The Dual Role of a Polyvalent IgM/IgA-Enriched Immunoglobulin Preparation in Activating and Inhibiting the Complement System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Immunoglobulin (Ig) Preparations
2.2. Opsonophagocytosis Assay (OPA) and Phagocytosis Assay (PA)
2.3. Opsonin Enzyme-Linked Immunosorbent Assay (ELISA)
2.4. Anaphylatoxin C5a ELISA
2.5. Complement-Dependent Cytotoxicity (CDC) Assay
2.6. SDS-PAGE and Western Blot Analysis
2.7. Phase I Trial Design
2.8. Complement Assessments in Healthy Subjects
2.9. Complement Assessments in Severe Community-Acquired Pneumonia (sCAP) Patients
2.10. Statistical Analyses
3. Results
3.1. Trimodulin Induces Phagocytosis and Opsonophagocytosis in a Concentration-Dependent Manner
3.2. Trimodulin Reduces the Detection of Opsonins C3b and C4b in a Concentration-Dependent Manner
3.3. Trimodulin Reduces CDC Lysis
3.4. Trimodulin Reduces the Detection of Anaphylatoxin C5a in a Concentration-Dependent Manner
3.5. The Ig Concentration Range Used In Vitro Matches with Ig Levels In Vivo
3.6. Trimodulin Induces Complement Consumption in a Concentration-Dependent Manner in Human Subjects
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarma, J.V.; Ward, P.A. The Complement System. Cell Tissue Res. 2011, 343, 227–235. [Google Scholar] [CrossRef]
- Walport, M.J. Complement. First of Two Parts. N. Engl. J. Med. 2001, 344, 1058–1066. [Google Scholar] [CrossRef]
- Janeway, C.; Travers, P.; Walport, M.; Shlomchik, M.J. Immunobiology: The Immune System in Health and Disease. Trends Immunol. 2001, 21, 201. [Google Scholar]
- Köhl, J. Anaphylatoxins and Infectious and Non-Infectious Inflammatory Diseases. Mol. Immunol. 2001, 38, 175–187. [Google Scholar] [CrossRef]
- De Bont, C.M.; Boelens, W.C.; Pruijn, G.J.M. NETosis, Complement, and Coagulation: A Triangular Relationship. Cell Mol. Immunol. 2019, 16, 19–27. [Google Scholar] [CrossRef]
- Sarma, V.J.; Huber-Lang, M.; Ward, P.A. Complement in Lung Disease. Autoimmunity 2006, 39, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.-F.; Ward, P.A. Role of C5A in Inflammatory Responses. Annu. Rev. Immunol. 2005, 23, 821–852. [Google Scholar] [CrossRef]
- Ritis, K.; Doumas, M.; Mastellos, D.; Micheli, A.; Giaglis, S.; Magotti, P.; Rafail, S.; Kartalis, G.; Sideras, P.; Lambris, J.D. A Novel C5a Receptor-Tissue Factor Cross-Talk in Neutrophils Links Innate Immunity to Coagulation Pathways. J. Immunol. 2006, 177, 4794–4802. [Google Scholar] [CrossRef] [PubMed]
- Øvstebø, R.; Hellum, M.; Aass, H.C.D.; Trøseid, A.M.; Brandtzaeg, P.; Mollnes, T.E.; Henriksson, C.E. Microparticle-Associated Tissue Factor Activity Is Reduced by Inhibition of the Complement Protein 5 in Neisseria Meningitidis -Exposed Whole Blood. Innate Immun. 2014, 20, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal Coagulation Parameters Are Associated with Poor Prognosis in Patients with Novel Coronavirus Pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [Green Version]
- Zipfel, P.F.; Skerka, C. Complement Regulators and Inhibitory Proteins. Nat. Rev. Immunol. 2009, 9, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Uszewski, M.K.; Farries, T.C.; Lublin, D.M.; Rooney, I.A.; Atkinson, J.P. Control of the Complement System. Adv. Immunol. 1996, 61, 201–283. [Google Scholar]
