Acceleration of Biological Aging and Underestimation of Subjective Age Are Risk Factors for Severe COVID-19
Abstract
:1. Introduction
1.1. Approaches to Testing Biological and Psychological Age
1.2. Resistance to COVID-19 Correlates with Biological Age
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Research Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- McGurnaghan, S.J.; Weir, A.; Bishop, J.; Kennedy, S.; Blackbourn, L.A.K.; McAllister, D.A.; Hutchinson, S.; Caparrotta, T.M.; Mellor, J.; Jeyam, A.; et al. Risks of and risk factors for COVID-19 disease in people with diabetes: A cohort study of the total population of Scotland. Lancet Diabetes Endocrinol. 2021, 9, 82–93. [Google Scholar] [CrossRef]
- Hendren, N.S.; de Lemos, J.A.; Ayers, C.; Das, S.R.; Rao, A.; Carter, S.; Rosenblatt, A.; Walchok, J.; Omar, W.; Khera, R.; et al. Association of body mass index and age with morbidity and mortality in patients hospitalized with covid-19: Results from the American Heart Association covid-19 cardiovascular disease registry. Circulation 2021, 143, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Wolff, D.; Nee, S.; Hickey, N.S.; Marschollek, M. Risk factors for Covid-19 severity and fatality: A structured literature review. Infection 2021, 49, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Starke, K.R.; Petereit-Haack, G.; Schubert, M.; Kämpf, D.; Schliebner, A.; Hegewald, J.; Seidler, A. The Age-Related Risk of Severe Outcomes Due to COVID-19 Infection: A Rapid Review, Meta-Analysis, and Meta-Regression. Int. J. Environ. Res. Public Health 2020, 17, 5974. [Google Scholar] [CrossRef] [PubMed]
- Moskalev, A. The challenges of estimating biological age. eLife 2020, 9. [Google Scholar] [CrossRef]
- Hamczyk, M.; Nevado, R.M.; Barettino, A.; Fuster, V.; Andrés, V. Biological Versus Chronological Aging. J. Am. Coll. Cardiol. 2020, 75, 919–930. [Google Scholar] [CrossRef]
- Voitenko, V.P. Biological Age. Physiological Mechanisms of Aging; Nauka: Moscow, Russia, 1982; pp. 144–156. [Google Scholar]
- Barak, B. Age identity: A cross-cultural global approach. Int. J. Behav. Dev. 2009, 33, 2–11. [Google Scholar] [CrossRef]
- Berezina, T.N.; Rybtsova, N.N.; Rybtsov, S. Comparative Dynamics of Individual Ageing Among the Investigative Type of Professionals Living in Russia and Russian Migrants to the EU Countries. Eur. J. Investig. Health Psychol. Educ. 2020, 10, 749–762. [Google Scholar] [CrossRef]
- Berezina, T.N.; Buzanov, K.E.; Zinatullina, A.M.; Kalaeva, A.A.; Melnik, V.P. The expectation of retirement as a psychological stress that affects the biological age in the person of the Russian Federation. Religación 2019, 4, 192–198. [Google Scholar]
- Berezina, T.N.; Stelmakh, S.A.; Dergacheva, E.V. The effect of retirement stress on the biopsychological age in Russia and the Republic of Kazakhstan: A cross-cultural study. Psychologist 2019, 5, 11–26. [Google Scholar]
- Hertel, J.; Friedrich, N.; Wittfeld, K.; Pietzner, M.; Budde, K.; Van Der Auwera, S.; Lohmann, T.; Teumer, A.; Völzke, H.; Nauck, M.; et al. Measuring Biological Age via Metabonomics: The Metabolic Age Score. J. Proteome Res. 2016, 15, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Voitenko, V.P.; Tokar, A.V. The assessment of biological age and sex differences of human aging. Exp. Aging Res. 1983, 9, 239–244. [Google Scholar] [CrossRef]
