Citation Network Analysis on the Influence of Vision on Academic Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
6. Implication
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lamb, S.; Markussen, E.; Teese, R.; Sandber, N.; Polesel, J. School Dropout and Completion: International Comparative Studies in Theory and Policy; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Machado, J.; Alves, J. Melhorar a Escola: Sucesso Escolar, Disciplina, Motivação, Direção de Escolas e Políticas Educativas; Faculdade de Educação e Psicologia da UCP/Centro de Estudos em Desenvolvimento Humano (CEDH) & Serviço de Apoio à Melhoria das Escolas (SAME): Porto, Portugal, 2013; pp. 39–54. [Google Scholar]
- OECD; PISA. Results (Volume III): What School Life Means for Students’ Lives; PISA, OECD: Paris, France, 2019. [Google Scholar]
- González-Pienda, J.A. El rendimiento escolar. Un análisis de las variables que lo condicionan. Rev. Galego-Port. Psicoloxía Educ. 2003, 8, 247–258. [Google Scholar]
- Dobewall, H.; Lindfors, P.; Karvonen, S.; Koivusilta, L.; Vainikainen, M.P.; Hotulainen, R.; Rimpelä, A. Health and educational aspirations in adolescence: A longitudinal study in Finland. BMC Public Health 2019, 19, 1447. [Google Scholar] [CrossRef]
- Bennett, K.P.; Maloney, W. Weighing in on Canadian school-based vision screening: A call for action. Can. J. Public Health 2017, 108, e421–e426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, S.L.J.; Wood, J.M.; Black, A.A.; Hopkins, S. Vision screening outcomes of Grade 3 children in Australia: Differences in academic achievement. Int. J. Educ. Res. 2017, 83, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Yi, H.; Zhang, L.; Ma, X.; Congdon, N.; Shi, Y.; Pang, X.; Zeng, J.; Wang, L.; Boswell, M.; Rozelle, S. Poor vision among China’s rural primary school students: Prevalence, correlates, and consequences. China Econ. Rev. 2015, 33, 247–262. [Google Scholar] [CrossRef]
- Abdul-Kabir, M.; Nii Kwashie Bortey, D.; Ehianata Onoikhua, E.; Asare-Bediako, B.; Ben Kumah, D. Ametropia among school children-A cross-sectional study in a sub-urban municipality in Ghana. Pediatr. Dimens. 2016, 1, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Xiao, O.; Morgan, I.G.; Ellwein, L.B.; He, M. Prevalence of amblyopia in school-aged children and variations by age, gender, and ethnicity in a multi-country refractive error study. Ophthalmology 2015, 122, 1924–1931. [Google Scholar] [CrossRef]
- You, Q.S.; Wu, L.J.; Duan, J.L.; Luo, Y.X.; Liu, L.J.; Li, X.; Gao, Q.; Wang, W.; Xu, L.; Jonas, J.B.; et al. Prevalence of myopia in school children in greater Beijing: The Beijing childhood eye study. Acta Ophthalmol. 2014, 92, e398–e406. [Google Scholar] [CrossRef] [PubMed]
- Maples, W.C. A comparison of visual abilities, race and socioeconomic factors as predictors of academic achievement. J. Behav. Optom. 2000, 7, 39–42. [Google Scholar]
- Abdulrahman Almulla, A.; Badawi Mohammed Mansour, S.; Afia, A.; Aldossary, M.; Alshammari, T.; Alshammary, R.; Alajmi, E. The Effectiveness of a Computerized Program in Developing Visual Perception Skills among Preschool Children with Specific Learning Difficulties. Multicult. Educ. 2021, 7, 1–18. [Google Scholar] [CrossRef]
- Garzia, R.P. The relationship between visual efficiency problems and learning. In Optometric Management of Learning-Related Vision Problems; Scheiman, M., Rouse, M., Eds.; Mosby-Elsevier: St. Louis, MO, USA, 2006; pp. 209–235. [Google Scholar]
- Turnbull, A.; Turnbull, R.; Wehmeyer, M.L. Exceptional Lives Special Education in Today’s Schools; Pearson Merill Prentice Hall: Upper Shaddle River, NJ, USA, 2007. [Google Scholar]
- Huebner, K.M.; Merk-Adams, B.; Stryker, D.; Wolfe, K. The National Agenda for the Education of Children and Youths with Visual Impairments, Including Those with Multiple Disabilities; AFB Press: New York, NY, USA, 2004. [Google Scholar]
- National Dissemination Center for Children with Disabilities. Available online: https://www.fhi360.org/projects/national-dissemination-center-children-disabilities-nichcy (accessed on 15 November 2022).
