFN-y released to the supernatant
by ELISA. As shown in Figure 1B, the addition of Karpas cells to these cultures strongly



Biomedicines 2021, 9, 197

8 of 19

inhibited the production of IFN-y. However, notably, seven peptides out of the total 20
were able to restore in more than 50% the IFN-y production inhibited by the addition of
the Karpas cell line.

As opposed to a cell-free biochemical assay such as the SPR, evaluation of the in-
hibitory activity of FOXP3 peptide binders in a cell-based assay implies that peptides must
enter into the cell crossing the cell membrane, which is a limitation for the activity of pep-
tide inhibitors of intracellular targets [20]. It could happen that some good binders might
not be able to cross the cell membrane. Moreover, binding capacity might not necessarily
mean an inhibitory activity of FOXP3 function. However, we found a significant correlation
between the capacity of peptides to bind FOXP3 and its ability to restore IFN-y produc-
tion (p = 0.0016, Figure 1C). In these assays, we identified seven peptides (p50, p52, p53,
p60, p61, and p65) with potential Treg inhibitory capacity. In a different experiment, we
evaluated the effect of these seven peptides on the proliferation of T cells alone in response
to anti-CD3 stimulation during 48 h to discard a potential direct effect on effector T cells.
No significant changes on T cell proliferation were observed in this assay (Figure 1D). The
results obtained with the Karpas cell line should be taken with caution, since there is not a
formal demonstration of the role of Foxp3 in the inhibitory activity of the Karpas cell line.

FOXP3 expression is not restricted to the lymphocyte lineage, but it is also present
in some cancer cells, especially in breast cancer cells, where it has been demonstrated to
be a cancer-suppressor gene and an important regulator of the HER2/ErbB2 and SKP2
oncogenes [29]. FOXP3 has various distinguishable functional domains: (i) an N-terminal
domain (from a.a. 1 to 193) responsible for transcriptional repression, (ii) a zinc finger
(a.a. 200-223), a leucine-zipper (LZ)-like motif (a.a. 240-261), which facilitates the forma-
tion of FOXP3 homo-dimers or tetramers, and (iii) the highly conserved carboxy terminal
forkhead domain (FKH; from a.a. 338 to 421) responsible for the DNA binding [30]. It has
been described that the tumor suppressor activity of FOXP3 is located in the N-terminal
region of the protein (Aa 1-196) [31]. In a recent work, Gong et al. have shown that
the ectopic expression of FOXP3 inhibited hepatocarcinoma cell line (HCC) proliferation,
migration, and invasion, while FOXP3 downregulation promoted HCC growth [32]. To
evaluate the antitumoral effect of FOXP3, we transfected the 4T1 tumor cells with the plas-
mid pcDNA-FOXP3 for the stable expression of FOXP3. We found that FOXP3 expression
impaired tumor cell growth in vitro (Figure 2A) as well as in vivo when the cells were
injected subcutaneously into BALB/c mice (Figure 2B). Since the 20 peptides identified
from the biopanning assay using the phage-displayed peptide library could bind to any
part of FOXP3, it could be postulated that some of them might have an impact on the
tumor-suppressor activity of FOXP3. Thus, we evaluated the activity of a panel of these
peptides on the proliferative capacity of 4T1-Ctrl and 4T-1 FOXP3 cells in vitro. Interest-
ingly, it was found that peptides p50, p52, and p65, in addition to their Treg inhibitory
capacity, were also able to inhibit the tumor-suppressor activity (Figure 2C).