- Pyrkov, T.V.; Sokolov, I.S.; Fedichev, P.O. Deep longitudinal phenotyping of wearable sensor data reveals independent markers of longevity, stress, and resilience. Aging 2021, 13, 7900–7913. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, M.; Miranda-Dominguez, O.; Cohen, A.O.; Breiner, K.; Steinberg, L.; Bonnie, R.; Scott, E.S.; Taylor-Thompson, K.; Chein, J.; Fettich, K.C.; et al. At risk of being risky: The relationship between “brain age” under emotional states and risk preference. Dev. Cogn. Neurosci. 2017, 24, 93–106. [Google Scholar] [CrossRef]
- Lara, J.; Cooper, R.; Nissan, J.; Ginty, A.T.; Khaw, K.-T.; Deary, I.J.; Lord, J.M.; Kuh, D.; Mathers, J.C. A proposed panel of biomarkers of healthy ageing. BMC Med. 2015, 13, 222. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Xiang, Y.; Qu, X.; Liu, H.; Liu, C.; Li, G.; Han, L.; Qin, X. Apelin-13 suppresses neuroinflammation against cognitive deficit in a streptozotocin-induced rat model of Alzheimer’s disease through activation of BDNF-TrkB signaling pathway. Front. Pharmacol. 2019, 10, 395. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Kim, M.-M. IGFBP-3 plays an important role in senescence as an aging marker. Environ. Toxicol. Pharmacol. 2018, 59, 138–145. [Google Scholar] [CrossRef] [PubMed]
- La Fratta, I.; Tatangelo, R.; Campagna, G.; Rizzuto, A.; Franceschelli, S.; Ferrone, A.; Patruno, A.; Speranza, L.; De Lutiis, M.A.; Felaco, M.; et al. The plasmatic and salivary levels of IL-1β, IL-18 and IL-6 are associated to emotional difference during stress in young male. Sci. Rep. 2018, 8, 3031. [Google Scholar] [CrossRef] [Green Version]
- Papa, L.; Djedaini, M.; Kintali, M.; Schaniel, C.; Hoffman, R. Ex Vivo Expansion of Adult Hematopoietic Stem and Progenitor Cells with Valproic Acid. Methods Mol. Biol. 2021, 2185, 267–280. [Google Scholar]
- Rasmussen, L.J.H.; Caspi, A.; Ambler, A.; Danese, A.; Elliott, M.; Eugen-Olsen, J.; Hariri, A.R.; Harrington, H.; Houts, R.; Poulton, R.; et al. Association Between Elevated suPAR, a New Biomarker of Inflammation, and Accelerated Aging. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2021, 76, 318–327. [Google Scholar] [CrossRef]
- Rybtsova, N.; Berezina, T.; Kagansky, A.; Rybtsov, S. Can Blood-Circulating Factors Unveil and Delay Your Biological Aging? Biomedicines 2020, 8, 615. [Google Scholar] [CrossRef]
- Castellano, J. Blood-Based Therapies to Combat Aging. Gerontology 2018, 65, 84–89. [Google Scholar] [CrossRef]
- Werner, C.M.; Hecksteden, A.; Morsch, A.; Zundler, J.; Wegmann, M.; Kratzsch, J.; Thiery, J.; Hohl, M.; Bittenbring, J.T.; Neumann, F.; et al. Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. Eur. Heart J. 2019, 40, 34–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, A.C.A.; Mendes, M.; Reis, M.C.D.S.; Santos, V.; Tanajura, D.M.; Martins-Filho, P.R.S. Telomere length and frailty in older adults—A systematic review and meta-analysis. Ageing Res. Rev. 2019, 54, 100914. [Google Scholar] [CrossRef]
- Boccardi, M.; Boccardi, V. Psychological Wellbeing and Healthy Aging: Focus on Telomeres. Geriatrics 2019, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Belsky, D.W.; Moffitt, T.; Cohen, A.; Corcoran, D.L.; Levine, M.E.; Prinz, J.A.; Schaefer, J.; Sugden, K.; Williams, B.; Poulton, R.; et al. Eleven Telomere, Epigenetic Clock, and Biomarker-Composite Quantifications of Biological Aging: Do They Measure the Same Thing? Am. J. Epidemiol. 2017, 187, 1220–1230. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef] [Green Version]
- Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013, 14, R115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.-B.; Gao, Y.; et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol. Cell 2013, 49, 359–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.H.; Marioni, R.; Colicino, E.; Peters, M.J.; Ward-Caviness, C.K.; Tsai, P.-C.; Roetker, N.S.; Just, A.; Demerath, E.W.; Guan, W.; et al. DNA methylation-based measures of biological age: Meta-analysis predicting time to death. Aging 2016, 8, 1844–1865. [Google Scholar] [CrossRef] [Green Version]
- Marioni, R.E.; Shah, S.; McRae, A.F.; Chen, B.H.; Colicino, E.; Harris, S.E.; Gibson, J.; Henders, A.K.; Redmond, P.; Cox, S.R.; et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015, 16, 25. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wilson, R.; Heiss, J.A.; Breitling, L.P.; Saum, K.-U.; Schöttker, B.; Holleczek, B.; Waldenberger, M.; Peters, A.; Brenner, H. DNA methylation signatures in peripheral blood strongly predict all-cause mortality. Nat. Commun. 2017, 8, 14617. [Google Scholar] [CrossRef]
- Lu, A.T.; Quach, A.; Wilson, J.G.; Reiner, A.P.; Aviv, A.; Raj, K.; Hou, L.; Baccarelli, A.A.; Li, Y.; Stewart, J.D.; et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 2019, 11, 303–327. [Google Scholar] [CrossRef]
- Hewitt, J.; Carter, B.; Vilches-Moraga, A.; Quinn, T.J.; Braude, P.; Verduri, A.; Pearce, L.; Stechman, M.; Short, R.; Price, A.; et al. The effect of frailty on survival in patients with COVID-19 (COPE): A multicentre, European, observational cohort study. Lancet Public Health 2020, 5, e444–e451. [Google Scholar] [CrossRef]
- Atkins, J.L.; Masoli, J.A.H.; Delgado, J.; Pilling, L.C.; Kuo, C.-L.; Kuchel, G.A.; Melzer, D. Preexisting Comorbidities Predicting COVID-19 and Mortality in the UK Biobank Community Cohort. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2020, 75, 2224–2230. [Google Scholar] [CrossRef]
- Kuo, C.L.; Pilling, L.C.; Atkins, J.L.; Masoli, J.A.; Delgado, J.; Tignanelli, C.; Kuchel, G.A.; Melzer, D.; Beckman, K.B.; Levine, M.E. Covid-19 severity is predicted by earlier evidence of accelerated aging. medRxiv 2020. [Google Scholar] [CrossRef]
- De Vries, N.; Staal, J.; van Ravensberg, C.; Hobbelen, J.; Rikkert, M.O.; der Sanden, M.N.-V. Outcome instruments to measure frailty: A systematic review. Ageing Res. Rev. 2011, 10, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Searle, S.D.; Mitnitski, A.; Gahbauer, E.A.; Gill, T.M.; Rockwood, K. A standard procedure for creating a frailty index. BMC Geriatr. 2008, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Berezina, T. Distribution of biomarkers of aging in people with different personality types (in Russia). E3S Web Conf. 2020, 210, 17028. [Google Scholar] [CrossRef]
- Berezina, T.; Rybtsova, N.; Rybtsov, S.; Fatianov, G. Individually-personal factors of pension stress in representatives of the intellectual type of professions. J. Mod. Foreign Psychol. 2020, 9, 8–21. [Google Scholar] [CrossRef]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; Macary, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Epidemiology Working Group for NCIP Epidemic Response; Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi 2020, 41, 145–151. [Google Scholar]
- Bialek, S.; Boundy, E.; Bowen, V.; Chow, N.; Cohn, A.; Dowling, N.; Ellington, S.; Gierke, R.; Hall, A.; MacNeil, J.; et al. Severe outcomes among patients with coronavirus disease 2019 (covid-19)—United States, February 12-March 16, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 343–346. [Google Scholar]
- Lauc, G.; Sinclair, D. Biomarkers of biological age as predictors of COVID-19 disease severity. Aging 2020, 12, 6490–6491. [Google Scholar] [CrossRef] [PubMed]