- Junghans, B.; Kiely, P.M.; Crewther, D.P.; Crewther, S.G. Referral rates for a functional vision screening among a large cosmopolitan sample of Australian children. Ophthalmic Physiol. Opt. 2002, 22, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, S.; Sampson, G.P.; Hendicott, P.; Wood, J.M. Review of guidelines for children’s vision screenings. Clin. Exp Optom. 2013, 96, 443–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, A.H.; Bleything, W.; Lim, Y.Y. Relating vision status to academic achievement among year-2 school children in Malaysia. Optometry 2011, 82, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Kulp, M.T. Relationship between visual motor integration skill and academic performance in kindergarten through third grade. Optom. Vis. Sci. 1999, 76, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Geary, D.C. Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. Dev. Psychol. 2011, 47, 1539–1552. [Google Scholar] [CrossRef] [Green Version]
- Lobier, M.; Dubois, M.; Valdois, S. The role of visual processing speed in reading speed development. PLoS ONE 2013, 8, e58097. [Google Scholar] [CrossRef] [Green Version]
- Fry, A.F.; Hale, S. Processing Speed, Working Memory, and Fluid Intelligence: Evidence for a Developmental Cascade. Psychol. Sci. 1996, 7, 237–241. [Google Scholar] [CrossRef]
- Borsting, E.; Rouse, M.W. Detecting learning-related visual problems in the primary care setting. Optometry 1994, 65, 642–650. [Google Scholar]
- American Optometric Association. Optometric Clinical Practice Guideline. Care of Patient with Learning Related Vision Problems. Available online: https://www.sdeyes.org/docs/CPG-20.pdf (accessed on 15 November 2022).
- Ihekaire, D.E.; Anyanwu, C. Learning-related vision problems in school age children in Imo State University primary and secondary schools. Int. J. Sci. Res. Ed. 2012, 5, 109–116. [Google Scholar]
- Atowa, U.C.; Hansraj, R.; Wajuihian, S.O. Visual problems: A review of prevalence studies on visual impairment in school-age children. Int. J. Ophthalmol. 2019, 12, 1037–1043. [Google Scholar] [CrossRef]
- Wang, S.; Hao, X.; Ma, X.; Yu, Y.; Wu, L.; Wang, Y.; Li, Y. Associations between Poor Vision, Vision-Related Behaviors and Mathematics Achievement in Chinese Students from the CNAEQ-PEH 2015. Int. J. Environ. Res. Public Health 2020, 17, 8561. [Google Scholar] [CrossRef] [PubMed]
- Georgelin, D.; Jonqua, F.; Makowiecka, K.; Wheeler, S.; Baudouin, C.; Brémond-Gignac, D.; Labbé, A. Dépistage des troubles visuels à l’âge scolaire: Les données du projet pilote PlanVue®. J. Fr. Ophtalmol. 2021, 44, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, J.; Qi, P. The increasing prevalence of myopia in junior high school students in the Haidian District of Beijing, China: A 10-year population-based survey. BMC Ophthalmol. 2017, 17, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohandas, A.; Malenahalli Chandrashekarappa, S.; Dowerah, J.; Kulkarni, P.; Sunil Kumar, D.; Narayana Murthy, M.R.; Shabadi, N.; Shwethashree, M. Screening for vision impairment and ocular morbidities among adolescents and young adults in urban and rural areas of southern part of India. Clin. Epidemiol. Glob. Health 2020, 8, 1034–1038. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, C.E.; Ellwein, L.B.; Refractive Error Study in Children Study Group. Prevalence and causes of functional low vision in school-age children: Results from standardized population surveys in Asia, Africa, and Latin America. Investig. Ophthalmol. Vis. Sci. 2008, 49, 877–881. [Google Scholar] [CrossRef]