3.2. Screening of Treg Inhibitors by Using Peptides Encompassing the Leucine Zipper
Domain of FOXP3

It has been described that leucine zipper domain of FOXP3 is required for FOXP3
homodimerization [30,33] and the suppressive function of Tregs [34]. For these reasons,
we synthesized 15-mer peptides encompassing aminoacids 245-260, 250-265, and 255-270
from the LZ domain to evaluate their potential inhibitory activity on Treg cell function
in vitro. Interestingly, it was found that peptide p250-265 was able to fully restore the
proliferative capacity of effector T-cells stimulated with anti-CD3 antibody in the presence
of Treg cells (Figure 3A). However, we could not demonstrate an inhibitory activity of this
peptide on FOXP3 homodimerization (measured by alpha screen), and further experiments
are needed to confirm the mechanism of action of this peptide.
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Figure 2. Effect of synthetic peptides on the cancer-suppressor activity of FOXP3. Effect of ectopic
expression of FOXP3 in 4T1 cell line on cell proliferation in vitro (A) and on in vivo tumor growth
in mice (n = 6 mice per group) (B). (C) Effect of peptides (50 uM) on the proliferation of 4T1-Ctrl
and the 4T1-FOXP3 expressing tumor cell line in vitro. Data are representative of two independently

repeated experiments. *** p < 0.005. One-way ANOVA with Bonferroni multiple comparison test.
Bars and error show mean and SEM.
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Figure 3. Screening of FOXP3 inhibition by peptides derived from the leucine zipper (A) and AMLI1 (B) binding domains.
Effector T cells (CD4+CD25—) isolated from the spleen of BALB/c mice were stimulated with anti-CD3 in the presence or
absence of purified murine CD4+CD25+ Treg cells (Tregs) and the indicated peptide (50 uM). Three days later, cell prolifera-
tion was analyzed by measuring tritiated thymidine incorporation. Data are representative of two independent experiments.
One-way ANOVA with Bonferroni multiple comparison test. (C) Disruption of FOXP3-AML1 heterodimerization by peptide
F304-318 measured by alphascreen. Bars and error show mean and SEM.

3.3. Screening of Treg Inhibitors by Using Peptides Encompassing the AML/Runx1 Binding
Domain of FOXP3

The region encompassed by aminoacids 278 and 336 from FOXP3 has been described
to be implicated in its interaction with the transcription factor AML1/Runx1 protein [35].
AML1 is required for the activation of IL-2 (interleukin 2) and IFN-y gene expression in
conventional CD4+ T-cells. FOXP3 interaction with AML1 in Treg cells suppresses IL-2
and IFN-y production, upregulates Treg-associated molecules, and plays a role in the Treg
suppressive [35] activity. Consequently, the blocking of FOXP3/AML1 interaction might
have an impact on Treg activity. Thus, we synthesized six 15-mer peptides encompassing
this region (F282-296, F287-301, F299-313, F304-318, F309-323, and F323-337) that were
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tested on their capacity to inhibit Treg in vitro. Peptides sequences are shown in Table 2.
We found that peptide F304-318 was able to inhibit Treg activity overcoming efffector T cell
proliferation in response to anti-CD3 stimulation (Figure 3B). Interestingly, we found that
peptide F304-318 was also able to impair FOXP3/AMLI heterodimerization (measured by
alphascreen) (Figure 3C).

