Strong Associations between Plasma Osteopontin and Several Inflammatory Chemokines, Cytokines, and Growth Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Clinical Characteristics
2.3. Osteopontin Measurements
2.4. Proseek Multiplex Measurements
2.5. Statistics
- Age-adjusted model;
- Cardiovascular risk factor model (model A + lipid-lowering treatment, cardiovascular diagnosis, body mass index, diabetes, antihypertensive treatments, systolic and diastolic blood pressure, total and high-density lipoprotein [HDL] cholesterol, and smoking).
2.6. Network Analysis
3. Results
3.1. Study Cohort
3.2. Significant Associations between Plasma Osteopontin and Plasma Cytokines
3.3. Significant Associations between Urine Osteopontin and Plasma Cytokines
3.4. Network Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franzén, A.; Heinegård, D. Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochem. J. 1985, 232, 715–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosmopoulos, M.; Paschou, S.A.; Grapsa, J.; Anagnostis, P.; Vryonidou, A.; Goulis, D.G.; Siasos, G. The Emerging Role of Bone Markers in Diagnosis and Risk Stratification of Patients With Coronary Artery Disease. Angiology 2019, 70, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Iida, T.; Wagatsuma, K.; Hirayama, D.; Nakase, H. Is Osteopontin a Friend or Foe of Cell Apoptosis in Inflammatory Gastrointestinal and Liver Diseases? Int. J. Mol. Sci. 2017, 19, 7. [Google Scholar] [CrossRef] [Green Version]
- Rittling, S.R.; Singh, R. Osteopontin in Immune-mediated Diseases. J. Dent. Res. 2015, 94, 1638–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castello, L.M.; Raineri, D.; Salmi, L.; Clemente, N.; Vaschetto, R.; Quaglia, M.; Garzaro, M.; Gentilli, S.; Navalesi, P.; Cantaluppi, V.; et al. Osteopontin at the Crossroads of Inflammation and Tumor Progression. Mediat. Inflamm. 2017, 2017, 4049098. [Google Scholar] [CrossRef]
- Zhu, Q.; Luo, X.; Zhang, J.; Liu, Y.; Luo, H.; Huang, Q.; Cheng, Y.; Xie, Z. Osteopontin as a Potential Therapeutic Target for Ischemic Stroke. Curr. Drug Deliv. 2017, 14, 766–772. [Google Scholar] [CrossRef]
- Bevan, L.; Lim, Z.W.; Venkatesh, B.; Riley, P.R.; Martin, P.; Richardson, R.J. Specific macrophage populations promote both cardiac scar deposition and subsequent resolution in adult zebrafish. Cardiovasc. Res. 2020, 116, 1357–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Chen, Q.; Alam, A.; Cui, J.; Suen, K.C.; Soo, A.P.; Eguchi, S.; Gu, J.; Ma, D. The role of osteopontin in the progression of solid organ tumour. Cell Death Dis. 2018, 9, 356. [Google Scholar] [CrossRef]
- Chimento, S.; Billero, V.; Cavallin, L.; Romanelli, M.; Nadji, M.; Romanelli, P. Evaluation of osteopontin expression in chronic wounds: A potential prognostic and therapeutic biomarker. J. Wound Care 2017, 26, S4–S8. [Google Scholar] [CrossRef]
- Bruemmer, D.; Collins, A.R.; Noh, G.; Wang, W.; Territo, M.; Arias-Magallona, S.; Fishbein, M.C.; Blaschke, F.; Kintscher, U.; Graf, K.; et al. Angiotensin II-accelerated atherosclerosis and aneurysm formation is attenuated in osteopontin-deficient mice. J. Clin. Investig. 2003, 112, 1318–1331. [Google Scholar] [CrossRef]