- Lachmann, P.J. The Amplification Loop of the Complement Pathways. Adv. Immunol. 2009, 104, 115–149. [Google Scholar]
- Zipfel, P.F.; Heinen, S.; Józsi, M.; Skerka, C. Complement and Diseases: Defective Alternative Pathway Control Results in Kidney and Eye Diseases. Mol. Immunol. 2006, 43, 97–106. [Google Scholar] [CrossRef]
- Basta, M. Ambivalent Effect of Immunoglobulins on the Complement System: Activation versus Inhibition. Mol. Immunol. 2008, 45, 4073–4079. [Google Scholar] [CrossRef]
- Basta, M. Activation and Inhibition of Complement by Immunoglobulins. The Complement System; Springer: Boston, MA, USA, 2004; pp. 517–529. [Google Scholar]
- Basta, M.; Kirshbom, P.; Frank, M.M.; Fries, L.F. Mechanism of Therapeutic Effect of High-Dose Intravenous Immunoglobulin. Attenuation of Acute, Complement-Dependent Immune Damage in a Guinea Pig Model. J. Clin. Investig. 1989, 84, 1974–1981. [Google Scholar] [CrossRef] [PubMed]
- Hiemstra, P.S.; Gorter, A.; Stuurman, M.E.; Van Es, L.A.; Daha, M.R. Activation of the Alternative Pathway of Complement by Human Serum IgA. Eur. J. Immunol. 1987, 17, 321–326. [Google Scholar] [CrossRef]
- Roos, A.; Nauta, A.J.; Broers, D.; Faber-Krol, M.C.; Trouw, L.A.; Drijfhout, J.W.; Daha, M.R. Specific Inhibition of the Classical Complement Pathway by C1q-Binding Peptides. J. Immunol. 2001, 167, 7052–7059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basta, M.; Langlois, P.F.; Marques, M.; Frank, M.M.; Fries, L.F. High-Dose Intravenous Immunoglobulin Modifies Complement-Mediated in Vivo Clearance. Blood 1989, 74, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Basta, M.; Fries, L.F.; Frank, M.M. High Doses of Intravenous Ig Inhibit in Vitro Uptake of C4 Fragments onto Sensitized Erythrocytes. Blood 1991, 77, 376–380. [Google Scholar] [CrossRef] [Green Version]
- Basta, M. Modulation of Complement-Mediated Immune Damage by Intravenous Immune Globulin. Clin. Exp. Immunol. 1996, 104 (Suppl. S1), 21–25. [Google Scholar] [CrossRef]
- Roos, A.; Rieben, R.; Faber-Krol, M.C.; Daha, M.R. IgM-Enriched Human Intravenous Immunoglobulin Strongly Inhibits Complement-Dependent Porcine Cell Cytotoxicity Mediated by Human Xenoreactive Antibodies: IVIgM Inhibits Cytotoxicity of Human Serum to Pig Cells. Xenotransplantation 2003, 10, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Rieben, R.; Roos, A.; Muizert, Y.; Tinguely, C.; Gerritsen, A.F.; Daha, M.R. Immunoglobulin M–Enriched Human Intravenous Immunoglobulin Prevents Complement Activation In Vitro and In Vivo in a Rat Model of Acute Inflammation. Blood 1999, 93, 942–951. [Google Scholar] [CrossRef]
- Spycher, M.; Matozan, K.; Minnig, K.; Zehnder, R.; Miescher, S.; Hoefferer, L.; Rieben, R. In Vitro Comparison of the Complement-Scavenging Capacity of Different Intravenous Immunoglobulin Preparations. Vox. Sang. 2009, 97, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Miletic, V.D.; Hester, C.G.; Frank, M.M. Regulation of Complement Activity by Immunoglobulin. I. Effect of Immunoglobulin Isotype on C4 Uptake on Antibody-Sensitized Sheep Erythrocytes and Solid Phase Immune Complexes. J. Immunol. 1996, 156, 749–757. [Google Scholar] [PubMed]