3.4. Screening of Treg Inhibitors Using Peptides Encompassing the FKH Domain of FOXP3

FOXP3 can regulate the gene expression of a number of genes that are also targets
for the transcription factor NFAT, which, in cooperation with AP-1 (Fos/Jun), can activate
many genes during lymphocyte activation [36]. This regulatory capacity of FOXP3 was
justified by its ability to interact physically with NFAT and regulate its activity [37]. There-
fore, the inhibition of these interactions might lead to the impairment of specific functions
of FOXP3 and Treg activity and thus be beneficial in the development of vaccines and
tumor therapies. We synthesized twelve 15-mer overlapping peptides encompassing the
FKH domain of FOXP3 and evaluated their binding capacity to FOXP3 by SPR (Figure 4A).
We identified peptides F363-377, F368-382, F378-392, and F383-397 as good binders to
FOXP3. Peptide sequences are shown in Table 2. These peptides define an intermediate
region within the FKH domain (Figure 4B) that includes the FOXP3 FKH dimerization
interface [37]. Notably, two mutations in this interface, F371C and F373A, have been de-
scribed in IPEX patients, which are characterized by a severe autoimmune syndrome (IPEX:
immune dysregulation, polyendocrinopathy, enteropathy, X-linked) [38,39], suggesting
that the inhibition of the FKH dimerization process may affect Treg activity. Therefore, we
studied the capacity of these peptides to inhibit Treg activity in vitro at 50 uM. Peptides
F348-362, F358-372, F388-402, and F393-407 showed a strong Treg inhibitory capacity,
whereas peptides F363-377 and F368-382 seemed to have some toxicity at 50 uM (cpm be-
low the cpm reached in Teff&Treg co-cultures in the absence of peptide) (Figure 4C). When
these two peptides were tested at lower concentration (10 uM), no toxicity was observed;
however, they did not exhibit Treg inhibitory capacity (not shown). Interestingly, we found
that the C terminal part of the FKH domain, in particular peptide F393-407, displayed
a strong Treg inhibitory capacity. Indeed, the level of T-cell proliferation obtained in the
presence of this peptide even surpassed the maximum proliferation of T-cells stimulated
with anti-CD3 in the absence of Treg cells. This effect could be ascribed to the transient
expression of FOXP3 after T cell receptor (TCR) stimulation that might have a regulatory
role limiting T-cell proliferation, as it has been suggested previously [11,12,40,41]. Based
on the crystal structure of the FOXP3/NFAT/DNA complex [37], residues E399, E401, and
K403 from the FKH domain are closely implicated in the formation of the cooperative
complex between FOXP3 and NFAT, which is key for the suppression function of Treg
cells. We found that peptide F393-403, a truncated version of peptide F393-407, inhibited
FOXP3-NFAT interaction and improved effector T-cell functions in response to TCR stimu-
lation and delayed tumor growth in a model of hepatocellular carcinoma [23]. These results
suggest that the disruption of FOXP3:NFAT interaction with short synthetic peptides might
have potential therapeutic applications in cancer.

3.5. Peptide Modifications to Improve the Treg Inhibitory Capacity of Selected Peptides

From the screening campaign using a phage-displayed peptide library (Section 3.1),
we identified the fifteen-mer peptide P60 as a peptide that is able to enter into the cells,
bind FOXP3, and impair FOXP3 nuclear translocation and inhibit Treg activity in vitro
and in vivo [11]. The P60 peptide was able to improve the antitumor effect of other
immunotherapeutic approaches [42-48] constituting a potential candidate drug to inhibit
Treg activity. An alanine scanning was conducted to identify key positions within the P60
sequence for FOXP3 binding P60. The introduction of double mutants, as well as a D-
alanine at position 2 and a head-to-tail cyclization allowed us to identify molecule CM1315,
which significantly improved the P60 half life and Treg inhibitory activity [23]. After this
optimization, we have tested the antitumor activity of CM1315 in mice bearing tumors.
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We evaluated CM1315 in murine models of colon cancer (MC38 cells) and lung cancer
(LLCOVA, a lung cancer cell line expressing ovalbumin as a model tumor antigen) because
in both models, there is a high proportion of Treg cells infiltrating the tumor. Indeed, in both
cases, almost 30% of CD4+ T-cells are FOXP3+ as compared to the normal levels of FOXP3+
Treg found in the spleen or in the tumor-draining lymph nodes (Figure 5A). Thus, mice
were challenged with the MC38 colon cancer cell line or with the LLC-OVA lung tumor
cell line, and 7 to 10 days later, when the tumor size reached 5 mm in diameter, they were
treated with CM1315 (a single administration of 50 pg/mouse during ten consecutive days).
We found in both models that peptide treatment was able to significantly delay tumor
growth (Figure 5B,C). We took advantage of ovalbumin expression in the LLC-OVA tumor
model to measure the antitumor immune response specific for the SIINFEKL peptide
(the immunodominant cytotoxic T cell epitope (CTL epitope) within ovalbumin). We
found a significant increase in the number of IFN-y-producing cells specific for SIINFEKL
(measured by ELISPOT) in the spleen in mice treated with CM1315 during 10 consecutive
days (Figure 5D). Similarly, the number of tumor-infiltrating CD4+, CD8+, and NK (natural
killer) cells able to produce IFN-y was significantly higher in mice treated with CM1315
(Figure 5E), suggesting that Treg inhibition improved the antitumor immune response.
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Figure 4. Screening of FOXP3 inhibitors with peptides from the FOXP3 forkhead (FKH) domain. (A) Binding capacity of
the synthetic peptides to a chip coated with FOXP3 measured by SPR. (B) Relative FOXP3 binding capacity of different
regions from FKH to FOXP3 deduced by the SPR analysis with 15-mer overlapping peptides. Those in red represent the
structural elements presented in the FKH domain according to the crystal structure [37]. (C) Treg inhibitory capacity of FKH
FOXP3-derived peptides. Effector T-cells (CD4+CD25— spleen cells) from BALB/c mice were stimulated with anti-CD3 in
the presence or absence of purified murine CD4+CD25+ Treg cells (Treg) and the indicated peptide (50 uM). Three days later,
cell proliferation was analyzed by measuring tritiated thymidine incorporation. Percentage of inhibition was calculated
with respect to T-cell proliferation in the presence/absence of Treg cells. Values are mean + SEM. Tx: toxic.

