Activin-A Induces Early Differential Gene Expression Exclusively in Periodontal Ligament Fibroblasts from Fibrodysplasia Ossificans Progressiva Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Periodontal Ligament Fibroblasts
2.2. Cell Culturing and RNA Isolation
2.3. RNA Sequencing
2.4. Pathway and Gene Enrichment Analysis
3. Results
3.1. Different Donors Cluster Together
3.2. Activin-A Activates Distinct Pathways in FOP Cells
3.3. Activin-A Induces Differential Gene Expression in FOP Cells
3.4. Differential Gene Expression Is Induced by Activin-A in FOP Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bravenboer, N.; Micha, D.; Triffit, J.T.; Bullock, A.N.; Ravazollo, R.; Bocciardi, R.; Di Rocco, M.; Netelenbos, J.C.; Dijke, P.T.; Sánchez-Duffhues, G.; et al. Clinical Utility Gene Card for: Fibrodysplasia ossificans progressiva. Eur. J. Hum. Genet. 2015, 23, 1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pignolo, R.J.; Shore, E.M.; Kaplan, F.S. Fibrodysplasia Ossificans Progressiva: Clinical and Genetic Aspects. Orphanet J. Rare Dis. 2011, 6, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, F.S.; Le Merrer, M.; Glaser, D.L.; Pignolo, R.J.; Goldsby, R.E.; Kitterman, J.A.; Groppe, J.; Shore, E.M. Fibrodysplasia ossificans progressiva. Best Pract. Res. Clin. Rheumatol. 2008, 22, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Botman, E.; Teunissen, B.P.; Raijmakers, P.; De Graaf, P.; Yaqub, M.; Treurniet, S.; Schoenmaker, T.; Bravenboer, N.; Micha, D.; Pals, G.; et al. Diagnostic Value of Magnetic Resonance Imaging in Fibrodysplasia Ossificans Progressiva. JBMR Plus 2020, 4, e10363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shore, E.M.; Xu, M.; Feldman, G.J.; A Fenstermacher, D.; Cho, T.-J.; Choi, I.H.; Connor, J.M.; Delai, P.; Glaser, D.L.; LeMerrer, M.; et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat. Genet. 2006, 38, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Song, G.-A.; Kim, H.-J.; Woo, K.M.; Baek, J.-H.; Kim, G.-S.; Choi, J.-Y.; Ryoo, H.-M. Molecular Consequences of the ACVR1R206H Mutation of Fibrodysplasia Ossificans Progressiva. J. Biol. Chem. 2010, 285, 22542–22553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billings, P.C.; Fiori, J.L.; Bentwood, J.L.; O’Connell, M.P.; Jiao, X.; Nussbaum, B.; Caron, R.J.; Shore, E.M.; Kaplan, F.S. Dysregulated BMP Signaling and Enhanced Osteogenic Differentiation of Connective Tissue Progenitor Cells from Patients with Fibrodysplasia Ossificans Progressiva (FOP). J. Bone Miner. Res. 2007, 23, 305–313. [Google Scholar] [CrossRef]
- Kaplan, F.S.; Fiori, J.; De La Peña, L.S.; Ahn, J.; Billings, P.C.; Shore, E.M. Dysregulation of the BMP-4 Signaling Pathway in Fibrodysplasia Ossificans Progressiva. Ann. N. Y. Acad. Sci. 2006, 1068, 54–65. [Google Scholar] [CrossRef]
- Fiori, J.L.; Billings, P.C.; De La Peña, L.S.; Kaplan, F.S.; Shore, E.M. Dysregulation of the BMP-p38 MAPK Signaling Pathway in Cells from Patients with Fibrodysplasia Ossificans Progressiva (FOP). J. Bone Miner. Res. 2006, 21, 902–909. [Google Scholar] [CrossRef]