- Narayanasamy, S.; Vincent, S.J.; Sampson, G.P.; Wood, J.M. Visual demands in modern Australian primary school classrooms. Clin. Exp. Optom. 2016, 99, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Luo, J.Y.; Zeng, R.; Xiong, L.Z.; Luo, M.Y.; Wang, Z.H. Relation between environmental factors and myopia among the primary and middle school students. Chin. J. Sch. Health 2014, 8, 1127–1130. [Google Scholar]
- Yang, Y.J.; Chang, L.T.; Hui, L. Epidemic status and influencing factors for the poor vision of the students in Yunnan. Chin. J. Sch. Health 2015, 36, 1855–1858. [Google Scholar]
- Qian, D.J.; Zhong, H.; Li, J.; Niu, Z.; Yuan, Y.; Pan, C.W. Myopia among school students in rural China (Yunnan). Ophthalmic Physiol. Opt. 2016, 36, 381–387. [Google Scholar] [CrossRef]
- Parssinen, O.; Kauppinen, M.; Viljanen, A. The progression of myopia from its onset at age 8–12 to adulthood and the influence of heredity and external factors on myopic progression. A 23-year follow-up study. Acta Ophthalmol. 2014, 92, 730–739. [Google Scholar] [CrossRef]
- Leydesdorff, L. Can Scientific Journals be Classified in terms of Aggregated Journal-Journal Citation Relations using the Journal Citation Reports? J. Am. Soc. Inf. Sci. Technol. 2006, 57, 601–613. [Google Scholar] [CrossRef]
- González, C.M. Análisis de citación y de redes sociales para el estudio del uso de revistas en centros de investigación: An approach to the development of collections. Ciência Inf. 2009, 38, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. CitNetExplorer: A new software tool for analyzing and visualizing citation networks. J. Informetr. 2014, 8, 802–823. [Google Scholar] [CrossRef] [Green Version]
- Price, D.J.D.S. Little Science, Big Science; Columbia University Press: New York, NY, USA, 1986. [Google Scholar]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. J. Am. Soc. Inf. Sci. Technol. 2006, 3, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Bull, R.; Espy, K.A.; Wiebe, S.A. Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Dev. Neuropsychol. 2008, 33, 205–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.; McCabe, E.M.; Michelli, N.M.; Pickeral, T. School climate: Research, policy, practice, and teacher education. Teach. Coll. Rec. 2009, 111, 180–213. [Google Scholar] [CrossRef]
- Hack, M.; Taylor, H.G.; Klein, N.; Eiben, R.; Schatschneider, C.; Mercuri-Minich, N. School-age outcomes in children with birth weights under 750 g. N. Engl. J. Med. 1994, 331, 753–759. [Google Scholar] [CrossRef]
- Dyrbye, L.N.; Thomas, M.R.; Shanafelt, T.D. Medical student distress: Causes, consequences, and proposed solutions. Mayo Clin. Proc. 2005, 80, 1613–1622. [Google Scholar] [CrossRef] [Green Version]
- Bellinger, D.C.; Wypij, D.; duPlessis, A.J.; Rappaport, L.A.; Jonas, R.A.; Wernovsky, G.; Newburger, J.W. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: The Boston Circulatory Arrest Trial. J. Thorac. Cardiovasc. Surg. 2003, 126, 1385–1396. [Google Scholar] [CrossRef] [Green Version]
- Hack, M.; Breslau, N.; Weissman, B.; Aram, D.; Klein, N.; Borawski, E. Effect of very low birth weight and subnormal head size on cognitive abilities at school age. N. Engl. J. Med. 1991, 325, 231–237. [Google Scholar] [CrossRef]
