Effects of Smartphone Activities on Postural Balance in Adolescents with Intellectual Disabilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Measurements
2.3.1. Static Postural Balance
- Control
- Closed eyes (CE)
- Playing game
- Watching videos
- Calling video
- Listening to music
2.3.2. Dynamic Balance
- Control
- Playing game
- Watching videos
- Calling video
- Listening to music
2.4. Interventions
2.4.1. Playing Game
2.4.2. Watching Videos
2.4.3. Video Call
2.4.4. Listening to Music
2.5. Statistical Analysis
3. Results
3.1. Static Balance
3.1.1. CoPVm Values
3.1.2. Δ CoPVm%
3.2. Dynamic Balance
3.2.1. TUGT Scores
3.2.2. Δ TUGT%
4. Discussion
4.1. Static Postural Balance
4.2. Dynamic Balance
4.3. Strengths and Limitations
4.4. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cabeza-Ruiz, R.; García-Massó, X.; Centeno-Prada, R.; Beas-Jiménez, J.; Colado, J.; González, L.-M. Time and frequency analysis of the static balance in young adults with Down syndrome. Gait Posture 2011, 33, 23–28. [Google Scholar] [CrossRef]
- Carmeli, E.; Barchad, S.; Lenger, R.; Coleman, R. Muscle power, locomotor performance and flexibility in aging mentally-retarded adults with and without Down’s syndrome. J. Musculoskelet. Neuronal Interact. 2002, 2, 457–462. [Google Scholar]
- Leyssens, L.; Van Hecke, R.; Moons, K.; Luypaert, S.; Danneels, M.; Patru, J.; Willems, M.; Maes, L. Postural balance problems in people with intellectual disabilities: Do not forget the sensory input systems. J. Appl. Res. Intellect. Disabil. 2022, 35, 280–294. [Google Scholar] [CrossRef] [PubMed]
- Chiba, Y.; Shimada, A.; Yoshida, F.; Keino, H.; Hasegawa, M.; Ikari, H.; Miyake, S.; Hosokawa, M. Risk of fall for individuals with intellectual disability. Am. J. Intellect. Dev. Disabil. 2009, 114, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Blomqvist, S.; Olsson, J.; Wallin, L.; Wester, A.; Rehn, B. Adolescents with intellectual disability have reduced postural balance and muscle performance in trunk and lower limbs compared to peers without intellectual disability. Res. Dev. Disabil. 2013, 34, 198–206. [Google Scholar] [CrossRef]
- Kachouri, H.; Jouira, G.; Laatar, R.; Borji, R.; Rebai, H.; Sahli, S. Different types of combined training programs to improve postural balance in single and dual tasks in children with intellectual disability. J. Intellect. Disabil. 2022, 17446295221148585. [Google Scholar] [CrossRef]
- Ivaniski-Mello, A.; Müller, V.T.; de Liz Alves, L.; Casal, M.Z.; Haas, A.N.; Correale, L.; Kanitz, A.C.; Martins, V.F.; Gonçalves, A.K.; Martinez, F.G. Determinants of dual-task gait speed in older adults with and without Parkinson’s disease. Int. J. Sport. Med. 2023, 44, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Pena, G.; Pavão, S.; Oliveira, M.; Godoi, D.; De Campos, A.; Rocha, N. Dual-task effects on postural sway during sit-to-stand movement in children with Down syndrome. J. Intellect. Disabil. Res. 2019, 63, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Horvat, M.; Croce, R.; Tomporowski, P.; Barna, M. The influence of dual-task conditions on movement in young adults with and without Down syndrome. Res. Dev. Disabil. 2013, 34, 3517–3525. [Google Scholar] [CrossRef] [PubMed]
