T2-High Endotype and Response to Biological Treatments in Patients with Bronchiectasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observational, Cross-Sectional Study
2.1.1. Data Collection
2.1.2. Study Groups and Definitions
2.1.3. Statistical Analysis
2.2. Case-Series
3. Results
3.1. Observational, Cross-Sectional Study
3.2. Severe Asthmatic Patients with Concomitant Bronchiectasis Treated with Anti-IL5 and Anti-IL5-ra
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polverino, E.; Goeminne, P.C.; McDonnell, M.J.; Aliberti, S.; Marshall, S.E.; Loebinger, M.R.; Murris-Espin, M.; Cantón, R.; Torres, A.; Dimakou, K.; et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur. Respir. J. 2017, 50, 1700629. [Google Scholar] [CrossRef]
- Chalmers, J.D.; Chotirmall, S.H. Bronchiectasis: New therapies and new perspectives. Lancet Respir. Med. 2018, 6, 715–726. [Google Scholar] [CrossRef] [Green Version]
- Rogliani, P.; Calzetta, L.; Matera, M.G.; Laitano, R.; Ritondo, B.L.; Hanania, N.A.; Cazzola, M. Severe Asthma and Biological Therapy: When, Which, and for Whom. Pulm. Ther. 2020, 6, 47–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tashkin, D.P.; Wechsler, M.E. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 335–349. [Google Scholar] [CrossRef] [Green Version]
- Aliberti, S.; Sotgiu, G.; Blasi, F.; Saderi, L.; Posadas, T.; Garcia, M.A.M. Blood eosinophils predict inhaled fluticasone response in bronchiectasis. Eur. Respir. J. 2020, 56, 2000453. [Google Scholar] [CrossRef] [PubMed]
- FitzGerald, J.M.; Bleecker, E.R.; Nair, P.; Korn, S.; Ohta, K.; Lommatzsch, M.; Ferguson, G.T.; Busse, W.W.; Barker, P.; Sproule, S.; et al. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2016, 388, 2128–2141. [Google Scholar] [CrossRef]
- Tsikrika, S.; Dimakou, K.; Papaioannou, A.I.; Hillas, G.; Thanos, L.; Kostikas, K.; Loukides, S.; Papiris, S.; Koulouris, N.; Bakakos, P. The role of non-invasive modalities for assessing inflammation in patients with non-cystic fibrosis bronchiectasis. Cytokine 2017, 99, 281–286. [Google Scholar] [CrossRef]
- De Diego, A.; Milara, J.; Martinez-Moragón, E.; Palop, M.; León, M.; Cortijo, J. Effects of Long-term Azithromycin Therapy on Airway Oxidative Stress Markers in non-Cystic Fibrosis bronchiectasis. Respirology 2013, 18, 1056–1062. [Google Scholar] [CrossRef]
- Aliberti, S.; Sotgiu, G.; Garcia, M.-A.M. Blood eosinophils do not predict inhaled budesonide response in bronchiectasis. Eur. Respir. J. 2020, 56, 2002210. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Posadas, T.; Sotgiu, G.; Blasi, F.; Saderi, L.; Aliberti, S. Role of inhaled corticosteroids in reducing exacerbations in bronchiectasis patients with blood eosinophilia pooled post-hoc analysis of 2 randomized clinical trials. Respir. Med. 2020, 172, 106127. [Google Scholar] [CrossRef]
- Ortega, H.G.; Liu, M.C.; Pavord, I.D.; Brusselle, G.; Fitzgerald, J.M.; Chetta, A.; Humbert, M.; Katz, L.E.; Keene, O.N.; Yancey, S.W.; et al. Mepolizumab Treatment in Patients with Severe Eosinophilic Asthma. N. Engl. J. Med. 2014, 371, 1198–1207. [Google Scholar] [CrossRef] [Green Version]
- Coates, A.L.; Wanger, J.; Cockcroft, D.W.; Culver, B.H.; Carlsen, K.-H.; Diamant, Z.; Gauvreau, G.; Hall, G.; Hallstrand, T.S.; Horvath, I.; et al. ERS technical standard on bronchial challenge testing: General considerations and performance of methacholine challenge tests. Eur. Respir. J. 2017, 49, 1601526. [Google Scholar] [CrossRef] [Green Version]
- Dweik, R.A.; Boggs, P.B.; Erzurum, S.C.; Irvin, C.G.; Leigh, M.W.; Lundberg, J.O.; Olin, A.-C.; Plummer, A.L.; Taylor, D.R. An Official ATS Clinical Practice Guideline: Interpretation of Exhaled Nitric Oxide Levels (FeNO) for Clinical Applications. Am. J. Respir. Crit. Care Med. 2011, 184, 602–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Initiative for Asthma. Pocket Guide for Asthma Management and Prevention. Available online: https://ginasthma.org/pocket-guide-for-asthma-management-and-prevention (accessed on 1 July 2021).