- Thomas, M.R.; Dyrbye, L.N.; Huntington, J.L.; Lawson, K.L.; Novotny, P.J.; Sloan, J.A.; Shanafelt, T.D. How do distress and well-being relate to medical student empathy? A multicenter study. J. Gen. Intern. Med. 2007, 22, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Bellinger, D.C.; Wypij, D.; Rivkin, M.J.; DeMaso, D.R.; Robertson, R.L.; Dunbar-Masterson, C.; Rappaport, L.A.; Wernovsky, G.; Jonas, R.A.; Newburger, J.W. Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: Neuropsychological assessment and structural brain imaging. Circulation 2011, 124, 1361–1369. [Google Scholar] [CrossRef] [PubMed]
- Beebe, D.W. Neurobehavioral morbidity associated with disordered breathing during sleep in children: A comprehensive review. Sleep 2006, 29, 1115–1134. [Google Scholar] [CrossRef]
- Cortese, S.; Ferrin, M.; Brandeis, D.; Buitelaar, J.; Daley, D.; Dittmann, R.W.; Holtmann, M.; Santosh, P.; Stevenson, J.; Stringaris, A.; et al. Cognitive training for attention-deficit/hyperactivity disorder: Meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. J. Am. Acad. Child Adolesc. Psychiatry 2015, 54, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Nuzhat, A.; Salem, R.O.; Al Hamdan, N.; Ashour, N. Gender differences in learning styles and academic performance of medical students in Saudi Arabia. Med. Teach. 2013, 35, S78–S82. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Hanif, H.; Ahmed, H.H.; Ebrahim, N.A. Bibliometric Analysis and Visualization of Academic Procrastination. Front. Psychol. 2021, 12, 722332. [Google Scholar] [CrossRef]
- Basch, C.E. Healthier students are better learners: A missing link in school reforms to close the achievement gap. J. Sch. Health 2011, 81, 593–598. [Google Scholar] [CrossRef]
- Liu, S.; Wei, W.; Chen, Y.; Hugo, P.; Zhao, J. Visual-Spatial Ability Predicts Academic Achievement Through Arithmetic and Reading Abilities. Front. Psychol. 2021, 11, 591308. [Google Scholar] [CrossRef]
- Aitken, J.E.; Pedego Fairley, J.M.; Carlson, J.K. Communication Technology for Students in Special Education and Gifted Programs; IGI Global: Philadelphia, PA, USA, 2012. [Google Scholar] [CrossRef]
- Shut Out: The Experience of People with Disabilities and Their Families in Australia. National Disability Strategy Consultation Report. National People with Disabilities and Carer Council, Department of Families, Housing, Community Services and Indigenous Affairs: Canberra, Australia. Available online: https://www.dss.gov.au/sites/default/files/documents/09_2022/shut-out-standard-mod.pdf (accessed on 15 November 2022).
- Ma, X.; Zhou, Z.; Yi, H.; Pang, X.; Shi, Y.; Chen, Q.; Meltzer, M.E.; le Cessie, S.; He, M.; Rozelle, S.; et al. Effect of providing free glasses on children’s educational outcomes in China: Cluster randomized controlled trial. BMJ 2014, 349, g5740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosen, M.L.; Lurie, L.A.; Sambrook, K.A.; Meltzoff, A.N.; McLaughlin, K.A. Neural mechanisms underlying the income-achievement gap: The role of the ventral visual stream. Dev. Cogn. Neurosci. 2021, 52, 101025. [Google Scholar] [CrossRef]
- Haist, F.; Wazny, J.H.; Toomarian, E.; Adamo, M. Development of brain systems for nonsymbolic numerosity and the relationship to formal math academic achievement. Hum. Brain Mapp. 2015, 36, 804–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchet, M.; Assaiante, C. Specific Learning Disorder in Children and Adolescents, a Scoping Review on Motor Impairments and Their Potential Impacts. Children 2022, 9, 892. [Google Scholar] [CrossRef] [PubMed]