- De La Peña, L.S.; Billings, P.C.; Fiori, J.L.; Ahn, J.; Kaplan, F.S.; Shore, E.M. Fibrodysplasia Ossificans Progressiva (FOP), a Disorder of Ectopic Osteogenesis, Misregulates Cell Surface Expression and Trafficking of BMPRIA. J. Bone Miner. Res. 2005, 20, 1168–1176. [Google Scholar] [CrossRef]
- Hatsell, S.J.; Idone, V.; Wolken, D.M.A.; Huang, L.; Kim, H.J.; Wang, L.; Wen, X.; Nannuru, K.C.; Jimenez, J.; Xie, L.; et al. ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci. Transl. Med. 2015, 7, 303ra137. [Google Scholar] [CrossRef]
- Hino, K.; Ikeya, M.; Horigome, K.; Matsumoto, Y.; Ebise, H.; Nishio, M.; Sekiguchi, K.; Shibata, M.; Nagata, S.; Matsuda, S.; et al. Neofunction of ACVR1 in fibrodysplasia ossificans progressiva. Proc. Natl. Acad. Sci. USA 2015, 112, 15438–15443. [Google Scholar] [CrossRef] [Green Version]
- Ries, A.; Schelch, K.; Falch, D.; Pany, L.; Hoda, M.A.; Grusch, M. Activin A: An emerging target for improving cancer treatment? Expert Opin. Ther. Targets 2020, 24, 985–996. [Google Scholar] [CrossRef]
- Namwanje, M.; Brown, C.W. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb. Perspect. Biol. 2016, 8, a021881. [Google Scholar] [CrossRef]
- Pearsall, R.S.; Canalis, E.; Cornwall-Brady, M.; Underwood, K.W.; Haigis, B.; Ucran, J.; Kumar, R.; Pobre, E.; Grinberg, A.; Werner, E.D.; et al. A soluble activin Type IIA receptor induces bone formation and improves skeletal integrity. Proc. Natl. Acad. Sci. USA 2008, 105, 7082–7087. [Google Scholar] [CrossRef] [Green Version]
- Olsen, O.E.; Wader, K.F.; Hella, H.; Mylin, A.K.; Turesson, I.; Nesthus, I.; Waage, A.; Sundan, A.; Holien, T. Activin A inhibits BMP-signaling by binding ACVR2A and ACVR2B. Cell Commun. Signal. 2015, 13, 27. [Google Scholar] [CrossRef] [Green Version]
- Vanhoutte, F.; Liang, S.; Ruddy, M.; Zhao, A.; Drewery, T.; Wang, Y.; Ms, R.D.; Forleo-Neto, E.; Rajadhyaksha, M.; Herman, G.; et al. Pharmacokinetics and Pharmacodynamics of Garetosmab (Anti-Activin A): Results from a First-in-Human Phase 1 Study. J. Clin. Pharmacol. 2020, 60, 1424–1431. [Google Scholar] [CrossRef]
- Eekhoff, E.M.W. Garetosmab, an Inhibitor of Activin-A, Reduces Formation of Heterotopic Bone and Soft Tissue Flare-Ups in Patients with Fibrodysplasia Ossificans Progressiva. J. Bone Miner. Res. 2020, 35 (Suppl. S1), 17. [Google Scholar]
- Micha, D.; Voermans, E.; Eekhoff, M.E.W.; van Essen, H.W.; Zandieh-Doulabi, B.; Netelenbos, C.; Rustemeyer, T.; Sistermans, E.A.; Pals, G.; Bravenboer, N. Inhibition of TGFbeta signaling decreases osteogenic differentiation of fibrodysplasia ossificans progressiva fibroblasts in a novel in vitro model of the disease. Bone 2016, 84, 169–180. [Google Scholar] [CrossRef]
- Wang, H.; Shore, E.M.; Pignolo, R.J.; Kaplan, F.S. Activin A amplifies dysregulated BMP signaling and induces chondro-osseous differentiation of primary connective tissue progenitor cells in patients with fibrodysplasia ossificans progressiva (FOP). Bone 2018, 109, 218–224. [Google Scholar] [CrossRef]