- Frank, M.M.; Basta, M.; Fries, L.F. The Effects of Intravenous Immune Globulin on Complement-Dependent Immune Damage of Cells and Tissues. Clin. Immunol. Immunopathol. 1992, 62, S82–S86. [Google Scholar] [CrossRef]
- Antón, L.C.; Alcolea, J.M.; Sánchez-Corral, P.; Marqués, G.; Sánchez, A.; Vivanco, F. C3 Binds Covalently to the Cγ3 Domain of IgG Immune Aggregates during Complement Activation by the Alternative Pathway. Biochem. J. 1989, 257, 831–838. [Google Scholar] [CrossRef]
- Jelezarova, E.; Lutz, H.U. Assembly and Regulation of the Complement Amplification Loop in Blood: The Role of C3b-C3b-IgG Complexes. Mol. Immunol. 1999, 36, 837–842. [Google Scholar] [CrossRef]
- Lutz, H.U. How Immune Complexes from Certain IgG NAbs and Any F(ab′)2 Can Mediate Excessive Complement Activation. Adv. Exp. Med. Biol. 2012, 750, 186–196. [Google Scholar]
- Fries, L.F.; Gaither, T.A.; Hammer, C.H.; Frank, M.M. C3b Covalently Bound to IgG Demonstrates a Reduced Rate of Inactivation by Factors H and I. J. Exp. Med. 1984, 160, 1640–1655. [Google Scholar] [CrossRef] [PubMed]
- Jelezarova, E.; Vogt, A.; Lutz, H.U. Interaction of C3b2–IgG Complexes with Complement Proteins Properdin, Factor B and Factor H: Implications for Amplification. Biochem. J. 2000, 349, 217–223. [Google Scholar] [CrossRef]
- Basta, M.; Van Goor, F.; Luccioli, S.; Billings, E.M.; Vortmeyer, A.O.; Baranyi, L.; Szebeni, J.; Alving, C.R.; Carroll, M.C.; Berkower, I.; et al. F(Ab)′2-Mediated Neutralization of C3a and C5a Anaphylatoxins: A Novel Effector Function of Immunoglobulins. Nat. Med. 2003, 9, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Walpen, A.J.; Laumonier, T.; Aebi, C.; Mohacsi, P.J.; Rieben, R. Immunoglobulin M-Enriched Intravenous Immunoglobulin Inhibits Classical Pathway Complement Activation, but Not Bactericidal Activity of Human Serum. Xenotransplantation 2004, 11, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Magee, J.C.; Collins, B.H.; Harland, R.C.; Lindman, B.J.; Bollinger, R.R.; Frank, M.M.; Platt, J.L. Immunoglobulin Prevents Complement-Mediated Hyperacute Rejection in Swine-to-Primate Xenotransplantation. J. Clin. Investig. 1995, 96, 2404–2412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arumugam, T.V.; Tang, S.-C.; Lathia, J.D.; Cheng, A.; Mughal, M.R.; Chigurupati, S.; Magnus, T.; Chan, S.L.; Jo, D.-G.; Ouyang, X.; et al. Intravenous Immunoglobulin (IVIG) Protects the Brain against Experimental Stroke by Preventing Complement-Mediated Neuronal Cell Death. Proc. Natl. Acad. Sci. USA 2007, 104, 14104–14109. [Google Scholar] [CrossRef] [Green Version]
- Flierl, M.A.; Schreiber, H.; Huber-Lang, M.S. The Role of Complement, C5a and Its Receptors in Sepsis and Multiorgan Dysfunction Syndrome. J. Investig. Surg. 2006, 19, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Esen, F.; Orhun, G.; Ozcan, P.E.; Senturk, E.; Kucukerden, M.; Giris, M.; Akcan, U.; Yilmaz, C.U.; Orhan, N.; Arican, N.; et al. Neuroprotective Effects of Intravenous Immunoglobulin Are Mediated through Inhibition of Complement Activation and Apoptosis in a Rat Model of Sepsis. ICMx 2017, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Esen, F.; Senturk, E.; Ozcan, P.E.; Ahishali, B.; Arican, N.; Orhan, N.; Ekizoglu, O.; Kucuk, M.; Kaya, M. Intravenous Immunoglobulins Prevent the Breakdown of the Blood-Brain Barrier in Experimentally Induced Sepsis. Crit. Care Med. 2012, 40, 1214–1220. [Google Scholar] [CrossRef]