- de Waal, E.; Pienaar, A.E.; Coetzee, D. Influence of Different Visual Perceptual Constructs on Academic Achievement Among Learners in the NW-CHILD Study. Percept. Mot. Ski. 2018, 125, 966–988. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, L.; Voeten, M.; van Setten, E.; Segers, E. Computer supported early literacy intervention effects in preschool and kindergarten: A meta-analysis. Educ. Res. Rev. 2020, 30, 100325. [Google Scholar] [CrossRef]
- Memon, M.Q.; Lu, Y.; Memon, A.R.; Memon, A.; Munshi, P.; Shah, S.F.A. Does the Impact of Technology Sustain Students’ Satisfaction, Academic and Functional Performance: An Analysis via Interactive and Self-Regulated Learning? Sustainability 2022, 14, 7226. [Google Scholar] [CrossRef]
- Hopkins, S.; Narayanasamy, S.; Vincent, S.J.; Sampson, G.P.; Wood, J.M. Do reduced visual acuity and refractive error affect classroom performance? Clin. Exp. Optom. 2020, 103, 278–289. [Google Scholar] [CrossRef]
- Elaziz, A.; Mohamed Elmadina, A.; Hassan Arashedd, S. Effect of Binocular Vision Problems on Childhood Academic Performance and Teachers’ Perspective. Pak. J. Ophthalmol. 2020, 36, 163–168. [Google Scholar]
- Cockcroft, K. The role of working memory in long-term learning: Implications for childhood development. S. Afr. J. Child. Educ. 2015, 5, 1–18. [Google Scholar]
- Dutra, N.B.; Chen, L.; Anum, A.; Burger, O.; Davis, H.E.; Dzokoto, V.A.; Fong, F.T.K.; Ghelardi, S.; Mendez, K.; Messer, E.J.E. Examining relations between performance on non-verbal executive function and verbal self-regulation tasks in demographically-diverse populations. Dev. Sci. 2022, 25, e13228. [Google Scholar] [CrossRef]
- Anwar, N.M.; Safdar, M.; Safdar Ali Qasim, M.; Mustansar, M. Effects of Electronic Devices on Vision in Students Age Group 18–25. Ann. Med. Health Sci. Res. 2021, 11, 1572–1577. [Google Scholar]
Category | Frequency | Centrality | Degree | Half-Life |
---|---|---|---|---|
Education/educational research | 411 | 0.00 | 66 | 38.5 |
Psychology | 303 | 0.00 | 52 | 36.5 |
Neurosciences neurology | 130 | 0.00 | 36 | 21.5 |
Pediatrics | 106 | 0.00 | 29 | 21.5 |
Computer science | 85 | 0.00 | 41 | 13.5 |
Ophthalmology | 79 | 0.00 | 10 | 29.5 |
Rehabilitation | 63 | 0.00 | 19 | 32.5 |
Psychiatry | 59 | 0.00 | 24 | 22.5 |
General internal medicine | 48 | 0.00 | 11 | 25.5 |
Engineering | 47 | 0.00 | 37 | 13.5 |
Business economics | 39 | 0.00 | 30 | 9.5 |
Authors | Articles | Degree | Connections | Half-Life |
---|---|---|---|---|
Congdon N | 7 | 1 | 346 | −05 |
Pienaar AE | 7 | 0 | 11 | −0.5 |
Wood JM | 7 | 5 | 83 | 3.5 |
Calhoun SL | 6 | 1 | - | −0.5 |
Coetzee D | 6 | - | 35 | - |
Mayes SD | 6 | 1 | - | −0.5 |
Villa-Collar C | 6 | 3 | 131 | −0.5 |
Hansraj R | 5 | - | 38 | - |
Hopkins S | 5 | 2 | 183 | −0.5 |
Kulp MT | 5 | 1 | 197 | 3.5 |
Category | Frequency | Centrality | Degree | Half-Life | Connections |
---|---|---|---|---|---|
University of California System | 38 | 0.00 | 2 | 5.5 | 22 |
Harvard University | 35 | 0.00 | 15 | 8.5 | 19 |
League of European Research Universities Leru | 35 | 0.00 | 1 | 5.5 | 15 |
University of Toronto | 27 | 0.00 | 6 | −0.5 | 23 |
University of London | 25 | 0.00 | 1 | −0.5 | 2 |
Pennsylvania Commonwealth System of Higher Education (PASSHE) | 23 | 0.00 | 1 | −0.5 | 1 |
Hospital For Sick Children (Sickkids) | 20 | 0.00 | 1 | 0.5 | 21 |
State University System of Florida | 18 | 0.00 | 2 | −0.5 | 4 |
Boston Children’s Hospital | 17 | 0.00 | 2 | −0.5 | 2 |
University of Texas System | 17 | 0.00 | 7 | 3.5 | 1 |