- Byberg, L.; Siegbahn, A.; Berglund, L.; McKeigue, P.; Reneland, R.; Lithell, H. Plasminogen activator inhibitor-1 activity is independently related to both insulin sensitivity and serum triglycerides in 70-year-old men. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 258–264. [Google Scholar] [CrossRef] [Green Version]
- Feldreich, T.; Carlsson, A.C.; Helmersson-Karlqvist, J.; Risérus, U.; Larsson, A.; Lind, L.; Ärnlöv, J. Urinary Osteopontin Predicts Incident Chronic Kidney Disease, while Plasma Osteopontin Predicts Cardiovascular Death in Elderly Men. Cardioren. Med. 2017, 7, 245–254. [Google Scholar] [CrossRef]
- Singh, M.; Dalal, S.; Singh, K. Osteopontin: At the cross-roads of myocyte survival and myocardial function. Life Sci. 2014, 118, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Sulkava, M.; Raitoharju, E.; Levula, M.; Seppälä, I.; Lyytikäinen, L.P.; Mennander, A.; Järvinen, O.; Zeitlin, R.; Salenius, J.P.; Illig, T.; et al. Differentially expressed genes and canonical pathway expression in human atherosclerotic plaques—Tampere Vascular Study. Sci. Rep. 2017, 7, 41483. [Google Scholar] [CrossRef]
- Yilmaz, K.C.; Bal, U.A.; Karacaglar, E.; Okyay, K.; Aydinalp, A.; Yildirir, A.; Muderrisoglu, H. Plasma osteopontin concentration is elevated in patients with coronary bare metal stent restenosis. Acta Cardiol. 2018, 73, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Maniatis, K.; Siasos, G.; Oikonomou, E.; Vavuranakis, M.; Zaromytidou, M.; Mourouzis, K.; Paraskevopoulos, T.; Charalambous, G.; Papavassiliou, A.G.; Tousoulis, D. Osteoprotegerin and Osteopontin Serum Levels are Associated with Vascular Function and Inflammation in Coronary Artery Disease Patients. Curr. Vasc. Pharmacol. 2020, 18, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Lorenzen, J.M.; Schauerte, C.; Hübner, A.; Kölling, M.; Martino, F.; Scherf, K.; Batkai, S.; Zimmer, K.; Foinquinos, A.; Kaucsar, T.; et al. Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis. Eur. Heart J. 2015, 36, 2184–2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzen, J.M.; Neunhöffer, H.; David, S.; Kielstein, J.T.; Haller, H.; Fliser, D. Angiotensin II receptor blocker and statins lower elevated levels of osteopontin in essential hypertension—Results from the EUTOPIA trial. Atherosclerosis 2010, 209, 184–188. [Google Scholar] [CrossRef]
- Lind, L.; Gigante, B.; Borné, Y.; Feldreich, T.; Leppert, J.; Hedberg, P.; Östgren, C.J.; Nyström, F.H.; Sundström, J.; Ärnlöv, J.; et al. Plasma Protein Profile of Carotid Artery Atherosclerosis and Atherosclerotic Outcomes: Meta-Analyses and Mendelian Randomization Analyses. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 1777–1788. [Google Scholar] [CrossRef]
- Lind, L.; Ärnlöv, J.; Lindahl, B.; Siegbahn, A.; Sundström, J.; Ingelsson, E. Use of a proximity extension assay proteomics chip to discover new biomarkers for human atherosclerosis. Atherosclerosis 2015, 242, 205–210. [Google Scholar] [CrossRef]