- Chalmers, J.D.; Goeminne, P.; Aliberti, S.; McDonnell, M.J.; Lonni, S.; Davidson, J.; Poppelwell, L.; Salih, W.; Pesci, A.; Dupont, L.J.; et al. The Bronchiectasis Severity Index. An International Derivation and Validation Study. Am. J. Respir. Crit. Care Med. 2014, 189, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Reiff, D.B.; Wells, A.U.; Carr, D.H.; Cole, P.J.; Hansell, D.M. CT findings in bronchiectasis: Limited value in distinguishing between idiopathic and specific types. Am. J. Roentgenol. 1995, 165, 261–267. [Google Scholar] [CrossRef]
- Chalmers, J.D.; Smith, M.P.; McHugh, B.; Doherty, C.; Govan, J.R.; Hill, A.T. Short- and Long-Term Antibiotic Treatment Reduces Airway and Systemic Inflammation in Non–Cystic Fibrosis Bronchiectasis. Am. J. Respir. Crit. Care Med. 2012, 186, 657–665. [Google Scholar] [CrossRef]
- Pasteur, M.C.; Helliwell, S.M.; Houghton, S.J.; Webb, S.C.; Foweraker, J.E.; Coulden, R.A.; Flower, C.D.; Bilton, D.; Keogan, M.T. An Investigation into Causative Factors in Patients with Bronchiectasis. Am. J. Respir. Crit. Care Med. 2000, 162, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Coverstone, A.M.; Seibold, M.A.; Peters, M. Diagnosis and Management of T2-High Asthma. J. Allergy Clin. Immunol. Pract. 2020, 8, 442–450. [Google Scholar] [CrossRef]
- Price, D.B.; Bosnic-Anticevich, S.; Pavord, I.D.; Roche, N.; Halpin, D.M.G.; Bjermer, L.; Usmani, O.S.; Brusselle, G.; Ming, S.W.Y.; Rastogi, S. Association of elevated fractional exhaled nitric oxide concentration and blood eosinophil count with severe asthma exacerbations. Clin. Transl. Allergy 2019, 9, 1–18. [Google Scholar] [CrossRef]
- Abo-Leyah, H.; Finch, S.; Keir, H.; Fardon, T.; Chalmers, J. Peripheral blood eosinophilia and clinical phenotype in Bronchiectasis. Respir. Infect. 2018, 52, PA2665. [Google Scholar] [CrossRef]
- Viana, R.; Da Costa, J.C.; Gomes, E.; Feijó, S. Eosinophils: A biological marker for bronchiectasis exacerbations? Respir. Infect. 2019, 54, 54. [Google Scholar] [CrossRef]
- Lonni, S.; Chalmers, J.D.; Goeminne, P.C.; McDonnell, M.J.; Dimakou, K.; de Soyza, A.; Polverino, E.; van de Kerkhove, C.; Rutherford, R.; Davison, J.; et al. Etiology of Non-Cystic Fibrosis Bronchiectasis in Adults and Its Correlation to Disease Severity. Ann. Am. Thorac. Soc. 2015, 12, 1764–1770. [Google Scholar] [CrossRef] [Green Version]
- Brusselle, G.; Bracke, K. Targeting Immune Pathways for Therapy in Asthma and Chronic Obstructive Pulmonary Disease. Ann. Am. Thorac. Soc. 2014, 11, 322. [Google Scholar] [CrossRef]