- De Vries, T.J.; Schoenmaker, T.; Micha, D.; Hogervorst, J.; Bouskla, S.; Forouzanfar, T.; Pals, G.; Netelenbos, C.; Eekhoff, E.M.W.; Bravenboer, N. Periodontal ligament fibroblasts as a cell model to study osteogenesis and osteoclastogenesis in fibrodysplasia ossificans progressiva. Bone 2018, 109, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Schoenmaker, T.; Botman, E.; Sariyildiz, M.; Micha, D.; Netelenbos, C.; Bravenboer, N.; Kelder, A.; Eekhoff, E.M.W.; De Vries, T.J. Activin-A Induces Fewer, but Larger Osteoclasts from Monocytes in Both Healthy Controls and Fibrodysplasia Ossificans Progressiva Patients. Front. Endocrinol. 2020, 11, 501. [Google Scholar] [CrossRef] [PubMed]
- Schoenmaker, T.; Deng, D.; De Vries, T.J. Tailored Teaching for Specialized (Para-)medical Students—Experience from Incorporating a Relevant Genetic Disease Throughout a Course of Molecular Cell Biology. Front. Public Health 2020, 8, 224. [Google Scholar] [CrossRef] [PubMed]
- Schoenmaker, T.; Wouters, F.; Micha, D.; Forouzanfar, T.; Netelenbos, C.; Eekhoff, E.M.W.; Bravenboer, N.; de Vries, T.J. The effect of Activin-A on periodontal ligament fibroblasts-mediated osteoclast formation in healthy donors and in patients with fibrodysplasia ossificans progressiva. J. Cell. Physiol. 2019, 234, 10238–10247. [Google Scholar] [CrossRef] [Green Version]
- Ruppeka-Rupeika, E.; Hogervorst, J.; Wouters, F.; Schoenmaker, T.; Forouzanfar, T.; de Vries, T.J. Osteogenic and osteoclastogenic potential of jaw bone-derived cells—A case study. J. Cell. Biochem. 2018, 119, 5391–5401. [Google Scholar] [CrossRef]
- De Vries, T.J.; Schoenmaker, T.; Wattanaroonwong, N.; Hoonaard, M.V.D.; Nieuwenhuijse, A.; Beertsen, W.; Everts, V. Gingival fibroblasts are better at inhibiting osteoclast formation than periodontal ligament fibroblasts. J. Cell. Biochem. 2006, 98, 370–382. [Google Scholar] [CrossRef]
- Franz, M.; Rodriguez, H.; Lopes, C.; Zuberi, K.; Montojo, J.; Bader, G.D.; Morris, Q. GeneMANIA update 2018. Nucleic Acids Res. 2018, 46, W60–W64. [Google Scholar] [CrossRef] [Green Version]
- Mostafavi, S.; Ray, D.; Warde-Farley, D.; Grouios, C.; Morris, Q. GeneMANIA: A real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 2008, 9 (Suppl. S1), S4. [Google Scholar] [CrossRef] [Green Version]
- Warde-Farley, D.; Donaldson, S.L.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, C.T.; et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010, 38, W214–W220. [Google Scholar] [CrossRef]
- Merico, D.; Isserlin, R.; Stueker, O.; Emili, A.; Bader, G.D. Enrichment map: A network-based method for gene-set en-richment visualization and interpretation. PLoS ONE 2010, 5, e13984. [Google Scholar] [CrossRef]
- Chen, J.; Xu, H.; Aronow, B.J.; Jegga, A.G. Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinform. 2007, 8, 392. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009, 37, W305–W311. [Google Scholar] [CrossRef] [PubMed]