- Polidori, M.C.; Sies, H.; Ferrucci, L.; Benzing, T. COVID-19 mortality as a fingerprint of biological age. Ageing Res. Rev. 2021, 67, 101308. [Google Scholar] [CrossRef]
- Lauc, G.; Pezer, M.; Rudan, I.; Campbell, H. Mechanisms of disease: The human N-glycome. Biochim. Biophys. Acta 2016, 1860, 1574–1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franzen, J.; Nüchtern, S.; Tharmapalan, V.; Vieri, M.; Nikolic, M.; Han, Y.; Balfanz, P.; Marx, N.; Dreher, M.; Bruemmendorf, T.H.; et al. Epigenetic clocks are not accelerated in COVID-19 patients. medRxiv 2020. [Google Scholar] [CrossRef]
- Nishiga, M.; Wang, D.W.; Han, Y.; Lewis, D.B.; Wu, J.C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 2020, 17, 543–558. [Google Scholar] [CrossRef]
- Shinohara, T.; Saida, K.; Tanaka, S.; Murayama, A. Association between frailty and changes in lifestyle and physical or psychological conditions among older adults affected by the coronavirus disease 2019 countermeasures in Japan. Geriatr. Gerontol. Int. 2021, 21, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Maffoni, M.; Torlaschi, V.; Pierobon, A. It’s all a matter of time. Ann. Ig. Med. Prev. Comunita 2020, 32, 689–690. [Google Scholar]
- National Center for Immunization and Respiratory Diseases (NCIRD); Division of Viral Diseases; U.S. Department of Health & Human Services. Risk for Covid-19 Infection, Hospitalization, and Death by Age Group; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2021; Volume 2021. [Google Scholar]
- Berezina, T.; Rybtsov, S. The influence of quarantine on the indicators of biopsychological age in Russia (longitudinal study). J. Mod. Foreign Psychol. 2021, 10, 57–69. [Google Scholar] [CrossRef]
- Melk, A.; Tegtbur, U.; Hilfiker-Kleiner, D.; Eberhard, J.; Saretzki, G.; Eulert, C.; Kerling, A.; Nelius, A.-K.; Hömme, M.; Strunk, D.; et al. Improvement of biological age by physical activity. Int. J. Cardiol. 2014, 176, 1187–1189. [Google Scholar] [CrossRef]
- Boutari, C.; Mantzoros, C.S. Decreasing Lean Body Mass with Age: Challenges and Opportunities for Novel Therapies. Endocrinol. Metab. 2017, 32, 422–425. [Google Scholar] [CrossRef] [PubMed]
- Stellos, K.; Spyridopoulos, I. Exercise, telomerase activity, and cardiovascular disease prevention. Eur. Heart J. 2018, 40, 47–49. [Google Scholar] [CrossRef]
- Franzke, B.; Halper, B.; Hofmann, M.; Oesen, S.; Peherstorfer, H.; Krejčí, K.; Koller, B.; Geider, K.; Baierl, A.; Tosevska, A.; et al. The influence of age and aerobic fitness on chromosomal damage in Austrian institutionalised elderly. Mutagenesis 2014, 29, 441–445. [Google Scholar] [CrossRef] [Green Version]
- Sallis, R.; Young, D.R.; Tartof, S.Y.; Sallis, J.F.; Sall, J.; Li, Q.; Smith, G.N.; Cohen, D.A. Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: A study in 48 440 adult patients. Br. J. Sports Med. 2021. [Google Scholar] [CrossRef] [PubMed]
- Demeulemeester, F.; de Punder, K.; van Heijningen, M.; van Doesburg, F. Obesity as a risk factor for severe covid-19 and complications: A review. Cells 2021, 10, 933. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.K.; Shukla, S. Correlation study to identify the factors affecting COVID-19 case fatality rates in India. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 993–999. [Google Scholar] [CrossRef]
- De Toda, I.M.; Maté, I.; Vida, C.; Cruces, J.; De La Fuente, M. Immune function parameters as markers of biological age and predictors of longevity. Aging 2016, 8, 3110–3119. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Yang, Q.; Chi, J.; Dong, B.; Lv, W.; Shen, L.; Wang, Y. Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 99, 47–56. [Google Scholar] [CrossRef]