- Holfelder, B.; Klotzbier, T.J.; Schott, N. Dual-task interference in children with Down syndrome and chronological and mental age-matched healthy controls. Children 2022, 9, 191. [Google Scholar] [CrossRef]
- Oppewal, A.; Hilgenkamp, T.I. The dual task effect on gait in adults with intellectual disabilities: Is it predictive for falls? Disabil. Rehabil. 2019, 41, 26–32. [Google Scholar] [CrossRef]
- Arun, P.; Jain, S. Use of smart phone among students with intellectual and developmental disability. J. Psychosoc. Rehabil. Ment. Health 2022, 9, 447–452. [Google Scholar] [CrossRef]
- Lancioni, G.E.; Singh, N.N.; O’Reilly, M.F.; Sigafoos, J.; Alberti, G.; Zimbaro, C.; Chiariello, V. Using smartphones to help people with intellectual and sensory disabilities perform daily activities. Front. Public Health 2017, 5, 282. [Google Scholar] [CrossRef] [PubMed]
- Rebold, M.J.; Croall, C.A.; Cumberledge, E.A.; Sheehan, T.P.; Dirlam, M.T. The impact of different cell phone functions and their effects on postural stability. Perform. Enhanc. Health 2017, 5, 98–102. [Google Scholar] [CrossRef]
- De Freitas Brandão, A.; Palluel, E.; Olivier, I.; Nougier, V. Effects of emotional videos on postural control in children. Gait Posture 2016, 45, 175–180. [Google Scholar] [CrossRef]
- Cho, S.-H.; Choi, M.-H.; Goo, B.-O. Effect of smart phone use on dynamic postural balance. J. Phys. Ther. Sci. 2014, 26, 1013–1015. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, M.H. The effects of smartphone multitasking on gait and dynamic balance. J. Phys. Ther. Sci. 2018, 30, 293–296. [Google Scholar] [CrossRef]
- Lino, T.B.; Scarmagnan, G.S.; Sobrinho-Junior, S.A.; Tessari, G.M.; Gonçalves, G.H.; Pereira, H.M.; Christofoletti, G. Impact of Using Smartphone While Walking or Standing: A Study Focused on Age and Cognition. Brain Sci. 2023, 13, 987. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Hong, S.; Jung, S.; Lee, K.; Lee, G. The effects of viewing smart devices on static balance, oculomotor function, and dizziness in healthy adults. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 8055. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, D. Wechsler Intelligence Scale for Children, 4th ed.; WISC-IV; The Psychological Corporation: San Antonio, TX, USA, 2003; Available online: https://cir.nii.ac.jp/crid/1370567187560684295 (accessed on 24 October 2023).
- Borji, R.; Laatar, R.; Zarrouk, N.; Sahli, S.; Rebai, H. Cognitive-motor interference during standing stance across different postural and cognitive tasks in individuals with Down syndrome. Res. Dev. Disabil. 2023, 139, 104562. [Google Scholar] [CrossRef]
- Jouira, G.; Srihi, S.; Kachouri, H.; Ben Waer, F.; Rebai, H.; Sahli, S. Static postural balance between male athletes with intellectual disabilities and their sedentary peers: A comparative study. J. Appl. Res. Intellect. Disabil. 2021, 34, 1136–1144. [Google Scholar] [CrossRef] [PubMed]
- Hiller, C.E.; Nightingale, E.J.; Lin, C.-W.C.; Coughlan, G.F.; Caulfield, B.; Delahunt, E. Characteristics of people with recurrent ankle sprains: A systematic review with meta-analysis. Br. J. Sport. Med. 2011, 45, 660–672. [Google Scholar] [CrossRef]