- Lind, L.; Gigante, B.; Borne, Y.; Mälarstig, A.; Sundström, J.; Ärnlöv, J.; Ingelsson, E.; Baldassarre, D.; Tremoli, E.; Veglia, F.; et al. The plasma protein profile and cardiovascular risk differ between intima-media thickness of the common carotid artery and the bulb: A meta-analysis and a longitudinal evaluation. Atherosclerosis 2020, 295, 25–30. [Google Scholar] [CrossRef] [PubMed]
Variables | Mean | SD | Min | Max |
---|---|---|---|---|
Age, years | 77.6 | 0.77 | 75.5 | 80.7 |
Body mass index | 26.28 | 3.46 | 17.6 | 41.3 |
Plasma osteopontin, ng/mL | 54.6 | 24.7 | 10.9 | 227.4 |
Urine osteopontin, ng/mL | 113.2 | 64.2 | 0.727 | 363.6 |
Syst blood pressure, mm Hg | 150.7 | 20.4 | 102 | 230 |
Diastolic blood pressure, mm Hg | 81.2 | 9.7 | 52 | 115 |
Total cholesterol, mmol/L | 5.40 | 0.99 | 2.8 | 10.2 |
HDL cholesterol, mmol/L | 1.31 | 0.33 | 0.37 | 2.73 |
Percentage | ||||
Smoking, % | 8.5% | |||
Diabetes, % | 11.5% | |||
Cardiovascular disease, % | 27.9% | |||
Lipid-lowering treatment, % | 17.4% | |||
Beta-blocker treatment, % | 25.8% | |||
Diuretics treatment, % | 16.6% | |||
Ca channel blocker treatment, % | 16.3% | |||
ACE-inhibitor treatment, % | 17.5% |
Biomarker | Uniprot | Abbreviation | Beta | Se | Ci Lower | Ci Higher | p-Value |
---|---|---|---|---|---|---|---|
Osteopontin | Q3LGB0 | SPP1 | |||||
Macrophage colony-stimulating factor 1 | P09603 | CSF1 | 0.368 | 0.037 | 0.295 | 0.44 | 6.75 × 10−22 |
TNF-related apoptosis-inducing ligand receptor 2 | O14763 | TNFRSF10B | 0.369 | 0.038 | 0.296 | 0.443 | 2.50 × 10−21 |
Agouti-related protein | O00253 | AGRP | 0.363 | 0.037 | 0.29 | 0.436 | 4.43 × 10−21 |
Tumor necrosis factor receptor 2 | P20333 | TNFRSF1B | 0.34 | 0.037 | 0.267 | 0.413 | 6.18 × 10−19 |
Tumor necrosis factor receptor 1 | P19438 | TNFRSF1A | 0.335 | 0.037 | 0.263 | 0.407 | 1.41 × 10−18 |
Fibroblast growth factor 23 (FGF-23) | Q9GZV9 | FGF23 | 0.343 | 0.038 | 0.268 | 0.418 | 3.02 × 10−18 |
Growth differentiation factor 15 | Q99988 | GDF15 | 0.308 | 0.038 | 0.234 | 0.381 | 1.65 × 10−15 |
Interleukin 6 | P05231 | IL6 | 0.307 | 0.039 | 0.231 | 0.383 | 1.08 × 10−14 |
Adrenomedullin | P35318 | ADM | 0.278 | 0.037 | 0.205 | 0.351 | 3.23 × 10−13 |
Endothelial cell-specific molecule 1 | Q9NQ30 | ESM1 | 0.275 | 0.037 | 0.202 | 0.348 | 5.22 × 10−13 |
Urokinase plasminogen activator surface rec | Q03405 | PLAUR | 0.277 | 0.038 | 0.203 | 0.351 | 6.82 × 10−13 |
Cathepsin L1 | P07711 | CTSL | 0.274 | 0.037 | 0.201 | 0.348 | 7.54 × 10−13 |
Placenta growth factor | P49763 | PGF | 0.267 | 0.038 | 0.193 | 0.341 | 4.58 × 10−12 |
Proteinase-activated receptor 1 | P25116 | F2R | 0.266 | 0.038 | 0.191 | 0.341 | 9.75 × 10−12 |
Hepatocyte growth factor | P14210 | HGF | 0.263 | 0.038 | 0.188 | 0.337 | 1.14 × 10−11 |
CD 40 ligand | P29965 | CD40LG | 0.258 | 0.038 | 0.183 | 0.333 | 2.76 × 10−11 |
Matrix metalloproteinase-12 | P39900 | MMP12 | 0.248 | 0.038 | 0.173 | 0.323 | 1.95 × 10−10 |
Interleukin 27a | Q14213 | EBI3 | 0.236 | 0.037 | 0.162 | 0.309 | 5.70 × 10−10 |
Matrix metalloproteinase 7 | P09237 | MMP7 | 0.233 | 0.038 | 0.158 | 0.308 | 1.73 × 10−9 |
Thrombomodulin | P07204 | THBD | 0.211 | 0.039 | 0.135 | 0.286 | 6.69 × 10−8 |
Chitinase-3-like protein 1 | P36222 | CHI3L1 | 0.212 | 0.039 | 0.136 | 0.289 | 7.10 × 10−8 |
Osteoprotegerin | O00300 | TNFRSF11B | 0.204 | 0.038 | 0.129 | 0.279 | 1.44 × 10−7 |