- Motta, M.; Chillemi, G.; Fodale, V.; Cecchetti, S.; Coppola, S.; Stipo, S.; Cordeddu, V.; Macioce, P.; Gelb, B.D.; Tartaglia, M. SHOC2 subcellular shuttling requires the KEKE motif-rich region and N-terminal leucine-rich repeat domain and impacts on ERK signalling. Hum. Mol. Genet. 2016, 25, 3824–3835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsunaga-Udagawa, R.; Fujita, Y.; Yoshiki, S.; Terai, K.; Kamioka, Y.; Kiyokawa, E.; Yugi, K.; Aoki, K.; Matsuda, M. The Scaffold Protein Shoc2/SUR-8 Accelerates the Interaction of Ras and Raf. J. Biol. Chem. 2010, 285, 7818–7826. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.M.; Lo, R.K.; Lee, M.M.; Wang, Y.; Yeung, W.W.; Ho, M.K.; Su, Y.; Ye, R.D.; Wong, Y.H. Galpha16 activates Ras by forming a complex with tetratricopeptide repeat 1 (TPR1) and Son of Sevenless (SOS). Cell. Signal. 2010, 22, 1448–1458. [Google Scholar] [CrossRef]
- Marty, C.; Browning, D.D.; Ye, R.D. Identification of Tetratricopeptide Repeat 1 as an Adaptor Protein That Interacts with Heterotrimeric G Proteins and the Small GTPase Ras. Mol. Cell. Biol. 2003, 23, 3847–3858. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Li, F.; Wang, K.; Cheng, B.; Guo, X. PAPSS2 Promotes Alkaline Phosphates Activity and Mineralization of Osteoblastic MC3T3-E1 Cells by Crosstalk and Smads Signal Pathways. PLoS ONE 2012. 7, e43475. [CrossRef] [Green Version]
- Kv, V.; Venkatachalam, K. Human 3′-phosphoadenosine 5′-phosphosulfate (PAPS) Synthase: Biochemistry, Molecular Biology and Genetic Deficiency. IUBMB Life 2003, 55, 1–11. [Google Scholar] [CrossRef]
- Le, P.T.; Bishop, K.A.; Maridas, D.E.; Motyl, K.J.; Brooks, D.J.; Nagano, K.; Baron, R.; Bouxsein, M.L.; Rosen, C.J. Sponta-neous mutation of Dock7 results in lower trabecular bone mass and impaired periosteal expansion in aged female Misty mice. Bone 2017, 105, 103–114. [Google Scholar] [CrossRef]
- Motyl, K.J.; Bishop, K.A.; DeMambro, V.E.; Bornstein, S.A.; Le, P.; Kawai, M.; Lotinun, S.; Horowitz, M.C.; Baron, R.; Bouxsein, M.L.; et al. Altered thermogenesis and impaired bone remodeling in Misty mice. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2013, 28, 1885–1897. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Xiong, X.; Kong, X.; Xie, J. The Role of the Lysyl Oxidases in Tissue Repair and Remodeling: A Concise Review. Tissue Eng. Regen. Med. 2017, 14, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Pischon, N.; Mäki, J.M.; Weisshaupt, P.; Heng, N.; Palamakumbura, A.H.; N’Guessan, P.; Ding, A.; Radlanski, R.; Renz, H.; Bronckers, T.A.L.J.J. Lysyl oxidase (lox) gene de-ficiency affects osteoblastic phenotype. Calcif. Tissue Int. 2009, 85, 119–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Larson, M.; Jablonka-Shariff, A.; Pearl, C.A.; Miller, W.L.; Conn, P.M.; Boime, I.; Kumar, T.R. Redirecting in-tracellular trafficking and the secretion pattern of FSH dramatically enhances ovarian function in mice. Proc. Natl. Acad. Sci. USA 2014, 111, 5735–5740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Torii, S.; Yokota-Hashimoto, H.; Takeuchi, T.; Izumi, T. Involvement of Rab27b in the regulated secretion of pituitary hormones. Endocrinology 2002. 143, 1817–1824. [CrossRef]