- Paillard, T.; Noé, F. Techniques and methods for testing the postural function in healthy and pathological subjects. BioMed Res. Int. 2015, 2015, 891390. [Google Scholar] [CrossRef]
- Beerse, M.; Lelko, M.; Wu, J. Biomechanical analysis of the timed up-and-go (TUG) test in children with and without Down syndrome. Gait Posture 2019, 68, 409–414. [Google Scholar] [CrossRef]
- Kachouri, H.; Laatar, R.; Borji, R.; Rebai, H.; Sahli, S. Using a dual-task paradigm to investigate motor and cognitive performance in children with intellectual disability. J. Appl. Res. Intellect. Disabil. 2020, 33, 172–179. [Google Scholar] [CrossRef]
- Jouira, G.; Srihi, S.; Ben Waer, F.; Rebai, H.; Sahli, S. Comparison of Dynamic Balance Performances of Adult Runners With Intellectual Disability Versus Their Sedentary Peers. Percept. Mot. Ski. 2022, 129, 1443–1457. [Google Scholar] [CrossRef]
- Nobakht, F.; Mirmahdi, R.; Heidari, H. Effect of computer games (puzzle game and Simulation game) in working memory and space visual perception in student with specific learning disorder (reading, writing, math). Arch. Pharm. Pract. 2020, 1, 55. [Google Scholar]
- Kogan, L.R.; Hellyer, P.W.; Clapp, T.R.; Suchman, E.; McLean, J.; Schoenfeld-Tacher, R. Use of short animal-themed videos to enhance veterinary students’ mood, attention, and understanding of pharmacology lectures. J. Vet. Med. Educ. 2018, 45, 188–194. [Google Scholar] [CrossRef]
- Lavan, S.; Ein, N.; Vickers, K. Examining the Effects of Nature and Animal Videos on Stress. Anthrozoös 2023, 36, 849–868. [Google Scholar] [CrossRef]
- Kitaoka, K.; Ito, R.; Araki, H.; Sei, H.; Morita, Y. Effect of mood state on anticipatory postural adjustments. Neurosci. Lett. 2004, 370, 65–68. [Google Scholar] [CrossRef]
- Lancioni, G.E.; O’Reilly, M.F.; Sigafoos, J.; Alberti, G.; Chiariello, V.; Resta, E. A Smartphone-Aided Program to Support Video Calls, Leisure, and Occupational Activities in People with Moderate Intellectual Disability. Adv. Neurodev. Disord. 2020, 4, 199–206. [Google Scholar] [CrossRef]
- Ruscello, B.; D’ottavio, S.; Padua, E.; Tonelli, C.; Pantanella, L. The influence of music on exercise in a group of sedentary elderly women: An important tool to help the elderly to stay active. J. Sport. Med. Phys. Fit. 2014, 54, 536–544. [Google Scholar]
- Terry, P.C.; Karageorghis, C.I.; Saha, A.M.; D’Auria, S. Effects of synchronous music on treadmill running among elite triathletes. J. Sci. Med. Sport 2012, 15, 52–57. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Laatar, R.; Kachouri, H.; Borji, R.; Ben Waer, F.; Rebai, H.; Sahli, S. Dual-task affects postural balance performance in children with intellectual disability. Somatosens. Mot. Res. 2023, 40, 33–38. [Google Scholar] [CrossRef]
- Atak, E.; Hajebrahimi, F.; Algun, Z.C. The effect of Dual-Task balance exercises on cognitive functions among children with mild and borderline mental retardation: A randomized controlled trial. Eur. J. Physiother. 2022, 24, 1–9. [Google Scholar] [CrossRef]
- Rebold, M.J.; Lepp, A.; Sanders, G.J.; Barkley, J.E. The impact of cell phone use on the intensity and liking of a bout of treadmill exercise. PLoS ONE 2015, 10, e0125029. [Google Scholar] [CrossRef]