We have also focused on the screening campaign of peptides derived from the FOXP3
FKH domain (Section 3.3). Although we identified several peptides encompassing the
intermediate region of FKH with high capacity to bind to FOXP3, we focused on peptide
F393-407, based on its ability to inhibit Treg activity in vitro. The truncation of peptides at
the C and N-terminus allowed us to identify the peptide F393—403 as the best linear version
of the original peptide able to inhibit Treg activity in vitro. We found that peptide F393-403
was able to inhibit FOXP3:NFAT interaction and demonstrated that in vivo peptide admin-
istration had antitumor activity in a murine model of hepatocellular carcinoma [12]. Since
the peptide had poor pharmacokinetics in vivo, we tried to introduce some modifications
to its sequence. On the one hand, we tried to improve the cell permeability of the peptide by
its fusion to the cell-penetrating peptide TAT (Tat 44-57 Sequence CGISYGRKKRRQRRR,
which is known for its membrane translocation characteristics [45]). Thus, peptide TAT-
393403 was synthesized and compared with peptide 393—403 in the in vitro assay of Treg
inhibition. It was found that fusion of the peptide to the cell-penetrating peptide TAT
significantly improved the Treg inhibitory capacity (Figure 6A).



Biomedicines 2021, 9, 197 12 of 19

LLC-OVA .
40 ns = 4200 2000
- MC38 = Untreated . = Untreated
= LLCOVA "'E - CM1315 — = CM1315
- TC1(P3A15) 3000 £ 1500
" = £
i g g
g 20 % 2000 % 1000
w > >
5 s ]
® 10 HI"‘I HH HHH E 1000 //) E 500
- o T 0
§ é g é é g § é g 0 10 20 30 40 50 0 10 20 30 4 50
& 2 g 2 g & Days after tumor challenge Days after tumor challenge
D B Unstimulated E
B SIINFEKL o
400 - 50 i 25 _P006 &0
8 [
oy u - [ ]
o W 40 < 1 0
g g 3 8
% g o (&
e :Z 30 15 g
hy > z z
,\_,o 200 = [T T | |
%3 W 204 = 101 e -
>~ "6 . o —_ O 20
E 100 ° T e B
w S 104 5 o ®
: | &3
#*
Y (d
. olleds] olle :