- Tomassen, P.; Vandeplas, G.; van Zele, T.; Cardell, L.-O.; Arebro, J.; Olze, H.; Förster-Ruhrmann, U.; Kowalski, M.L.; Olszewska-Ziąber, A.; Holtappels, G.; et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J. Allergy Clin. Immunol. 2016, 137, 1449–1456.e4. [Google Scholar] [CrossRef] [Green Version]
- Oriano, M.; Gramegna, A.; Terranova, L.; Sotgiu, G.; Sulaiman, I.; Ruggiero, L.; Saderi, L.; Wu, B.; Chalmers, J.D.; Segal, L.N.; et al. Sputum neutrophil elastase associates with microbiota and Pseudomonas aeruginosa in bronchiectasis. Eur. Respir. J. 2020, 56, 2000769. [Google Scholar] [CrossRef] [PubMed]
- Araújo, D.; Shteinberg, M.; Aliberti, S.; Goeminne, P.C.; Hill, A.T.; Fardon, T.C.; Obradović, D.; Stone, G.; Trautmann, M.; Davis, A.; et al. The independent contribution of Pseudomonas aeruginosa infection to long-term clinical outcomes in bronchiectasis. Eur. Respir. J. 2018, 51, 1701953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gramegna, A.; Aliberti, S.; Sibila, O.; Di Francesco, C.; Sotgiu, G.; Perea, L.; Terranova, L.; Oriano, M.; Pilocane, T.; Saderi, L.; et al. Sputum neutrophil elastase in bronchiectasis: A Southern European cohort study. Eur. Respir. J. 2020, 56, 2001702. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, J.D.; Moffitt, K.L.; Suarez-Cuartin, G.; Sibila, O.; Finch, S.; Furrie, E.; Dicker, A.; Wrobel, K.; Elborn, J.S.; Walker, B.; et al. Neutrophil Elastase Activity Is Associated with Exacerbations and Lung Function Decline in Bronchiectasis. Am. J. Respir. Crit. Care Med. 2017, 195, 1384–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rademacher, J.; Konwert, S.; Fuge, J.; Dettmer, S.; Welte, T.; Ringshausen, F.C. Anti-IL5 and anti-IL5Rα therapy for clinically significant bronchiectasis with eosinophilic endotype: A case series. Eur. Respir. J. 2020, 55, 1901333. [Google Scholar] [CrossRef]
- E Carpagnano, G.; Scioscia, G.; Lacedonia, D.; Curradi, G.; Barbaro, M.P.F. Severe uncontrolled asthma with bronchiectasis: A pilot study of an emerging phenotype that responds to mepolizumab. J. Asthma Allergy 2019, 12, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavord, I.D.; Chanez, P.; Criner, G.J.; Kerstjens, H.A.; Korn, S.; Lugogo, N.; Martinot, J.-B.; Sagara, H.; Albers, F.C.; Bradford, E.S.; et al. Mepolizumab for Eosinophilic Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2017, 377, 1613–1629. [Google Scholar] [CrossRef] [PubMed]
- Sciurba, F.C.; Bradford, E.S.; Pavord, I.D. Mepolizumab for Eosinophilic COPD. N. Engl. J. Med. 2018, 378, 681–683. [Google Scholar] [PubMed]
- Westerhof, G.A.; Korevaar, D.A.; Amelink, M.; de Nijs, S.B.; de Groot, J.C.; Wang, J.; Weersink, E.J.; Brinke, A.T.; Bossuyt, P.M.; Bel, E.H. Biomarkers to identify sputum eosinophilia in different adult asthma phenotypes. Eur. Respir. J. 2015, 46, 688–696. [Google Scholar] [CrossRef] [Green Version]