Journal | Total Publications | Impact Factor (2021) | Quartile Score | SJR (2021) | Citations/Docs (2 Years) | Total Citations (2021) | H Index | Country |
---|---|---|---|---|---|---|---|---|
Frontiers in Psychology | 30 | 4.23 | Q1 | 0.873 | 3.884 | 38,043 | 133 | Switzerland |
PLoS ONE | 16 | 3.75 | Q2 | 0.852 | 3.582 | 188,716 | 367 | United States |
Perceptual and Motor Skills | 15 | 2.21 | Q3 | 0.498 | 2.371 | 440 | 73 | United States |
Optometry and vision science | 10 | 2.11 | Q3 | 0.561 | 1.747 | 871 | 102 | United States |
Child Neuropsychology | 10 | 2.56 | Q3 | 0.698 | 2.618 | 524 | 76 | United Kingdom |
Journal Of Learning Disabilities | 10 | 3.41 | Q1 | 1.119 | 3.089 | 380 | 96 | The Netherlands |
Research In Developmental Disabilities | 9 | 3.53 | Q1 | 0.796 | 2.994 | 1813 | 95 | United States |
Ophthalmic And Physiological Optics | 8 | 3.99 | Q2 | 1.051 | 3.667 | 672 | 70 | United Kingdom |
Developmental Neuropsychology | 8 | 2.11 | Q3 | 0.536 | 1.75 | 260 | 99 | United Kingdom |
Developmental Medicine and Child Neurology | 7 | 4.86 | Q2 | 1.398 | 2.773 | 2770 | 151 | United States |
Keyword | Frequency | Degree | Total Link Strength |
---|---|---|---|
Children | 195 | 154 | 1338 |
Academic-Achievement | 154 | 78 | 806 |
Performance | 131 | 99 | 740 |
Academic-Performance | 92 | 147 | 469 |
Working-Memory | 73 | 78 | 500 |
Achievement | 68 | 76 | 441 |
Adolescents | 64 | 80 | 416 |
Students | 58 | 43 | 324 |
Education | 52 | 38 | 363 |
Skills | 50 | 58 | 372 |
Attention | 49 | 65 | 392 |
Impact | 48 | 56 | 254 |
Prevalence | 48 | 58 | 259 |
Intelligence | 37 | 27 | 267 |
Outcomes | 37 | 36 | 223 |
Age | 34 | 18 | 195 |
Executive Function | 34 | 46 | 246 |
Meta-analysis | 33 | 32 | 220 |
School | 33 | 40 | 217 |
Childhood | 32 | 26 | 257 |
Paper | DOI | Total Citations |
---|---|---|
BULL R, 2008, DEV NEUROPSYCHOL [45] | 10.1080/87565640801982312 | 975 |
COHEN J, 2009, TEACH COLL REC [46] | NA | 734 |
HACK M, 1994, NEW ENGL J MED [47] | 10.1056/NEJM199409223311201 | 515 |
DYRBYE LN, 2005, MAYO CLIN PROC [48] | 10.4065/80.12.1613 | 504 |
BELLINGER DC, 2003, J THORAC CARDIOV SUR [49] | 10.1016/S0022-5223(03)00711-6 | 461 |
HACK M, 1991, NEW ENGL J MED [50] | 10.1056/NEJM199107253250403 | 386 |
THOMAS MR, 2007, J GEN INTERN MED [51] | 10.1007/s11606-006-0039-6 | 325 |
BELLINGER DC, 2011, CIRCULATION [52] | 10.1161/CIRCULATIONAHA.111.026963 | 296 |
BEEBE DW, 2006, SLEEP [53] | 10.1093/sleep/29.9.1115 | 278 |
CORTESE S, 2015, J AM ACAD CHILD PSY [54] | 10.1016/j.jaac.2014.12.010 | 267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteves, S.; Martinez-Perez, C.; Alvarez-Peregrina, C.; Sánchez-Tena, M.Á. Citation Network Analysis on the Influence of Vision on Academic Performance. Children 2023, 10, 591. https://doi.org/10.3390/children10030591
Esteves S, Martinez-Perez C, Alvarez-Peregrina C, Sánchez-Tena MÁ. Citation Network Analysis on the Influence of Vision on Academic Performance. Children. 2023; 10(3):591. https://doi.org/10.3390/children10030591
Chicago/Turabian StyleEsteves, Sandrina, Clara Martinez-Perez, Cristina Alvarez-Peregrina, and Miguel Ángel Sánchez-Tena. 2023. "Citation Network Analysis on the Influence of Vision on Academic Performance" Children 10, no. 3: 591. https://doi.org/10.3390/children10030591
APA StyleEsteves, S., Martinez-Perez, C., Alvarez-Peregrina, C., & Sánchez-Tena, M. Á. (2023). Citation Network Analysis on the Influence of Vision on Academic Performance. Children, 10(3), 591. https://doi.org/10.3390/children10030591