- Fennell, C.; Barkley, J.E.; Lepp, A. The relationship between cell phone use, physical activity, and sedentary behavior in adults aged 18–80. Comput. Hum. Behav. 2019, 90, 53–59. [Google Scholar] [CrossRef]
- Park, J.-H.; Kang, S.-Y.; Lee, S.-G.; Jeon, H.-S. The effects of smart phone gaming duration on muscle activation and spinal posture: Pilot study. Physiother. Theory Pract. 2017, 33, 661–669. [Google Scholar] [CrossRef]
- Cochrane, M.E.; Tshabalala, M.D.; Hlatswayo, N.C.; Modipana, R.M.; Makibelo, P.P.; Mashale, E.P.; Pete, L.C. The short-term effect of smartphone usage on the upper-back postures of university students. Cogent Eng. 2019, 6, 1627752. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Lee, D.-H.; Han, S.-K. The effects of posture on neck flexion angle while using a smartphone according to duration. Korean Soc. Phys. Med. 2016, 11, 35–39. [Google Scholar] [CrossRef]
- Onofrei, R.R.; Amaricai, E.; Suciu, O.; David, V.L.; Rata, A.L.; Hogea, E. Smartphone use and postural balance in healthy young adults. Int. J. Environ. Res. Public Health 2020, 17, 3307. [Google Scholar] [CrossRef]
- Szczygieł, E.; Piotrowski, K.; Golec, J.; Czechowska, D.; Masłoń, A.; Bac, A.; Golec, E. Head position influence on stabilographic variables. Acta Bioeng. Biomech. 2016, 18, 49–54. [Google Scholar] [PubMed]
- Ivanenko, Y.; Gurfinkel, V.S. Human postural control. Front. Neurosci. 2018, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Van Biesen, D.; Jacobs, L.; McCulloch, K.; Janssens, L.; Vanlandewijck, Y.C. Cognitive-motor dual-task ability of athletes with and without intellectual impairment. J. Sport. Sci. 2018, 36, 513–521. [Google Scholar] [CrossRef]
- Kim, T.; Jimenez-Diaz, J.; Chen, J. The effect of attentional focus in balancing tasks: A systematic review with meta-analysis. J. Hum. Sport Exerc. 2017, 12, 463–479. [Google Scholar] [CrossRef]
- Lim, Y.; Kim, J.; Lee, H.; Kim, S. Postural instability induced by visual motion stimuli in patients with vestibular migraine. Front. Neurol. 2018, 9, 433. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Wang, X.; Fan, M.; Deng, L.; Jian, C.; Wei, M.; Luo, J. The effect of visual stimuli on stability and complexity of postural control. Front. Neurol. 2018, 9, 48. [Google Scholar] [CrossRef]
- Laatar, R.; Kachouri, H.; Borji, R.; Rebai, H.; Sahli, S. The effect of cell phone use on postural balance and mobility in older compared to young adults. Physiol. Behav. 2017, 173, 293–297. [Google Scholar] [CrossRef]
- Hsiao, D.; Belur, P.; Myers, P.S.; Earhart, G.M.; Rawson, K.S. The impact of age, surface characteristics, and dual-tasking on postural sway. Arch. Gerontol. Geriatr. 2020, 87, 103973. [Google Scholar] [CrossRef]
- Yardley, L.; Gardner, M.; Leadbetter, A.; Lavie, N. Effect of articulatory and mental tasks on postural control. Neuroreport 1999, 10, 215–219. [Google Scholar] [CrossRef]
- Dault, M.C.; Yardley, L.; Frank, J.S. Does articulation contribute to modifications of postural control during dual-task paradigms? Cogn. Brain Res. 2003, 16, 434–440. [Google Scholar] [CrossRef]