- Bönnemann, C.G. The collagen VI-related myopathies: Muscle meets its matrix. Nat. Rev. Neurol. 2011, 7, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Heumüller, S.E.; Talantikite, M.; Napoli, M.; Armengaud, J.; Mörgelin, M.; Hartmann, U.; Sengle, G.; Paulsson, M.; Moali, C.; Wagener, R. C-terminal proteolysis of the collagen VI α3 chain by BMP-1 and proprotein convertase(s) releases endotrophin in fragments of different sizes. J. Biol. Chem. 2019, 294, 13769–13780. [Google Scholar] [CrossRef]
- Smith, F.; Eady, R.; Leigh, I.; McMillan, J.; Rugg, E.; Kelsell, D.; Bryant, S.; Spurr, N.; Geddes, J.; Kirtschig, G.; et al. Plectin deficiency results in muscular dystrophy with epidermolysis bullosa. Nat. Genet. 1996, 13, 450–457. [Google Scholar] [CrossRef]
- Ishii, M.; Iwai, K.; Koike, M.; Ohshima, S.; Kudo-Tanaka, E.; Ishii, T.; Mima, T.; Katada, Y.; Miyatake, K.; Uchiyama, Y.; et al. RANKL-Induced Expression of Tetraspanin CD9 in Lipid Raft Membrane Microdomain Is Essential for Cell Fusion During Osteoclastogenesis. J. Bone Miner. Res. 2006, 21, 965–976. [Google Scholar] [CrossRef]
- Tachibana, I.; HemLer, M.E. Role of Transmembrane 4 Superfamily (Tm4sf) Proteins Cd9 and Cd81 in Muscle Cell Fusion and Myotube Maintenance. J. Cell Biol. 1999, 146, 893–904. [Google Scholar] [CrossRef]
- Wurthner, J.U.; Frank, D.B.; Felici, A.; Green, H.M.; Cao, Z.; Schneider, M.D.; McNally, J.G.; Lechleider, R.J.; Roberts, A.B. Transforming growth factor-beta receptor-associated protein 1 is a Smad4 chaperone. J. Biol. Chem. 2001, 276, 19495–19502. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, J.; Kaplan, F.S.; Shore, E.M. Restoration of normal BMP signaling levels and osteogenic differentiation in FOP mesenchymal progenitor cells by mutant allele-specific targeting. Gene Ther. 2011, 19, 786–790. [Google Scholar] [CrossRef] [Green Version]
- Hino, K.; Horigome, K.; Nishio, M.; Komura, S.; Nagata, S.; Zhao, C.; Jin, Y.; Kawakami, K.; Yamada, Y.; Ohta, A.; et al. Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva. J. Clin. Investig. 2017, 127, 3339–3352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, C.; Pagani, C.A.; Das, N.; Marini, S.; Huber, A.K.; Xie, L.; Jimenez, J.; Brydges, S.; Lim, W.K.; Nannuru, K.C.; et al. Activin A does not drive post-traumatic heterotopic ossification. Bone 2020, 138, 115473. [Google Scholar] [CrossRef]
- Lees-Shepard, J.B.; Yamamoto, M.; Biswas, A.A.; Stoessel, S.J.; Nicholas, S.-A.E.; Cogswell, C.A.; Devarakonda, P.M.; Schneider, M.J., Jr.; Cummins, S.M.; Legendre, N.P.; et al. Activin-dependent signaling in fibro/adipogenic progenitors causes fibrodysplasia ossificans progressiva. Nat. Commun. 2018, 9, 471. [Google Scholar] [CrossRef] [Green Version]
- Dey, D.; Bagarova, J.; Hatsell, S.J.; Armstrong, K.A.; Huang, L.; Ermann, J.; Vonner, A.J.; Shen, Y.; Mohedas, A.H.; Lee, A.; et al. Two tissue-resident progenitor lineages drive distinct phenotypes of heterotopic ossification. Sci. Transl. Med. 2016, 8, 366ra163. [Google Scholar] [CrossRef]
- Culbert, A.L.; Chakkalakal, S.A.; Theosmy, E.G.; Brennan, T.A.; Kaplan, F.S.; Shore, E.M. Alk2 regulates early chon-drogenic fate in fibrodysplasia ossificans progressiva heterotopic endochondral ossification. Stem Cells 2014, 32, 1289–1300. [Google Scholar] [CrossRef] [Green Version]