UuT CM1315 UT CM1315 UT CM1315 uT CM1315

Figure 5. Antitumor activity of cyclic peptide CM1315. (A) Number of intratumor FOXP3+ cells in mice bearing MC38,
LLCOVA (a lung cancer cell line expressing ovalbumin as a model tumor antigen), or TC1 (P3A15) tumors. (B,C) Antitumor
effect of CM1315 administration in mice bearing LLCOVA (B) or MC38 (C) tumors (n = 8 mice per group). (D) Number of
IFN-y producing cells specific for the SIINFEKL peptide in the spleen of mice bearing LLCOVA tumors and treated with
CM1315 or with saline. (E) Number of IFN-y producing CD4, CDS8, or NK cells infiltrating the tumor of mice treated with
CM1315 or with saline. Data are representative of two independently repeated experiments. * p < 0.05, ** p < 0.01, one-way
ANOVA with Bonferroni multiple comparison test (A), Log-rank test (B,C), two-way ANOVA with Bonferroni multiple
comparison test (D), Student s t-test (E). Bars and error show mean £ SEM.
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Figure 6. Peptide modifications to improve the Treg inhibitory capacity of the selected peptides. (A) The effect of fusion
of peptide F393—403 to the TAT peptide or (B) a head-to-tail cyclization of the peptide F397-406 on the Treg inhibitory
activity in vitro. Effector T-cells (CD4+CD25- spleen cells) from BALB/c mice were stimulated with anti-CD3 in the presence
or absence of purified murine CD4+CD25+ Treg cells (Treg) and the indicated peptide (50 uM). Three days later, cell
proliferation was analyzed by measuring tritiated thymidine incorporation. Percentage of inhibition was calculated with
respect to T-cell proliferation in the presence/absence of Treg cells. (C) Disruption of FOXP3-NFAT heterodimerization by
the linear and cyclic versions of peptide F397-406 (397-406 L and 397-406 C respectively) measured by alpha screen. Values
are mean + SEM. Data are representative of two independently repeated experiments. * p < 0.05, one-way ANOVA with
Bonferroni multiple comparison test.
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On the other hand, we tried to reduce the size of the peptide and introduced a head-to-
tail cyclization of the peptide to improve the cell permeability and to augment the half-life
by protecting N and C terminal positions of the peptide and make the peptide more
resistant to proteases. The crystal structure of the NFAT1:FOXP3:DNA complex revealed
that aminoacids 397 and 406 are in close proximity, suggesting that a backbone cyclization
of this peptide could stabilize the structure and even improve the affinity for NFAT binding,.
Thus, a macrocycle consisting of a head-to-tail cyclization of peptide 397406 (397-406 C)
was synthesized and tested for its activity to inhibit Treg activity in vitro. As shown in
Figure 6B, head-to-tail cyclization improved the Treg inhibitory capacity as compared to
the linear version (397-406 L) of the same peptide. Notably, both peptides retained the
activity to impair Foxp3/NFAT interaction measured by alpha screen (Figure 6C). Further
experiments are needed to evaluate if this head-to-tail cyclization enhances peptide stability,
resistance to protease degradation, and consequently the peptide pharmacokinetic in vivo.

To investigate if these peptides were able to impair the association between FOXP3
and NFAT, co-immunoprecipitation experiments were performed on lysates from HEK293
cells ectopically expressing HA-NFAT or Flag-Foxp3. We found that peptide 393-403 and
the cyclic version 397-406 C were able to reduce significantly the interaction of between
Foxp3 and NFAT (Figure 7).
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Figure 7. Inhibition of Foxp3-NFAT interaction by peptides 393-403 and 397-406 C. (A) HEK293
cells were transfected with Flag-Foxp3 and HA-NFAT; then, they were incubated in the presence of
the indicated peptides. After 48 h, cells were lysed with NP-40 lysis buffer. Lysates were incubated
with anti-Flag coupled beads and immunoblots were analyzed with antibodies against Flag and HA.
(B) Densitometric analysis of the Western blot assay * p < 0.05, ** p < 0.01, one-way ANOVA with
Bonferroni multiple comparison test.