Spondin-1 | Q9HCB6 | SPON1 | 0.206 | 0.039 | 0.13 | 0.282 | 1.61 × 10−7 |
Interleukin 16 | Q14005 | IL16 | 0.199 | 0.038 | 0.123 | 0.274 | 3.29 × 10−7 |
TIM-1/KIM-1 | Q96D42 | HAVCR1 | 0.196 | 0.038 | 0.121 | 0.271 | 3.53 × 10−7 |
Protein S100-A12 | P80511 | S100A12 | 0.198 | 0.039 | 0.121 | 0.275 | 5.74 × 10−7 |
Interleukin-1 receptor antagonist protein | P18510 | IL1RN | 0.19 | 0.039 | 0.113 | 0.266 | 1.38 × 10−6 |
Vascular endothelial growth factor A | P15692 | VEGFA | 0.186 | 0.038 | 0.11 | 0.261 | 1.68 × 10−6 |
NT-proBNP | P16860 | NPPB | 0.185 | 0.038 | 0.11 | 0.261 | 1.79 × 10−6 |
Tumor necrosis factor receptor superfamily member 6 | P25445 | FAS | 0.183 | 0.039 | 0.107 | 0.258 | 2.54 × 10−6 |
Matrix metalloproteinase 3 | P08254 | MMP3 | 0.175 | 0.039 | 0.099 | 0.252 | 8.53 × 10−6 |
Resistin | Q9HD89 | RETN | 0.175 | 0.039 | 0.098 | 0.252 | 9.18 × 10−6 |
Fractalkine | P78423 | CX3CL1 | 0.169 | 0.039 | 0.093 | 0.245 | 0.0000158 |
C-X-C motif chemokine 16 | Q9H2A7 | CXCL16 | 0.168 | 0.039 | 0.092 | 0.244 | 0.0000179 |
Beta-nerve growth factor | P01138 | NGF | 0.169 | 0.04 | 0.091 | 0.248 | 0.0000269 |
Kallikrein-11 | Q9UBX7 | KLK11 | 0.159 | 0.038 | 0.083 | 0.234 | 0.0000412 |
C-C motif chemokine 3 | P10147 | CCL3 | 0.163 | 0.04 | 0.085 | 0.241 | 0.000051 |
Interleukin 8 | P10145 | IL8 | 0.156 | 0.039 | 0.08 | 0.232 | 0.0000616 |
Cancer antigen 125 | Q8WXI7 | MUC16 | 0.152 | 0.039 | 0.076 | 0.229 | 0.0001033 |
TNFSF14 | O43557 | TNFSF14 | 0.152 | 0.039 | 0.076 | 0.229 | 0.0001105 |
Biomarker | Uniprot | Abbreviation | Beta | Se | Ci Lower | Ci Higher | p-Value |
---|---|---|---|---|---|---|---|
Osteopontin | Q3LGB0 | SPP1 | |||||
Macrophage colony-stimulating factor 1 | P09603 | CSF1 | 0.351 | 0.038 | 0.277 | 0.424 | 1.71 × 10−19 |
Agouti-related protein | O00253 | AGRP | 0.341 | 0.039 | 0.264 | 0.417 | 2.26 × 10−17 |
TNF-related apoptosis-inducing ligand rec. 2 | O14763 | TNFRSF10B | 0.339 | 0.04 | 0.26 | 0.418 | 2.23 × 10−16 |
Tumor necrosis factor receptor 1 | P19438 | TNFRSF1A | 0.311 | 0.039 | 0.234 | 0.388 | 1.08 × 10−14 |
Tumor necrosis factor receptor 2 | P20333 | TNFRSF1B | 0.307 | 0.039 | 0.231 | 0.383 | 1.13 × 10−14 |
Fibroblast growth factor 23 (FGF-23) | Q9GZV9 | FGF23 | 0.315 | 0.04 | 0.236 | 0.394 | 1.75 × 10−14 |
Growth differentiation factor 15 | Q99988 | GDF15 | 0.298 | 0.042 | 0.217 | 0.38 | 2.14 × 10−12 |
Interleukin 6 | P05231 | IL6 | 0.277 | 0.039 | 0.2 | 0.353 | 3.47 × 10−12 |
Endothelial cell-specific molecule 1 | Q9NQ30 | ESM1 | 0.262 | 0.038 | 0.187 | 0.337 | 1.67 × 10−11 |
Adrenomedullin | P35318 | ADM | 0.273 | 0.04 | 0.194 | 0.352 | 3.36 × 10−11 |
Cathepsin L1 | P07711 | CTSL | 0.242 | 0.038 | 0.167 | 0.316 | 3.77 × 10−10 |
Urokinase plasminogen activator surface rec | Q03405 | PLAUR | 0.237 | 0.039 | 0.161 | 0.314 | 1.92 × 10−9 |
CD 40 ligand | P29965 | CD40LG | 0.232 | 0.039 | 0.156 | 0.307 | 2.95 × 10−9 |
Placenta growth factor | P49763 | PGF | 0.234 | 0.039 | 0.157 | 0.31 | 4.29 × 10−9 |
Proteinase-activated receptor 1 | P25116 | F2R | 0.228 | 0.039 | 0.151 | 0.305 | 1.06 × 10−8 |
Hepatocyte growth factor | P14210 | HGF | 0.226 | 0.04 | 0.148 | 0.305 | 2.54 × 10−8 |