- Olmsted-Davis, E.; Gannon, F.H.; Ozen, M.; Ittmann, M.M.; Gugala, Z.; Hipp, J.A.; Moran, K.M.; Fouletier-Dilling, C.M.; Schumara-Martin, S.; Lindsey, R.W. Hypoxic adipocytes pattern early heterotopic bone formation. Am. J. Pathol. 2007, 170, 620–632. [Google Scholar] [CrossRef] [Green Version]
- Schipani, E.; Ryan, H.E.; Didrickson, S.; Kobayashi, T.; Knight, M.; Johnson, R.S. Hypoxia in cartilage: HIF-1alpha is es-sential for chondrocyte growth arrest and survival. Genes Dev. 2001, 15, 2865–2876. [Google Scholar]
- Sviderskaya, E.V.; Novak, E.K.; Swank, R.T.; Bennett, D.C. The murine misty mutation: Phenotypic effects on mela-nocytes, platelets and brown fat. Genetics 1998, 148, 381–390. [Google Scholar] [CrossRef]
- Ramaswamy, G.; Sohn, P.; Eberhardt, A.; Serra, R. Altered responsiveness to TGF-β results in reduced Papss2 expression and alterations in the biomechanical properties of mouse articular cartilage. Arthritis Res. Ther. 2012. 14, R49. [CrossRef] [Green Version]
- Papaioannou, G.; Mirzamohammadi, F.; Kobayashi, T. Ras signaling regulates osteoprogenitor cell proliferation and bone formation. Cell Death Dis. 2016, 7, e2405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schindeler, A.; Little, D.G. Ras-MAPK Signaling in Osteogenic Differentiation: Friend or Foe? J. Bone Miner. Res. 2006, 21, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Cordeddu, V.; Di Schiavi, E.; A Pennacchio, L.; Ma’Ayan, A.; Sarkozy, A.; Fodale, V.; Cecchetti, S.; Cardinale, A.; Martin, J.; Schackwitz, W.; et al. Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair. Nat. Genet. 2009, 41, 1022–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tartaglia, M.; Zampino, G.; Gelb, B. Noonan Syndrome: Clinical Aspects and Molecular Pathogenesis. Mol. Syndr. 2010, 1, 2–26. [Google Scholar] [CrossRef] [Green Version]
- Saito, M.; Marumo, K. Collagen cross-links as a determinant of bone quality: A possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos. Int. 2010, 21, 195–214. [Google Scholar] [CrossRef]
- Siegel, R.C.; Pinnell, S.R.; Martin, G.R. Cross-linking of collagen and elastin. Properties of lysyl oxidase. Biochemistry 1970, 9, 4486–4492. [Google Scholar] [CrossRef]
- Kumari, S.; Panda, T.K.; Pradhan, T. Lysyl Oxidase: Its Diversity in Health and Diseases. Indian J. Clin. Biochem. 2016, 32, 134–141. [Google Scholar] [CrossRef]
- Halberg, N.; Khan, T.; Trujillo, M.E.; Wernstedt-Asterholm, I.; Attie, A.D.; Sherwani, S.; Wang, Z.V.; Landskroner-Eiger, S.; Dineen, S.; Magalang, U.J.; et al. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell. Biol. 2009, 29, 4467–4483. [Google Scholar] [CrossRef] [Green Version]
- Nohutcu, R.M.; McCauley, L.K.; Koh, A.J.; Somerman, M.J. Expression of extracellular matrix proteins in human periodontal ligament cells during mineralization in vitro. J. Periodontol. 1997, 68, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Chien, H.H.; Lin, W.L.; Cho, M.I. Interleukin-1beta-induced release of matrix proteins into culture media causes in-hibition of mineralization of nodules formed by periodontal ligament cells in vitro. Calcif. Tissue Int. 1999, 64, 402–413. [Google Scholar] [CrossRef]