- Bermejo-Martín, J.F.; Rodriguez-Fernandez, A.; Herrán-Monge, R.; Andaluz-Ojeda, D.; Muriel-Bombín, A.; Merino, P.; García-García, M.M.; Citores, R.; Gandía, F.; Almansa, R.; et al. Immunoglobulins IgG1, IgM and IgA: A Synergistic Team Influencing Survival in Sepsis. J. Intern. Med. 2014, 276, 404–412. [Google Scholar] [CrossRef]
- Justel, M.; Socias, L.; Almansa, R.; Ramírez, P.; Gallegos, M.C.; Fernandez, V.; Gordon, M.; Andaluz-Ojeda, D.; Nogales, L.; Rojo, S.; et al. IgM Levels in Plasma Predict Outcome in Severe Pandemic Influenza. J. Clin. Virol. 2013, 58, 564–567. [Google Scholar] [CrossRef]
- Tian, L.; Zhu, J.; Jin, J.; Tong, C.; Zeng, W.; Deng, S.; Zou, S. Prognostic Value of Circulating Lymphocyte B and Plasma Immunoglobulin M on Septic Shock and Sepsis: A Systematic Review and Meta-Analysis. Am. J. Transl. Res. 2019, 11, 7223–7232. [Google Scholar]
- Giamarellos-Bourboulis, E.J.; Apostolidou, E.; Lada, M.; Perdios, I.; Gatselis, N.K.; Tsangaris, I.; Georgitsi, M.; Bristianou, M.; Kanni, T.; Sereti, K.; et al. Kinetics of Circulating Immunoglobulin M in Sepsis: Relationship with Final Outcome. Crit. Care 2013, 17, R247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welte, T.; Dellinger, R.P.; Ebelt, H.; Ferrer, M.; Opal, S.M.; Singer, M.; Vincent, J.-L.; Werdan, K.; Martin-Loeches, I.; Almirall, J.; et al. Efficacy and Safety of Trimodulin, a Novel Polyclonal Antibody Preparation, in Patients with Severe Community-Acquired Pneumonia: A Randomized, Placebo-Controlled, Double-Blind, Multicenter, Phase II Trial (CIGMA Study). Intensive Care Med. 2018, 44, 438–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmiedl, S.; Szymanski, J.; Wartenberg-Demand, A.; Remy, A.; Thürmann, P. Evaluation of Pharmacokinetics and Safety of the IgM Enriched Immunoglobulin Concentrate BT086 in Healthy Volunteers–Results of a Dose-escalating Single Dose Phase I Study. Br. J. Clin. Pharmacol. 2011, 72, 1–46, Abstract 40. [Google Scholar]
- Schmiedl, S.; Szymanski, J.; Wartenberg-Demand, A.; Thürmann, P. Evaluation of Pharmacokinetics and Safety of the IgM Enriched Immunoglobulin Concentrate BT086 in Healthy Volunteers-Results of a Multiple Dose Phase I Study. Br. J. Clin. Pharmacol. 2011, 72, 1–46, Abstract 43. [Google Scholar]
- Duerr, C.; Bacher, A.; de Martin, A.; Sachet, M.; Sadeghi, K.; Baumann, S.; Heinz, C.; Spittler, A. The Novel Polyclonal Ab Preparation Trimodulin Attenuates Ex Vivo Endotoxin-Induced Immune Reactions in Early Hyperinflammation. Innate. Immun. 2019, 25, 374–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohländer, F.; Riehl, D.; Weißmüller, S.; Gutscher, M.; Schüttrumpf, J.; Faust, S. Immunomodulation: Immunoglobulin Preparations Suppress Hyperinflammation in a COVID-19 Model via FcγRIIA and FcαRI. Front. Immunol. 2021. [Google Scholar] [CrossRef]
- Heinz, C.C.; Weißmüller, S. The Immune Modulating Clinical Activity of Trimodulin: A Post-hoc Analysis of the Phase II CIGMA Trial. 2021, manuscript in preparation.