- Hastie, A.T.; Martinez, F.J.; Curtis, J.L.; Doerschuk, C.M.; Hansel, N.N.; Christenson, S.; Putcha, N.; E Ortega, V.; Li, X.; Barr, R.G.; et al. Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: An analysis of the SPIROMICS cohort. Lancet Respir. Med. 2017, 5, 956–967. [Google Scholar] [CrossRef]
- Boaventura, R.; Sibila, O.; Agusti, A.; Chalmers, J.D. Treatable traits in bronchiectasis. Eur. Respir. J. 2018, 52, 1801269. [Google Scholar] [CrossRef] [PubMed]
Variable | T2-High Endotype (n = 63) | Non-T2-High (n = 140) | p-Value | |
---|---|---|---|---|
Demographics | ||||
Sex (female), n (%) | 45 (71.4%) | 115 (82.1%) | 0.084 | |
Age, median (IQR) years | 65.0 (54.0, 70.0) | 62.0 (49.5, 71.0) | 0.344 | |
Former/Active smokers, n (%) | 34 (54.0%) | 57 (40.7%) | 0.079 | |
Body mass index [Kg/m2], median (IQR) | 21.0 (18.8, 23.6) | 21.2 (19.3, 24.0) | 0.476 | |
Radiology | ||||
Reiff score, median (IQR) | 4.5 (3.0, 6.0) | 4.0 (2.0, 6.0) | 0.097 | |
Disease severity | ||||
BSI, median (IQR) | 6.0 (4.0, 11.5) | 5.0 (3.0, 8.0) | 0.042 | |
Etiology | ||||
Idiopathic, n (%) | 39 (61.9%) | 86 (61.4%) | 0.385 | |
Primary immunodeficiency, n (%) | 5 (7.9%) | 14 (10.0%) | ||
Post Infective, n (%) | 4 (6.3%) | 15 (10.7%) | ||
Primary Ciliary Dyskinesia, n (%) | 2 (3.2%) | 7 (5.0%) | ||
Secondary Immunodeficiency, n (%) | 4 (6.3%) | 5 (3.6%) | ||
ABPA, n (%) | 1 (0.7%) | 1 (1.6%) | ||
Other *, n (%) | 8 (13.6%) | 11 (7%) | ||
Comorbidities | ||||
BACI, median (IQR) | 0.0 (0.0, 1.0) | 0.0 (0.0, 0.0) | 0.101 | |
Gastroesophageal reflux disease, n (%) | 34 (54.0%) | 68 (48.6%) | 0.477 | |
Cardiovascular diseases, n (%) | 27 (42.9%) | 48 (34.3%) | 0.242 | |
Rinosinusithis, n (%) | 25 (39.7%) | 40 (28.6%) | 0.116 | |
Osteoporosis, n (%) | 13 (20.6%) | 25 (17.9%) | 0.639 | |
Neoplastic disease, n (%) | 10 (15.9%) | 21 (15.0%) | 0.873 | |
Depression, n (%) | 8 (12.7%) | 11 (7.9%) | 0.273 | |
Vaccination status | ||||
Pneumococcal polysaccharide vaccine -23 | 27 (42.9%) | 61 (44.5%) | 0.825 | |
Pneumococcal conjugate vaccine -13 | 43 (68.3%) | 95 (69.3%) | 0.877 | |
Influenza vaccination during the past year | 46 (73.0%) | 105 (75.0%) | 0.764 | |
Clinical status | ||||
Exacerbations in the previous year, median (IQR) | 1.5 (0.0, 2.0) | 1.0 (0.0, 2.0) | 0.099 | |
3+ exacerbations in the previous year, n (%) | 11 (18.3%) | 16 (12.5%) | 0.288 | |
>1 hospitalization in the previous year, n (%) | 8 (13.3%) | 9 (7.0%) | 0.160 | |
mMRC, n (%) | 0 | 30 (48.4%) | 92 (65.7%) | 0.038 |
1 | 20 (32.3%) | 39 (27.9%) | ||
2 | 5 (8.1%) | 5 (3.6%) | ||
3 | 4 (6.5%) | 3 (2.1%) | ||
4 | 3 (4.8%) | 1 (0.7%) | ||
3–4 | 7 (11.3%) | 4 (2.9%) | 0.015 | |