- Berendsen, A.D.; Smit, T.H.; Schoenmaker, T.; Walboomers, X.F.; Harris, S.E.; Everts, V.; Bronckers, A.L. Inorganic Phosphate Stimulates DMP1 Expression in Human Periodontal Ligament Fibroblasts Embedded in Three-Dimensional Collagen Gels. Cells Tissues Organs 2010, 192, 116–124. [Google Scholar] [CrossRef]
- Berendsen, A.D.; Smit, T.H.; Hoeben, K.A.; Walboomers, X.F.; Bronckers, A.L.; Everts, V. Alkaline phosphatase-induced mineral deposition to anchor collagen fibrils to a solid surface. Biomaterials 2007, 28, 3530–3536. [Google Scholar] [CrossRef]
ID | Function | FDR B&H | Coverage |
---|---|---|---|
GO:0032924 | Activin receptor signaling pathway | 8.03 × 10−17 | 12/31 |
GO:0007178 | transmembrane receptor protein/threonine kinase signaling pathway | 4.06 × 10−14 | 18/218 |
GO:0005072 * | transforming growth factor beta receptor, cytoplasmic mediator activity | 2.25 × 10−11 | 7/10 |
GO:0090092 | regulation of transmembrane receptor protein/threonine kinase signaling pathway | 1.25 × 10−10 | 13/132 |
GO:0030509 | BMP signaling pathway | 2.19 × 10−10 | 11/79 |
GO:0032925 | regulation of activin receptor signaling pathway | 2.90 × 10−9 | 7/18 |
GO:0090100 | positive regulation of transmembrane receptor protein/threonine kinase signaling pathway | 2.53 × 10−7 | 8/53 |
GO:0060393 | regulation of pathway-restricted SMAD protein phosphorylation | 4.32 × 10−7 | 7/35 |
GO:0048185 | Activin binding | 7.92 × 10−7 | 5/10 |
GO:0060389 | pathway-restricted SMAD protein phosphorylation | 7.92 × 10−7 | 7/39 |
ID | Name | FDR B&H | Genes from Input | Genes in Annotation |
---|---|---|---|---|
GO:0044877 | protein-containing complex binding | 3.60 × 10−3 | 23 | 1356 |
GO:0008092 | cytoskeletal protein binding | 4.73 × 10−2 | 17 | 1061 |
actin filament binding | ||||
GO:0051015 | cell adhesion molecule binding | 4.73 × 10−2 | 7 | 215 |
actin binding | ||||
GO:0050839 | protein-containing complex binding | 4.73 × 10−2 | 11 | 525 |
GO:0003779 | cytoskeletal protein binding | 4.73 × 10−2 | 10 | 451 |
actin filament binding |
ID | Name | FDR B&H | Genes from Input | Genes in Annotation |
---|---|---|---|---|
GO:0034330 | cell junction organization | 2.48 × 10−2 | 10 | 309 |
GO:0034329 | cell junction assembly | 2.48 × 10−2 | 9 | 245 |
GO:0007044 | cell-substrate junction assembly | 2.48 × 10−2 | 6 | 103 |
GO:0009611 | response to wounding | 2.48 × 10−2 | 15 | 756 |
GO:0009719 | response to endogenous stimulus | 2.80 × 10−2 | 25 | 1834 |
GO:0071495 | cellular response to endogenous stimulus | 3.54 × 10−2 | 22 | 1541 |
GO:0045196 | establishment or maintenance of neuroblast polarity | 3.54 × 10−2 | 2 | 3 |
GO:0045200 | establishment of neuroblast polarity | 3.54 × 10−2 | 2 | 3 |
ID | Name | FDR B&H | Genes from Input | Genes in Annotation |
---|---|---|---|---|
GO:0005925 | focal adhesion | 6.75 × 10−8 | 17 | 411 |
GO:0030055 | cell–substrate junction | 6.75 × 10−8 | 17 | 421 |
GO:0005912 | adherens junction | 4.90 × 10−7 | 18 | 560 |
GO:0070161 | anchoring junction | 5.55 × 10−7 | 18 | 575 |