- Spiller, O.B.; Morgan, B.P. Antibody-Independent Activation of the Classical Complement Pathway by Cytomegalovirus-Infected Fibroblasts. J. Infect. Dis. 1998, 178, 1597–1603. [Google Scholar] [CrossRef] [Green Version]
- Romero-Steiner, S.; Libutti, D.; Pais, L.B.; Dykes, J.; Anderson, P.; Whitin, J.C.; Keyserling, H.L.; Carlone, G.M. Standardization of an Opsonophagocytic Assay for the Measurement of Functional Antibody Activity against Streptococcus Pneumoniae Using Differentiated HL-60 Cells. Clin. Diagn. Lab. Immunol. 1997, 4, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Ohta, R.; Torii, Y.; Imai, M.; Kimura, H.; Okada, N.; Ito, Y. Serum Concentrations of Complement Anaphylatoxins and Proinflammatory Mediators in Patients with 2009 H1N1 Influenza: Anaphylatoxins in the New Influenza. Microbiol. Immunol. 2011, 55, 191–198. [Google Scholar] [CrossRef]
- Fluorescent Western Blotting Procedure. Available online: http://assets.thermofisher.com/TFS-Assets/BID/Reference-Materials/fluorescent-western-blotting-procedure-editable-protocol.pdf (accessed on 28 May 2021).
- Mladenov, R.; Hristodorov, D.; Cremer, C.; Hein, L.; Kreutzer, F.; Stroisch, T.; Niesen, J.; Brehm, H.; Blume, T.; Brümmendorf, T.H.; et al. The Fc-Alpha Receptor Is a New Target Antigen for Immunotherapy of Myeloid Leukemia: Targeting and Elimination of Malignant Myeloid Cells. Int. J. Cancer 2015, 137, 2729–2738. [Google Scholar] [CrossRef] [PubMed]
- Kubagawa, H.; Honjo, K.; Ohkura, N.; Sakaguchi, S.; Radbruch, A.; Melchers, F.; Jani, P.K. Functional Roles of the IgM Fc Receptor in the Immune System. Front. Immunol. 2019, 10, 945. [Google Scholar] [CrossRef]
- Basta, M.; Dalakas, M.C. High-Dose Intravenous Immunoglobulin Exerts Its Beneficial Effect in Patients with Dermatomyositis by Blocking Endomysial Deposition of Activated Complement Fragments. J. Clin. Investig. 1994, 94, 1729–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorvignit, D.; Palacios, J.L.; Merino, M.; Hernández, T.; Sosa, K.; Casacó, A.; López-Requena, A.; Mateo de Acosta, C. Expression and Biological Characterization of an Anti-CD20 Biosimilar Candidate Antibody: A Case Study. mAbs 2012, 4, 488–496. [Google Scholar] [CrossRef] [Green Version]
- Dati, F.; Schumann, G.; Thomas, L.; Aguzzi, F.; Baudner, S.; Bienvenu, J.; Blaabjerg, O.; Blirup-Jensen, S.; Carlström, A.; Petersen, P.H.; et al. Consensus of a Group of Professional Societies and Diagnostic Companies on Guidelines for Interim Reference Ranges for 14 Proteins in Serum Based on the Standardization against the IFCC/BCR/CAP Reference Material (CRM 470). International Federation of Clinical Chemistry. Community Bureau of Reference of the Commission of the European Communities. College of American Pathologists. Eur. J. Clin. Chem. Clin. Biochem. 1996, 34, 517–520. [Google Scholar]