- Xu, H.; Ohgami, N.; He, T.; Hashimoto, K.; Tazaki, A.; Ohgami, K.; Takeda, K.; Kato, M. Improvement of balance in young adults by a sound component at 100 Hz in music. Sci. Rep. 2018, 8, 16894. [Google Scholar] [CrossRef]
- Maatoug, H.; Baccouch, R.; Borji, R.; Rebai, H.; Sahli, S. Effects of music listening on postural balance in adolescents with visual impairment. Percept. Mot. Ski. 2023, 130, 112–126. [Google Scholar] [CrossRef]
- Boat, T.F.; Wu, J.T.; National Academies of Sciences, Engineering, and Medicine. Clinical characteristics of intellectual disabilities. In Mental Disorders and Disabilities among Low-Income Children; National Academies Press (US): Washington, DC, USA, 2015. [Google Scholar]
- Rintala, P.; Loovis, E.M. Measuring motor skills in Finnish children with intellectual disabilities. Percept. Mot. Ski. 2013, 116, 294–303. [Google Scholar] [CrossRef]
- Tsuchida, W.; Nakagawa, K.; Kawahara, Y.; Yuge, L. Influence of dual-task performance on muscle and brain activity. Int. J. Rehabil. Res. 2013, 36, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.-H.; Wu, G. The influence of foam surfaces on biomechanical variables contributing to postural control. Gait Posture 1997, 5, 239–245. [Google Scholar] [CrossRef]
- Patel, M.; Fransson, P.-A.; Lush, D.; Gomez, S. The effect of foam surface properties on postural stability assessment while standing. Gait Posture 2008, 28, 649–656. [Google Scholar] [CrossRef]
- Lamberg, E.M.; Muratori, L.M. Cell phones change the way we walk. Gait Posture 2012, 35, 688–690. [Google Scholar] [CrossRef]
- Parr, N.D.; Hass, C.J.; Tillman, M.D. Cellular phone texting impairs gait in able-bodied young adults. J. Appl. Biomech. 2014, 30, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Spaniol, M.; Danielsson, H. A meta-analysis of the executive function components inhibition, shifting, and attention in intellectual disabilities. J. Intellect. Disabil. Res. 2022, 66, 9–31. [Google Scholar] [CrossRef] [PubMed]
- Shayan, N.; AhmadiGatab, T.; Jeloudar, J.G.; Ahangar, K.S. The effect of playing music on the confidence level. Procedia-Soc. Behav. Sci. 2011, 30, 2061–2063. [Google Scholar] [CrossRef]
- Lanzillo, J.J. The Effects of Music on the Intensity and Direction of Pre-Competitive Cognitive and Somatic State Anxiety and State Self-Confidence in Collegiate Athletes. Master’s Thesis, Georgia Southern University, Statesboro, GA, USA, 2000. [Google Scholar]
- Khan, M.; Ajmal, A. Effect of classical and pop music on mood and performance. Int. J. Sci. Res. Publ. 2017, 7, 905–911. [Google Scholar]
- Juslin, P.N.; Sloboda, J.A. Music and emotion. In The Psychology of Music; Deutsch, D., Ed.; Elsevier Academic Press: Cambridge, MA, USA, 2013; pp. 583–645. [Google Scholar]
- McCrary, J.M.; Altenmüller, E. Mechanisms of music impact: Autonomic tone and the physical activity roadmap to advancing understanding and evidence-based policy. Front. Psychol. 2021, 12, 727231. [Google Scholar] [CrossRef] [PubMed]
IDG (n = 16) | TDG (n = 12) | Degree of Freedom | Independent t-Test | |||
---|---|---|---|---|---|---|
Mean ± SD | Coefficient of Variation | Mean ± SD | Coefficient of Variation | |||
Age (years) | 14.50 ± 1.15 | 7.93 | 14.75 ± 1.05 | 7.12 | 26 | p = 0.55 |