Interleukin 27a | Q14213 | EBI3 | 0.213 | 0.038 | 0.138 | 0.288 | 3.51 × 10−8 |
Thrombomodulin | P07204 | THBD | 0.202 | 0.038 | 0.127 | 0.277 | 1.73 × 10−7 |
Matrix metalloproteinase 7 | P09237 | MMP7 | 0.215 | 0.041 | 0.134 | 0.295 | 2.49 × 10−7 |
Matrix metalloproteinase-12 | P39900 | MMP12 | 0.208 | 0.041 | 0.127 | 0.289 | 6.64 × 10−7 |
TIM-1/KIM-1 | Q96D42 | HAVCR1 | 0.207 | 0.042 | 0.125 | 0.289 | 8.56 × 10−7 |
Chitinase-3-like protein 1 | P36222 | CHI3L1 | 0.193 | 0.039 | 0.116 | 0.27 | 1.26 × 10−6 |
Osteoprotegerin | O00300 | TNFRSF11B | 0.186 | 0.039 | 0.111 | 0.262 | 1.67 × 10−6 |
Interleukin 16 | Q14005 | IL16 | 0.183 | 0.038 | 0.108 | 0.258 | 1.93 × 10−6 |
Spondin-1 | Q9HCB6 | SPON1 | 0.173 | 0.04 | 0.096 | 0.251 | 0.0000148 |
Tumor necrosis factor receptor superfamily member 6 | P25445 | FAS | 0.167 | 0.038 | 0.092 | 0.242 | 0.0000154 |
Protein S100-A12 | P80511 | S100A12 | 0.168 | 0.039 | 0.091 | 0.244 | 0.0000219 |
Vascular endothelial growth factor A | P15692 | VEGFA | 0.16 | 0.038 | 0.086 | 0.235 | 0.0000281 |
Interleukin-1 receptor antagonist protein | P18510 | IL1RN | 0.163 | 0.041 | 0.083 | 0.243 | 0.0000698 |
Fractalkine | P78423 | CX3CL1 | 0.153 | 0.039 | 0.077 | 0.229 | 0.0000878 |
Beta-nerve growth factor | P01138 | NGF | 0.159 | 0.04 | 0.08 | 0.238 | 0.0000915 |
C-X-C motif chemokine 16 | Q9H2A7 | CXCL16 | 0.147 | 0.039 | 0.07 | 0.223 | 0.0001929 |
NT-proBNP | P16860 | NPPB | 0.154 | 0.042 | 0.073 | 0.236 | 0.0002357 |
Matrix metalloproteinase 3 | P08254 | MMP3 | 0.145 | 0.04 | 0.066 | 0.224 | 0.0003467 |
Tissue factor | P13726 | TF | 0.14 | 0.04 | 0.062 | 0.217 | 0.0004439 |
Interleukin 8 | P10145 | IL8 | 0.135 | 0.039 | 0.059 | 0.211 | 0.0005121 |
TNFSF14 | O43557 | TNFSF14 | 0.135 | 0.039 | 0.059 | 0.21 | 0.0005263 |
Cancer antigen 125 | Q8WXI7 | MUC16 | 0.135 | 0.039 | 0.058 | 0.212 | 0.0006385 |
C-C motif chemokine 20 | P78556 | CCL20 | 0.13 | 0.039 | 0.053 | 0.207 | 0.0009732 |
SIR2-like protein 2 | Q8IXJ6 | SIRT2 | 0.126 | 0.039 | 0.05 | 0.203 | 0.0012322 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larsson, A.; Helmersson-Karlqvist, J.; Lind, L.; Ärnlöv, J.; Feldreich, T.R. Strong Associations between Plasma Osteopontin and Several Inflammatory Chemokines, Cytokines, and Growth Factors. Biomedicines 2021, 9, 908. https://doi.org/10.3390/biomedicines9080908
Larsson A, Helmersson-Karlqvist J, Lind L, Ärnlöv J, Feldreich TR. Strong Associations between Plasma Osteopontin and Several Inflammatory Chemokines, Cytokines, and Growth Factors. Biomedicines. 2021; 9(8):908. https://doi.org/10.3390/biomedicines9080908
Chicago/Turabian StyleLarsson, Anders, Johanna Helmersson-Karlqvist, Lars Lind, Johan Ärnlöv, and Tobias Rudholm Feldreich. 2021. "Strong Associations between Plasma Osteopontin and Several Inflammatory Chemokines, Cytokines, and Growth Factors" Biomedicines 9, no. 8: 908. https://doi.org/10.3390/biomedicines9080908
APA StyleLarsson, A., Helmersson-Karlqvist, J., Lind, L., Ärnlöv, J., & Feldreich, T. R. (2021). Strong Associations between Plasma Osteopontin and Several Inflammatory Chemokines, Cytokines, and Growth Factors. Biomedicines, 9(8), 908. https://doi.org/10.3390/biomedicines9080908