- Kimberly, R.P.; Salmon, J.E.; Bussel, J.B.; Crow, M.K.; Hilgartner, M.W. Modulation of Mononuclear Phagocyte Function by Intravenous Gamma-Globulin. J. Immunol. 1984, 132, 745–750. [Google Scholar]
- Samuelsson, A. Anti-Inflammatory Activity of IVIG Mediated Through the Inhibitory Fc Receptor. Science 2001, 291, 484–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutz, H.U.; Stammler, P.; Bianchi, V.; Trüeb, R.M.; Hunziker, T.; Burger, R.; Jelezarova, E.; Späth, P.J. Intravenously Applied IgG Stimulates Complement Attenuation in a Complement-Dependent Autoimmune Disease at the Amplifying C3 Convertase Level. Blood 2004, 103, 465–472. [Google Scholar] [CrossRef]
- Ballanti, E.; Perricone, C.; Greco, E.; Ballanti, M.; Di Muzio, G.; Chimenti, M.S.; Perricone, R. Complement and Autoimmunity. Immunol. Res. 2013, 56, 477–491. [Google Scholar] [CrossRef]
- Thurman, J.M.; Yapa, R. Complement Therapeutics in Autoimmune Disease. Front. Immunol. 2019, 10, 672. [Google Scholar] [CrossRef] [Green Version]
- Ricklin, D.; Mastellos, D.C.; Reis, E.S.; Lambris, J.D. The Renaissance of Complement Therapeutics. Nat. Rev. Nephrol. 2018, 14, 26–47. [Google Scholar] [CrossRef] [Green Version]
- Holers, V.M. The Complement System as a Therapeutic Target in Autoimmunity. Clin. Immunol. 2003, 107, 140–151. [Google Scholar] [CrossRef]
- Murai, H.; Suzuki, S.; Hasebe, M.; Fukamizu, Y.; Rodrigues, E.; Utsugisawa, K. Safety and Effectiveness of Eculizumab in Japanese Patients with Generalized Myasthenia Gravis: Interim Analysis of Post-Marketing Surveillance. Ther. Adv. Neurol. Disord. 2021, 14, 175628642110019. [Google Scholar] [CrossRef]
- Lam, L.M.; Murphy, S.J.; Kuri-Cervantes, L.; Weisman, A.R.; Ittner, C.A.G.; Reilly, J.P.; Pampena, M.B.; Betts, M.R.; Wherry, E.J.; Song, W.-C.; et al. Erythrocytes Reveal Complement Activation in Patients with COVID-19. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Gao, T.; Hu, M.; Zhang, X.; Li, H.; Zhu, L.; Liu, H.; Dong, Q.; Zhang, Z.; Wang, Z.; Hu, Y.; et al. Highly Pathogenic Coronavirus N Protein Aggravates Lung Injury by MASP-2-Mediated Complement over-Activation. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Magro, C.; Mulvey, J.J.; Berlin, D.; Nuovo, G.; Salvatore, S.; Harp, J.; Baxter-Stoltzfus, A.; Laurence, J. Complement Associated Microvascular Injury and Thrombosis in the Pathogenesis of Severe COVID-19 Infection: A Report of FIve Cases. Transl. Res. 2020, 14. [Google Scholar] [CrossRef]
- Giudice, V. Combination of Ruxolitinib and Eculizumab for Treatment of Severe SARS-CoV-2-Related Acute Respiratory Distress Syndrome: A Controlled Study. Front. Pharmacol. 2020, 11, 6. [Google Scholar] [CrossRef] [PubMed]