4. Discussion

The expression of FOXP3 transcription factor and its capacity to interact with other
proteins is essential for the immunosuppressive activity of Treg cells. Transcription factors
such as FOXP3 are challenging targets for current drug modalities, but it is clear that
those molecules are able to inhibit a particular interaction between FOXP3 and its partners
and modify the FOXP3 interactome might have an impact on Treg activity. FOXP3 is
a complex transcription factor that includes several domains performing different and
sometimes opposing functions affecting cancer growth. Indeed, in addition to its clear
role of FOXP3 in the immunosuppressive activity of Tregs, its expression in normal non-
hematopoietic cells as well as in some cancer cells has been shown to participate in tumor
growth control (reviewed in [46]). FOXP3 signaling pathway and genetic and/or epigenetic
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inactivation of the FOXP3 has been shown to contribute to the malignant transformation of
cells [29]. FOXP3 may behave as a transcriptional repressor of SKP2 and HER?2, acting as a
potential tumor-suppressor gene in breast cancer [47,48], prostate [49], gastric cancer [50],
or hepatocellular carcinoma [51]. In our hands, transfection of the FOXP3 gene into 4T1
cells impaired their proliferative capacity. We have not demonstrated formally that ectopic
FOXP3 expression is exerting a direct tumor-suppressive activity on 4T1 tumor cells. Our
assumption is based on previous works showing this effect on hepatocarcinoma, ovarian,
melanoma, or breast cancer cells [32,47,48,52,53]. Interestingly, tumor suppressor and T-
regulatory functions of FOXP3 seem to be mediated through separate signaling pathways.
It has been described that the tumor-suppressor activity of FOXP3 is mediated by the
N-terminal region of the protein [31,51]. In this scenario, it is reasonable to propose that the
search of molecules to inhibit FOXP3 immunosuppressive activity should avoid altering
the interactions of its N-terminal region harboring the antitumor activity. Phage-displayed
peptide libraries allowed us to identify peptides able to bind to unknown parts of FOXP3.
Some of them (i.e., p50, p52, and p65) were able to inhibit Treg activity but also impaired
its potential antitumor activity, so they were discarded as potential specific and selective
inhibitors of the immunosuppressive activity of Tregs. It could be speculated that these
peptides could bind to the N-terminal part implicated in the tumor-suppressor activity of
FOXP3. However, additional experiments are needed to confirm this hypothesis. These
data may indicate that in the case of multifaceted transcription factors such as FOXP3, with
different and opposed functional effects, it is important to fine-tune the design of potential
inhibitors targeting the domain responsible for the function to be inhibited.

Further characterization of the P60 peptide, one of the Treg inhibitors that does not
alter the antitumor activity of FOXP3, allowed us to demonstrate its binding capacity to the
intermediate region of FOXP3, impairing FOXP3 dimerization, FOXP3/AML1 interaction,
as well as FOXP3 nuclear translocation. A P60 peptide optimization program including
alanine scanning, the introduction of D-aminoacids, or head-to-tail cyclization allowed
us to improve its stability and efficacy in vitro and in vivo [23]. In this work, we have
demonstrated that the P60-derived macrocyclic peptide CM1315 is able to impair tumor
progression in two different murine tumor models, opening the door for a next step to
advance this compound toward its clinical application.

In addition to our work with P60 peptide and its derivates, we have identified syn-
thetic peptides that are able to bind the intermediate and the C-terminal parts of the
FOXP3 protein. In this approach, we used 15-mer overlapping peptides encompassing
FOXP3 sequences as a potential tool to identify decoy molecules that could inhibit FOXP3
dimerization or impair FOXP3 interactome. Thus, we identified the peptide 250265 cor-
responding to the LZ that inhibits Treg activity in vitro. Previous reports have identified
aminoacids K, E, and K (250-252) as key residues in FOXP3 dimerization [33,34], so it
is tempting to postulate that peptide F250-265 could inhibit Treg activity by impairing
FOXP3 dimer formation. We also found that peptide F304-318 was able to inhibit Treg
activity in vitro. Since mutations at positions close to aminoacid 329 have been shown
to impair FOXP3/AMLL1 interaction and alter Treg suppressive activity [35], we could
speculate that peptide F304-318 could affect this protein—protein interaction. However,
further experiments are needed to identify the mechanism of action of this peptide.

We also searched potential FOXP3 inhibitors by using overlapping peptides encom-
passing the FKH domain, which is responsible for DNA binding and consequently for
its activator/repressor functions. An important number of patients with IPEX syndrome
have missense mutations in exons encoding the FKH domain [54-58]. FOXP3 requires
multimerization (with FOXP3 and with more than other 350 proteins [17]) to exert its
functions. Thus, it seems that both the DNA-binding FKH domain and the leucine-zipper
domain of FOXP3 are needed for multimerization of FOXP3, DNA binding, and conse-
quently for FOXP3-mediated suppressor functions [37,59]. Thus, those peptides that are
able to bind to the FKH domain of FOXP3 might potentially alter the FOXP3 dimerization
and consequently the Treg suppressor activity. However, also, peptides derived from
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the FKH domain could act as FKH decoy molecules and compete for binding to FKH
partners. Both approaches could result in potential Treg inhibitors. We identified peptides
F363-377, F368-382, F378-392, and F383-397 as good binders to FOXP3. These peptides
define an intermediate region within the FKH domain (Figure 4B), which includes the
FOXP3 FKH dimerization interface [37]. Notably, two mutations in this interface, F371C
and F373A, have been described in IPEX patients, [38,47], suggesting that inhibition of the
FKH dimerization process may affect Treg activity. Unfortunately, two of the best peptide
binders identified by SPR (peptides F363-377, F368-382) presented some toxicity in T-cell
co-cultures, and we could not evaluate their potential Treg inhibitory activity.