Height (cm) | 152.83 ± 3.78 | 2.47 | 152.75 ± 4.11 | 2.69 | 26 | p = 0.43 |
Mass (kg) | 46.25 ± 4.11 | 8.88 | 47.76 ± 3.16 | 6.63 | 26 | p = 0.43 |
BMI | 19.78 ± 1.38 | 6.97 | 20.49 ± 1.50 | 7.32 | 26 | p = 0.58 |
F | Degree of Freedom | p | ηp2 | |
---|---|---|---|---|
CoPVm | ||||
Group | 122.36 | 1.26 | <0.001 | 0.81 |
Condition | 48.49 | 5.22 | <0.001 | 0.89 |
Group × Condition | 19.39 | 5.22 | <0.001 | 0.64 |
Surface | 0.86 | 1.26 | <0.001 | 0.88 |
Group × Surface | 3.28 | 1.26 | =0.001 | 0.35 |
Surface × Condition | 6.40 | 5.22 | =0.001 | 0.59 |
Group × Surface × Condition | 1.55 | 5.22 | =0.21 | - |
Δ CoPVm% | ||||
Firm surface | ||||
Group | 5.42 | 1.26 | =0.028 | 0.20 |
Condition | 52.07 | 4.23 | <0.001 | 0.90 |
Group × Condition | 1.76 | 4.23 | =0.17 | - |
Foam surface | ||||
Group | 0.48 | 1.26 | 0.49 | - |
Condition | 53.83 | 4.23 | <0.001 | 0.90 |
Group × Condition | 3.25 | 4.23 | =0.030 | 0.36 |
TUGT | ||||
Group | 82.84 | 1.26 | <0.001 | 0.76 |
Condition | 65.75 | 4.23 | <0.001 | 0.90 |
Group × Condition | 7.45 | 4.23 | =0.001 | 0.56 |
Δ TUGT% | ||||
Group | 13.06 | 1.26 | =0.001 | 0.34 |
Condition | 212.65 | 3.24 | <0.001 | 0.91 |
Group × Condition | 5.77 | 3.24 | =0.004 | 0.41 |
IDG | TDG | Control vs. Conditions IDG | Control vs. Conditions TDG | IDG vs. TDG | ||||
---|---|---|---|---|---|---|---|---|
Means ± SD (95% CI) | Means ± SD (95% CI) | p-Value | d | p-Value | d | p-Value | d | |
CoPVm | ||||||||
Firm control | 13.10 ± 2.83 (11.59 to 14.61) | 7.14 ± 1.83 (5.99 to 8.30) | - | - | - | - | <0.001 | 2.50 |
Firm CE | 16.69 ± 2.66 (15.27 to 18.11) | 9.29 ± 1.72 (8.14 to 10.39) | <0.001 | 1.30 | <0.001 | 1.22 | <0.001 | 3.30 |
Firm playing game | 26.31 ± 6.21 * (22.99 to 29.62) | 11.16 ± 1.31 (10.32 to 12.00) | <0.001 | 2.73 | =0.03 | 2.52 | <0.001 | 3.37 |
Firm watching video | 17.83 ± 3.85 *$ (11.70 to 16.59) | 9.58 ± 1.75 (8.47 to 10.69) | <0.001 | 1.39 | =0.01 | 1.36 | <0.001 | 2.75 |
Firm video call | 30.77 ± 8.04 *$£ (26.48 to 35.06) | 12.58 ± 1.55 (11.59 to 13.57) | <0.001 | 2.93 | =0.04 | 3.20 | <0.001 | 3.14 |
Firm listening to music | 13.85 ± 4.22 *$£# (11.60 to 16.11) | 6.19 ± 1.34 *$£# (5.34 to 7.04) | =0.88 | - | =0.85 | - | <0.001 | 2.44 |
Foam control | 20.59 ± 4.31 (18.30 to 22.89) | 11.25 ± 2.82 (9.45 to 13.05) | - | - | - | - | <0.001 | 2.55 |
Foam CE | 27.15 ± 6.70 (23.57 to 30.72) | 16.79 ± 2.55 (14.71 to 17.96) | <0.001 | 1.16 | =0.004 | 2.06 | <0.001 | 2.04 |
Foam playing game | 41.56 ± 7.88 * (37.36 to 45.76) | 18.15 ± 3.52 (15.92 to 20.39) | <0.001 | 3.30 | =0.040 | 2.16 | <0.001 | 3.83 |
Foam watching video | 35.08 ± 8.16 *$ (30.72 to 39.43) | 17.49 ± 2.59 (15.85 to 19.14) | <0.001 | 2.22 | =0.046 | 2.30 | <0.001 | 2.90 |
Foam video call | 42.77 ± 7.22 *£ (38.82 to 46.62) | 20.41 ± 5.11 (17.16 to 23.66) | <0.001 | 3.73 | =0.006 | 2.21 | <0.001 | 3.57 |
Foam listening to music | 18.56 ± 3.79 *$£# (16.54 to 20.59) | 10.00 ± 2.26 *$£# (8.56 to 11.44) | =0.13 | - | =0.80 | - | <0.001 | 2.74 |
TUGT | ||||||||
Control | 10.53 ± 1.03 (9.98 to 11.07) | 7.88 ± 0.79 (7.38 to 8.38) | - | - | - | - | <0.001 | 2.88 |
Playing game | 19.55 ± 3.77 (17.54 to 21.56) | 12.70 ± 1.94 (11.47 to 13.94) | <0.001 | 3.27 | <0.001 | 3.26 | <0.001 | 2.28 |