Women | Men | ||||||||
---|---|---|---|---|---|---|---|---|---|
Working Adults | Retirees from Risk Group | Working Adults | Retirees from Risk Group | ||||||
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | ||
BA | 41.4 | 43.5 | 58.6 | 58.3 | BA | 47.8 | 52.4 ** | 67.7 | 67.0 |
RBA | –3.1 | –1.5 | 4.3 | 4.0 | RBA | –2.8 | 1.1 ** | 7.7 | 7.0 |
PA | 50.7 | 47.7 | n/a | n/a | PA | 59.9 | 53.0 * | n/a | n/a |
RPA | 3.99 | 0.00* | n/a | n/a | RPA | 8.91 | 1.1 ** | n/a | n/a |
Men | Women | |||
---|---|---|---|---|
Correlation between | Working Adults | Retirees from Risk Group | Working Adults | Retirees from Risk Group |
BA19 and BA20 | 0.51 ** | 0.65 ** | 0.33 ** | 0.40 ** |
RBA19 andRBA20 | 0.56 ** | 0.71 ** | 0.33 ** | 0.44 ** |
PA19 andPA20 | 0.50 ** | n/a | 0.71 ** | n/a |
RPA19 and RPA20 | 0.66 ** | n/a | 0.63 ** | n/a |
Data from 2020 | Data from 2019 | |||||
---|---|---|---|---|---|---|
Indicator | Impact | F | p | Impact | F | p |
Calendar age | not affected | 0.919 | 0.607 | the same as at 2020 | - | - |
Biological age | increased | 1.692 | 0.014 | not affected | 0.905 | 0.643 |
Relative biological aging index | increased | 1.980 | 0.002 | not affected | 0.892 | 0.664 |
Pulse pressure * | increased | 1.776 | 0.008 | not affected | 0.955 | 0.558 |
Weight | not affected | 0.814 | 0.782 | not affected | 0.901 | 0.657 |
Static balancing | not affected | 1.991 | 0.099 | not affected | 0.796 | 0.828 |
Subjective health assessment | increased | 1.682 | 0.031 | not affected | 0.836 | 0.686 |
Psychological age | not affected | 0.840 | 0.719 | not affected | 0.776 | 0.801 |
Relative psychological aging index | decreased | 1.837 | 0.004 | decreasing tendency | 1.332 | 0.105 |
Data from 2020 | Data from 2019 | |||||
---|---|---|---|---|---|---|
Indicator | Impact | F | p | Impact | F | p |
Calendar age | increased | 4.16 | 0.002 | the same as at 2020 | - | - |
Biological age | increased | 2.36 | 0.004 | not affected | 0.29 | 0.828 |
Relative biological aging index | increasing tendency | 1.71 | 0.171 | increased | 2.30 | 0.003 |
Diastolic blood pressure | not affected | 0.73 | 0.813 | not affected | 0.74 | 0.782 |
Breath holding (BH) * | not affected | 1.03 | 0.462 | not affected | 0.36 | 0.777 |
Static balancing | not affected | 0.71 | 0.837 | not affected | 0.65 | 0.911 |
Subjective health assessment | increased | 2.96 | 0.001 | not affected | 1.06 | 0.405 |
Psychological age | not affected | 0.82 | 0.695 | not affected | 0.85 | 0.639 |
Relative psychological aging index | decreased | 2.22 | 0.007 | decreased | 2.18 | 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berezina, T.N.; Rybtsov, S. Acceleration of Biological Aging and Underestimation of Subjective Age Are Risk Factors for Severe COVID-19. Biomedicines 2021, 9, 913. https://doi.org/10.3390/biomedicines9080913
Berezina TN, Rybtsov S. Acceleration of Biological Aging and Underestimation of Subjective Age Are Risk Factors for Severe COVID-19. Biomedicines. 2021; 9(8):913. https://doi.org/10.3390/biomedicines9080913
Chicago/Turabian StyleBerezina, Tatiana N., and Stanislav Rybtsov. 2021. "Acceleration of Biological Aging and Underestimation of Subjective Age Are Risk Factors for Severe COVID-19" Biomedicines 9, no. 8: 913. https://doi.org/10.3390/biomedicines9080913
APA StyleBerezina, T. N., & Rybtsov, S. (2021). Acceleration of Biological Aging and Underestimation of Subjective Age Are Risk Factors for Severe COVID-19. Biomedicines, 9(8), 913. https://doi.org/10.3390/biomedicines9080913