We focused on a peptide encompassing aminoacids 393—403, which correspond to
a region implicated in FOXP/NFAT interaction, which is also key for Treg suppressive
activity. FOXP3/NFAT interaction can regulate NFAT activity by (i) competing for binding
to DNA [60,61], (ii) by sequestering NFAT or other NFAT partners [62,63], or (iii) by forming
a cooperative complex [18,64]. The cooperative complex between FOXP3 and NFAT is
required to repress the expression of the cytokine IL2, upregulate the expression of the Treg
markers CTLA4 and CD25, and confer suppressor function [37,64]. In a previous work, we
found that the disruption of FOXP3/NFAT interaction with peptide F393—403 enhanced
T-cell proliferation and the production of cytokines IL-2, IFN-y, or IL-17 in response
to TCR stimulation. Moreover, and despite the poor pharmacokinetics of peptides, an
in vivo administration of peptide F393—403 exerted antitumor activity in murine tumor
models [12]. In this work, we tried to improve the efficacy of the peptide by improving its
cell permeability. Conjugation of the F393—403 peptide with the cationic cell-penetrating
peptide TAT significantly improved the Treg suppressive activity in vitro. Cell-permeable
peptides represent an emerging class of therapeutic molecules, especially for targeting
intracellular protein—protein interactions. Further experiments are needed to evaluate if
this improvement in cell permeability might also enhance the antitumor activity of the
active peptide F393-403 in vivo. We also tried to improve peptide stability by using head-
to-tail cyclization. Based on the crystal structure of the FOXP3 FKH domain, and in an
attempt to reduce the size of the active peptide, we focused on peptide F397-406, which
was synthesized as a head-to-tail cyclic version. This modification improved the inhibitory
capacity. New experiments are now needed to evaluate if this cyclization improves its
cellular uptake, metabolic stability, and the pharmacokinetics of the peptide.

5. Conclusions

The development of FOXP3 inhibitors for cancer treatment should be able to impair
the immunoregulatory functions of FOXP3 on T-cells without altering the anti-proliferative
activity that FOXP3 might play in tumor cells. Through a screening campaign using phage
displayed peptide libraries and short overlapping peptides encompassing the intermediate
and the C terminal part of FOXP3, we identified a panel of Treg inhibitors with relevant Treg
inhibitory capacity. Despite the limitations and the need for further confirmatory studies,
this work allowed us to search the Achilles heel of FOXP3 and identify short sequences
within the leucin zipper, the AML1 binding region, or the FKH domain that could be
considered as potential hits (Figure 8) for the development of first-in-class molecules to
inhibit FOXP3 with potential for the development of new therapies against cancer.
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Figure 8. Peptide inhibitors of T regulatory cell activity targeting specific domains of the FOXP3 transcription factor.

Schematic representation of some of the FOXP3 interactome and their site of interactions (reviewed in [46]). Peptides
identified in this study as potential Treg inhibitors are depicted. F-250, F-304, F-348, F-358, F-388, and F-399 correspond to
linear peptides encompassing 15 aminoacids from the FOXP3 sequence. The number correspond to the first aminoacid of

the 15-mer peptide. P60 and CM1315 peptides have been derived from a phage-displayed peptide library, and it is expected
to bind to the intermediate region of FOXP3 ([23]. ZF: Zinc finger; LZ: leuzin zipper; FKH: forkhead domain; NLS: nuclear

localization sequences.

6. Patents
A patent application has been filed on P60 and related compounds.
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