- Mastellos, D.C.; Pires da Silva, B.G.P.; Fonseca, B.A.L.; Fonseca, N.P.; Auxiliadora-Martins, M.; Mastaglio, S.; Ruggeri, A.; Sironi, M.; Radermacher, P.; Chrysanthopoulou, A.; et al. Complement C3 vs C5 Inhibition in Severe COVID-19: Early Clinical Findings Reveal Differential Biological Efficacy. Clin. Immunol. 2020, 220, 108598. [Google Scholar] [CrossRef] [PubMed]
- Vlaar, A.P.J.; de Bruin, S.; Busch, M.; Timmermans, S.A.M.E.G.; van Zeggeren, I.E.; Koning, R.; ter Horst, L.; Bulle, E.B.; van Baarle, F.E.H.P.; van de Poll, M.C.G.; et al. Anti-C5a Antibody IFX-1 (Vilobelimab) Treatment versus Best Supportive Care for Patients with Severe COVID-19 (PANAMO): An Exploratory, Open-Label, Phase 2 Randomised Controlled Trial. Lancet Rheumatol. 2020, 2, e764–e773. [Google Scholar] [CrossRef]
- Mastellos, D.C.; Skendros, P.; Calado, R.T.; Risitano, A.M.; Lambris, J.D. Efficacy Matters: Broadening Complement Inhibition in COVID-19. Lancet Rheumatol. 2021, 3, e95. [Google Scholar] [CrossRef]
Condition | Total Dose | Final Concentration | ||
---|---|---|---|---|
IgM (mg/mL) | IgA (mg/mL) | IgG (mg/mL) | ||
In vitro conditions | ||||
In-assay concentrations | <1.0 mg/mL | <0.23 | <0.21 | <0.56 |
1.6 mg/mL | 0.37 | 0.34 | 0.90 | |
2.5 mg/mL | 0.58 | 0.53 | 1.40 | |
3.2 mg/mL | 0.74 | 0.68 | 1.79 | |
5.0 mg/mL | 1.15 | 1.05 | 2.80 | |
6.3 mg/mL | 1.45 | 1.32 | 3.53 | |
7.5 mg/mL | 1.73 | 1.58 | 4.20 | |
10.0 mg/mL | 2.30 | 2.10 | 5.60 | |
12.5 mg/mL | 2.90 | 2.63 | 7.00 | |
In vivo conditions | ||||
Serum concentrations (normal reference range) 1 | NA | 0.4–2.3 | 0.7–4.0 | 7.0–16.0 |
Serum concentrations (in 24 healthy subjects) 2 | NA | 1.1 (0.55) | 2.0 (0.59) | 10.4 (2.3) |
Serum concentrations (after trimodulin dose in 5–6 healthy subjects) 2 | 1x 91.3 mg/kg | 1.2 (0.36) | 2.1 (0.41) | 11.0 (2.7) |
1x 182.6 mg/kg | 1.7 (0.40) | 2.8 (0.63) | 12.0 (1.8) | |
1x 273.9 mg/kg | 1.7 (0.13) | 2.8 (0.98) | 11.2 (2.7) | |
5x 182.6 mg/kg | 2.9 (0.89) | 3.6 (0.40) * | 14.6 (1.5) * | |
Serum concentrations (81 patients with sCAP) 3 | NA | 0.8 (0.79) | 2.3 (1.14) | 6.8 (2.73) |
Serum concentrations (after trimodulin dose in 10–11 patients with sCAP) 4 | Pre-treatment | 0.61 (0.4) | 2.6 (0.7) | 8.8 (2.8) |
2x 182.6 mg/kg | 1.4 (0.5) | 3.3 (0.9) | 9.3 (1.8) | |
4x 182.6 mg/kg | 1.9 (0.9) | 3.9 (1.1) | 10.9 (1.0) | |
5x 182.6 mg/kg | 2.0 (1.0) | 4.1 (1.4) | 11.5 (2.3) |
Situation | Infection Status | Immune Status | Mode of Action 1 | Activity Level 2 | Balance 3 |
---|---|---|---|---|---|
A | Early infection + | IgM increasing Low specific IgG, IgA Low phagocyte numbers at site of infection | Alternative/MBL pathway (IgA/P) → lysis | ++ | ++ |
CDC via classical pathway → lysis | + | ||||