Quality of life—QoL-B questionnaire | ||||
QoL-B questionnaire Physical, median (IQR) | 60.0 (40.0, 80.0) | 66.7 (40.9, 86.7) | 0.330 | |
QoL-B questionnaire Role, median (IQR) | 66.7 (46.7, 86.7) | 73.3 (53.3, 86.7) | 0.321 | |
QoL-B questionnaire Vitality, median (IQR) | 55.6 (52.8, 77.8) | 55.6 (44.4, 66.7) | 0.291 | |
QoL-B questionnaire Emotion, median (IQR) | 83.3 (58.3, 100.0) | 75.0 (58.3, 91.7) | 0.821 | |
QoL-B questionnaire Social, median (IQR) | 58.3 (50.0, 83.3) | 75.0 (50.0, 91.7) | 0.300 | |
QoL-B questionnaire Treatment Burden, median (IQR) | 66.7 (66.7, 77.8) | 66.7 (54.2, 77.8) | 0.395 | |
QoL-B questionnaire Health, median (IQR) | 43.0 (22.9, 56.2) | 41.7 (25.0, 62.5) | 0.468 | |
QoL-B questionnaire Respiration, median (IQR) | 66.7 (58.3, 80.6) | 77.8 (68.6, 85.2) | 0.045 | |
Functional evaluation | ||||
FEV1, median (IQR) %predict. | 80.5 (58.8, 96.0) | 86.0 (74.0, 102.0) | 0.048 | |
FEV1 <50%predict., n (%) | 8 (13.8%) | 5 (3.6%) | 0.009 | |
FEV1 <35%predict., n (%) | 4 (7.0%) | 2 (1.4%) | 0.041 | |
Microbiology | ||||
Chronic infection, n (%) | 22 (40.7%) | 52 (44.4%) | 0.650 | |
Chronic infection p. aeruginosa, n (%) | 15 (27.8%) | 26 (22.2%) | 0.429 | |
Chronic Infection H. Influenzae, n (%) | 3 (5.6%) | 12 (10.3%) | 0.305 | |
Chronic Infection MSSA, n (%) | 2 (3.7%) | 12 (10.3%) | 0.146 | |
Chronic Infection MRSA, n (%) | 1 (1.9%) | 3 (2.6%) | 0.775 | |
Chronic Infection S. maltophilia, n (%) | 2 (3.7%) | 1 (0.9%) | 0.187 | |
Chronic Infection Achromobacter, n (%) | 1 (1.9%) | 1 (0.9%) | 0.573 | |
Chronic Infection S. pneumoniae, n (%) | 0 (0.0%) | 1 (0.9%) | 0.496 | |
Chronic Infection A. fumigatus, n (%) | 1 (1.9%) | 0 (0.0%) | 0.140 | |
Other chronic infection, n (%) | 1 (1.9%) | 6 (5.1%) | 0.315 |
Patient | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Biological Drug treatment | Mepolizumab | Mepolizumab | Mepolizumab | Benralizumab | Benralizumab |
Treatment duration (months) | 41 | 27 | 21 | 27 | 24 |
Sex | Male | Male | Female | Female | Male |
Age, years | 71 | 78 | 48 | 42 | 63 |
Aetiology | Idiopathic | ABPA | Idiopathic | Idiopathic | Idiopathic |
Asthma-comorbidity | Yes | Yes | Yes | Yes | Yes |
Smoking status | Never | Never | Never | Former | Never |
BSI | 5 | 7 | 8 | 4 | 12 |
Exacerbations in the previous year | 2 | 3 | 2 | 1 | 6 |
Hospitalization in the previous year | 0 | 0 | 2 | 0 | 1 |
FEV1 %predict. | 88 | 80 | 90 | 97 | 72 |
Blood eosinophils (cells·µL−1) | 1030 | 460 | 690 | 700 | 410 |
Variable | Baseline | 12 Months Follow Up | 24 Months Follow Up | p Value | p Value Baseline vs. 12 Months | p Value Baseline vs. 24 Months | p Value 12 Mesi vs. 24 Mesi |
---|---|---|---|---|---|---|---|