GO:0030054 | cell junction | 5.46 × 10−7 | 24 | 1352 |
GO:0030424 | axon | 1.88 × 10−7 | 14 | 817 |
GO:0030426 | growth cone | 2.16 × 10−2 | 7 | 226 |
GO:0030427 | site of polarized growth | 2.16 × 10−2 | 7 | 231 |
GO:0030496 | midbody | 2.82 × 10−2 | 6 | 177 |
GO:0005911 | cell–cell junction | 3.08 × 10−2 | 10 | 506 |
GO:0150034 | distal axon | 3.62 × 10−2 | 9 | 432 |
ID | Name | FDR B&H | Genes from Input | Genes in Annotation |
---|---|---|---|---|
939 | Plakins | 2.73 × 10−2 | 2 | 8 |
490 | Collagens | 2.73 × 10−2 | 3 | 46 |
634 | Low density lipoprotein receptors | 2.73 × 10−2 | 2 | 13 |
1149 | NADH:ubiquinone oxidoreductase core subunits | 2.73 × 10−2 | 2 | 14 |
596 | Armadillo repeat containing|Importins | 3.63 × 10−2 | 2 | 18 |
A | |||
ENSEMBL ID | Gene Name | Fold Change | p(adj)-Value |
ENSG00000041353 | RAB27B | 2.50 | 0.032 |
ENSG00000253626 | EIF5AL1 | 2.50 | 0.098 |
ENSG00000108061 | SHOC2 | 2.49 | 0.052 |
ENSG00000113312 | TTC1 | 2.40 | 0.099 |
ENSG00000198682 | PAPSS2 | 2.28 | 0.032 |
ENSG00000116641 | DOCK7 | 2.23 | 0.098 |
ENSG00000134108 | ARL8B | 1.88 | 0.098 |
ENSG00000089693 | MLF2 | 1.66 | 0.050 |
ENSG00000113083 | LOX | 1.47 | 0.060 |
ENSG00000198899 | MT-ATP6 | 1.31 | 0.032 |
B | |||
ENSEMBL ID | Gene Name | Fold Change | p(adj)-Value |
ENSG00000163359 | COL6A3 | −1.25 | 0.074 |
ENSG00000178209 | PLEC | −1.50 | 0.009 |
ENSG00000010278 | CD9 | −1.80 | 0.100 |
ENSG00000140264 | SERF2 | −1.85 | 0.089 |
ENSG00000160007 | ARHGAP35 | −1.90 | 0.032 |
ENSG00000117713 | ARID1A | −2.42 | 0.098 |
ENSG00000117408 | IPO13 | −3.19 | 0.060 |
ENSG00000135966 | TGFBRAP1 | −3.90 | 0.021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoenmaker, T.; Mokry, M.; Micha, D.; Netelenbos, C.; Bravenboer, N.; Gilijamse, M.; Eekhoff, E.M.W.; de Vries, T.J. Activin-A Induces Early Differential Gene Expression Exclusively in Periodontal Ligament Fibroblasts from Fibrodysplasia Ossificans Progressiva Patients. Biomedicines 2021, 9, 629. https://doi.org/10.3390/biomedicines9060629
Schoenmaker T, Mokry M, Micha D, Netelenbos C, Bravenboer N, Gilijamse M, Eekhoff EMW, de Vries TJ. Activin-A Induces Early Differential Gene Expression Exclusively in Periodontal Ligament Fibroblasts from Fibrodysplasia Ossificans Progressiva Patients. Biomedicines. 2021; 9(6):629. https://doi.org/10.3390/biomedicines9060629
Chicago/Turabian StyleSchoenmaker, Ton, Michal Mokry, Dimitra Micha, Coen Netelenbos, Nathalie Bravenboer, Marjolijn Gilijamse, E. Marelise W. Eekhoff, and Teun J. de Vries. 2021. "Activin-A Induces Early Differential Gene Expression Exclusively in Periodontal Ligament Fibroblasts from Fibrodysplasia Ossificans Progressiva Patients" Biomedicines 9, no. 6: 629. https://doi.org/10.3390/biomedicines9060629
APA StyleSchoenmaker, T., Mokry, M., Micha, D., Netelenbos, C., Bravenboer, N., Gilijamse, M., Eekhoff, E. M. W., & de Vries, T. J. (2021). Activin-A Induces Early Differential Gene Expression Exclusively in Periodontal Ligament Fibroblasts from Fibrodysplasia Ossificans Progressiva Patients. Biomedicines, 9(6), 629. https://doi.org/10.3390/biomedicines9060629