Opsonophagocytosis (IgM) → clearance | + | ||||
Phagocytosis (IgA, IgG) → clearance | - | ||||
B | Mid infection +++ | High IgM Specific IgG, IgA increasing Phagocytes increased at site of infection | Alternative/MBL pathway (IgA/P) →lysis | ++ | ++ |
CDC via classical pathway → lysis | - | ||||
Opsonophagocytosis (IgM) → clearance | +++ | ||||
Phagocytosis (IgA, IgG) → clearance | + | ||||
C | Late infection ++ | IgM decreasing Specific IgG, IgA high High number of phagocytes at site of infection | Alternative/MBL pathway (IgA/P) → lysis | + | ++ |
CDC via classical pathway → lysis | + | ||||
Opsonophagocytosis (IgM) → clearance | + | ||||
Phagocytosis (IgA, IgG) → clearance | +++ | ||||
D | Severe infection ++++ | Low IgM, IgG Specific IgA high Phagocytes impaired at site of infection due to C5a | Alternative/MBL pathway (IgA/P) → lysis | ++++ | ++++ |
CDC via classical pathway → lysis | + | ||||
Opsonophagocytosis (IgM) → clearance | + | ||||
Phagocytosis (IgA, IgG) → clearance | + | ||||
E | Severe infection + trimodulin ++++ | High IgM, IgG Specific IgA high High number of phagocytes at site of infection | Alternative/MBL pathway (IgA/P) → lysis | ++ | ++++ |
CDC via classical pathway → lysis | - | ||||
Opsonophagocytosis (IgM) → clearance | +++ | ||||
Phagocytosis (IgA, IgG) → clearance | +++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, C.; Weißmüller, S.; Bohländer, F.; Germer, M.; König, M.; Staus, A.; Wartenberg-Demand, A.; Heinz, C.C.; Schüttrumpf, J. The Dual Role of a Polyvalent IgM/IgA-Enriched Immunoglobulin Preparation in Activating and Inhibiting the Complement System. Biomedicines 2021, 9, 817. https://doi.org/10.3390/biomedicines9070817
Schmidt C, Weißmüller S, Bohländer F, Germer M, König M, Staus A, Wartenberg-Demand A, Heinz CC, Schüttrumpf J. The Dual Role of a Polyvalent IgM/IgA-Enriched Immunoglobulin Preparation in Activating and Inhibiting the Complement System. Biomedicines. 2021; 9(7):817. https://doi.org/10.3390/biomedicines9070817
Chicago/Turabian StyleSchmidt, Carolin, Sabrina Weißmüller, Fabian Bohländer, Matthias Germer, Martin König, Alexander Staus, Andrea Wartenberg-Demand, Corina C. Heinz, and Jörg Schüttrumpf. 2021. "The Dual Role of a Polyvalent IgM/IgA-Enriched Immunoglobulin Preparation in Activating and Inhibiting the Complement System" Biomedicines 9, no. 7: 817. https://doi.org/10.3390/biomedicines9070817
APA StyleSchmidt, C., Weißmüller, S., Bohländer, F., Germer, M., König, M., Staus, A., Wartenberg-Demand, A., Heinz, C. C., & Schüttrumpf, J. (2021). The Dual Role of a Polyvalent IgM/IgA-Enriched Immunoglobulin Preparation in Activating and Inhibiting the Complement System. Biomedicines, 9(7), 817. https://doi.org/10.3390/biomedicines9070817