Disease severity | |||||||
BSI, median (IQR) | 7.0 (5.0, 8.0) | 5.0 (4.0, 5.0) | 5.0 (4.0, 5.0) | 0.232 | 0.102 | 0.144 | 1.000 |
Clinical status | |||||||
Exacerbations previous year, median (IQR) | 2.0 (2.0, 3.0) | 0.0 (0.0, 1.0) | 0.0 (0.0, 0.0) | 0.007 | 0.042 | 0.042 | 1.000 |
2+ exacerbations previous year, n (%) | 4 (80.0%) | 0 (0.0%) | 0 (0.0%) | 0.004 | 0.048 | 0.048 | 1.000 |
1+ hospitalization previous year, n (%) | 2 (40.0%) | 0 (0.0%) | 0 (0.0%) | 0.099 | 0.444 | 0.444 | 1.000 |
Sputum volume (mL), median (IQR) | 25.0 (22.5, 27.5) | 10.0 (0.0, 10.0) | 10.0 (0.0, 20.0) | 0.223 | 0.157 | 0.317 | 0.317 |
Eosinophils blood count cells·µL−1, median (IQR) | 690.0 (460.0, 700.0) | 0.0 (0.0, 0.0) | NA | NA | 0.180 | NA | NA |
Respiratory function | |||||||
FEV1 % predict., median (IQR) | 88.0 (80.0, 90.0) | 84.0 (79.8, 91.0) | 92.0 (91.0, 100.5) | 0.148 | 0.715 | 0.109 | 0.18 |
FEV1 < 80%, n (%) | 2 (40.0%) | 1 (25.0%) | 0 (0.0%) | 0.449 | 1.000 | 0.464 | 1.000 |
Treatment | |||||||
ICS, n (%) | 5 (100.0%) | 5 (100.0%) | 5 (100.0%) | 1.000 | 1.000 | 1.000 | 1.000 |
LABA, n (%) | 5 (100.0%) | 5 (100.0%) | 5 (100.0%) | 1.000 | 1.000 | 1.000 | 1.000 |
LAMA, n (%) | 5 (100.0%) | 5 (100.0%) | 5 (100.0%) | 1.000 | 1.000 | 1.000 | 1.000 |
OCS, n (%) | 5 (100.0%) | 1 (20.0%) | 1 (20.0%) | 0.014 | 0.048 | 0.048 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oriano, M.; Gramegna, A.; Amati, F.; D’Adda, A.; Gaffuri, M.; Contoli, M.; Bindo, F.; Simonetta, E.; Di Francesco, C.; Santambrogio, M.; et al. T2-High Endotype and Response to Biological Treatments in Patients with Bronchiectasis. Biomedicines 2021, 9, 772. https://doi.org/10.3390/biomedicines9070772
Oriano M, Gramegna A, Amati F, D’Adda A, Gaffuri M, Contoli M, Bindo F, Simonetta E, Di Francesco C, Santambrogio M, et al. T2-High Endotype and Response to Biological Treatments in Patients with Bronchiectasis. Biomedicines. 2021; 9(7):772. https://doi.org/10.3390/biomedicines9070772
Chicago/Turabian StyleOriano, Martina, Andrea Gramegna, Francesco Amati, Alice D’Adda, Michele Gaffuri, Marco Contoli, Francesco Bindo, Edoardo Simonetta, Carlotta Di Francesco, Martina Santambrogio, and et al. 2021. "T2-High Endotype and Response to Biological Treatments in Patients with Bronchiectasis" Biomedicines 9, no. 7: 772. https://doi.org/10.3390/biomedicines9070772
APA StyleOriano, M., Gramegna, A., Amati, F., D’Adda, A., Gaffuri, M., Contoli, M., Bindo, F., Simonetta, E., Di Francesco, C., Santambrogio, M., Sotgiu, G., Blasi, F., & Aliberti, S. (2021). T2-High Endotype and Response to Biological Treatments in Patients with Bronchiectasis. Biomedicines, 9(7), 772. https://doi.org/10.3390/biomedicines9070772