Watching video | 15.25 ± 4.68 $ (12.76 to 17.74) | 9.57 ± 1.11 $ (8.86 to 10.28) | <0.001 | 1.39 | <0.001 | 1.75 | <0.001 | 1.66 |
Video call | 21.47 ± 4.59 $£ (19.01 to 23.90) | 11.57 ± 0.71 £ (11.11 to 12.02) | <0.001 | 3.28 | =0.01 | 2.62 | <0.001 | 2.99 |
Listening to music | 9.91 ± 0.91 $£# (9.42 to 10.40) | 7.09 ± 0.55 $£# (6.79 to 7.42) | =0.005 | 0.63 | =0.002 | 1.16 | <0.001 | 2.71 |
IDG | TDG | IDG vs. TDG | ||
---|---|---|---|---|
Means ± SD (95% CI) | Means ± SD (95% CI) | p-Value | d | |
Δ CoPVm% | ||||
Firm CE | 21.75 ± 8.52 (17.21.59 to 26.30) | 22.57 ± 16.70 (11.95 to 33.18) | =0.086 | - |
Firm playing game | 48.79 ± 11.40 * (42.71 to 54.87) | 36.13 ± 13.10 * (27.80 to 44.48) | =0.011 | 1.03 |
Firm watching video | 33.53 ± 10.87 *$ (27.72 to 39.34) | 25.61 ± 11.13 (18.53 to 32.69) | =0.073 | - |
Firm video call | 55.46 ± 11.46 *$£ (49.35 to 61.57) | 43.02 ± 13.17 *$£ (34.64 to 51.39) | =0.013 | 1.01 |
Firm listening to music | −0.99 ± 32.71 *$£# (−18.42 to 16.43) | −15.10 ± 10.03 *$£# (−21.48 to −8.72) | =0.162 | - |
Foam CE | 22.18 ± 14.43 (14.48 to 29.87) | 31.64 ± 8.68 (26.12 to 37.15) | =0.050 | - |
Foam playing game | 48.56 ± 15.80 * (40.13 to 56.98) | 36.76 ± 16.14 (26.50 to 47.01) | =0.060 | - |
Foam watching video | 38.05 ± 19.65 *$ (27.57 to 48.52) | 35.99 ± 9.91 (29.69 to 42.29) | =0.074 | - |
Foam video call | 50.26 ± 15.18 *£ (42.17 to 58.35) | 42.64 ± 17.15 £ (31.63 to 53.43) | =0.21 | - |
Foam listening to music | −11.52 ± 12.68 *$£# (−18.28 to −4.72) | −16.63 ± 34.81 *$£# (−38.81 to 5.48) | =0.59 | - |
Δ TUGT% | ||||
Playing game | 44.54 ± 10.19 (39.10 to 49.37) | 36.23 ± 9.44 (27.68 to 44.77) | =0.04 | 0.81 |
Watching video | 26.70 ± 10.91 $ (26.62 to 34.61) | 17.30 ± 6.88 $ (12.92 to 21.67) | =0.03 | 1.03 |
Video call | 48.93 ± 11.34 £ (42.88 to 54.97) | 30.31 ± 13.06 £ (22.00 to 38.60) | <0.001 | 2.01 |
Listening to music | −6.25 ± 3.53 $£# (−8.13 to −4.36) | −11.54 ± 13.12 £$# (−19.88 to −3.20) | =0.13 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jouira, G.; Alexe, C.I.; Herlo, J.N.; Moraru, C.E.; Bogdan, M.; Alexe, D.I.; Mareș, G.; Sahli, S. Effects of Smartphone Activities on Postural Balance in Adolescents with Intellectual Disabilities. Children 2023, 10, 1810. https://doi.org/10.3390/children10111810
Jouira G, Alexe CI, Herlo JN, Moraru CE, Bogdan M, Alexe DI, Mareș G, Sahli S. Effects of Smartphone Activities on Postural Balance in Adolescents with Intellectual Disabilities. Children. 2023; 10(11):1810. https://doi.org/10.3390/children10111810
Chicago/Turabian StyleJouira, Ghada, Cristina Ioana Alexe, Julien Narcis Herlo, Cristina Elena Moraru, Mihaela Bogdan, Dan Iulian Alexe, Gabriel Mareș, and Sonia Sahli. 2023. "Effects of Smartphone Activities on Postural Balance in Adolescents with Intellectual Disabilities" Children 10, no. 11: 1810. https://doi.org/10.3390/children10111810
APA StyleJouira, G., Alexe, C. I., Herlo, J. N., Moraru, C. E., Bogdan, M., Alexe, D. I., Mareș, G., & Sahli, S. (2023). Effects of Smartphone Activities on Postural Balance in Adolescents with Intellectual Disabilities. Children, 10(11), 1810. https://doi.org/10.3390/children10111810