General Anesthesia in Early Childhood Significantly Reduces Asthma Incidence and Clinical Visits: A Nationwide Population-Based Cohort Study
Abstract
:1. Introduction
2. Methods
3. Statistical Analysis
4. Results
4.1. General Anesthesia in Early Childhood Significantly Reduces Asthma Incidence
4.2. General Anesthesia in Early Childhood Significantly Reduces Clinical Asthma Visits
4.3. Kaplan–Meier Plot of the Cumulative Incidence of Asthmatic Patients following GA Exposure
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, Y.; Chen, S.; Chen, X.; Zou, W.; Liu, Z.; Wu, Y.; Hu, S. Global trends in the incidence and mortality of asthma from 1990 to 2019: An age-period-cohort analysis using the global burden of disease study 2019. Front. Public Health 2022, 10, 1036674. [Google Scholar] [CrossRef] [PubMed]
- Batra, M.; Dharmage, S.C.; Newbigin, E.; Tang, M.; Abramson, M.J.; Erbas, B.; Vicendese, D. Grass pollen exposure is associated with higher readmission rates for pediatric asthma. Pediatr. Allergy Immunol. 2022, 33, e13880. [Google Scholar] [CrossRef] [PubMed]
- De Keyser, H.H.; Chipps, B.; Dinakar, C. Biologics for Asthma and Allergic Skin Diseases in Children. Pediatrics 2021, 148, e2021054270. [Google Scholar] [CrossRef]
- Rattu, A.; Khaleva, E.; Brightling, C.; Dahlén, S.E.; Bossios, A.; Fleming, L.; Roberts, G. Identifying and appraising outcome measures for severe asthma: A systematic review. Eur. Respir. J. 2022. [Google Scholar] [CrossRef]
- Zuberbier, T.; Lotvall, J.; Simoens, S.; Subramanian, S.V.; Church, M.K. Economic burden of inadequate management of allergic diseases in the European Union: A GA(2) LEN review. Allergy 2014, 69, 1275–1279. [Google Scholar] [CrossRef] [PubMed]
- Foronda, C.L.; Kelley, C.N.; Nadeau, C.; Prather, S.L.; Lewis-Pierre, L.; Sarik, D.A.; Muheriwa, S.R. Psychological and Socioeconomic Burdens Faced by Family Caregivers of Children With Asthma: An Integrative Review. J. Pediatr. Health Care 2020, 34, 366–376. [Google Scholar] [CrossRef]
- Bisgaard, H.; Chawes, B.; Stokholm, J.; Mikkelsen, M.; Schoos, A.M.; Bonnelykke, K. 25 Years of translational research in the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC). J. Allergy Clin. Immunol. 2023, 151, 619–633. [Google Scholar] [CrossRef] [PubMed]
- Klain, A.; Dinardo, G.; Salvatori, A.; Indolfi, C.; Contieri, M.; Brindisi, G.; Decimo, F.; Zicari, A.M.; Miraglia Del Giudice, M. An Overview on the Primary Factors That Contribute to Non-Allergic Asthma in Children. J. Clin. Med. 2022, 11, 6567. [Google Scholar] [CrossRef]
- Koksoy, S.; Sahin, Z.; Karsli, B. Comparison of the effects of desflurane and bupivacaine on Th1 and Th2 responses. Clin. Lab. 2013, 59, 1215–1220. [Google Scholar] [CrossRef]
- Kim, A.; Lim, G.; Oh, I.; Kim, Y.; Lee, T.; Lee, J. Perinatal factors and the development of childhood asthma. Ann. Allergy Asthma Immunol. 2018, 120, 292–299. [Google Scholar] [CrossRef]
- Maciag, M.C.; Phipatanakul, W. Update on indoor allergens and their impact on pediatric asthma. Ann. Allergy Asthma Immunol. 2022, 128, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Grant, T.; Lilley, T.; McCormack, M.C.; Rathouz, P.J.; Peng, R.; Keet, C.A.; Rule, A.; Davis, M.; Balcer-Whaley, S.; Newman, M.; et al. Indoor environmental exposures and obstructive lung disease phenotypes among children with asthma living in poor urban neighborhoods. J. Allergy Clin. Immunol. 2023, 151, 716–722.e718. [Google Scholar] [CrossRef]
- Cushing, A.M.; Khan, M.A.; Kysh, L.; Brakefield, W.S.; Ammar, N.; Liberman, D.B.; Wilson, J.; Shaban-Nejad, A.; Espinoza, J. Geospatial data in pediatric asthma in the United States: A scoping review protocol. JBI Evid. Synth. 2022, 20, 2790–2798. [Google Scholar] [CrossRef]
- Moore, L.E.; Oliveira, A.; Zhang, R.; Behjat, L.; Hicks, A. Impacts of Wildfire Smoke and Air Pollution on a Pediatric Population with Asthma: A Population-Based Study. Int. J. Environ. Res. Public Health 2023, 20, 1937. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, J.; Liu, S.; Tan, J.; Yan, C.; Yu, G.; Yin, Y.; Tong, S. Evaluation of climate change adaptation measures for childhood asthma: A systematic review of epidemiological evidence. Sci. Total. Environ. 2022, 839, 156291. [Google Scholar] [CrossRef] [PubMed]
- Anenberg, S.C.; Mohegh, A.; Goldberg, D.L.; Kerr, G.H.; Brauer, M.; Burkart, K.; Hystad, P.; Larkin, A.; Wozniak, S.; Lamsal, L. Long-term trends in urban NO2 concentrations and associated paediatric asthma incidence: Estimates from global datasets. Lancet Planet. Health 2022, 6, e49–e58. [Google Scholar] [CrossRef]
- Pivniouk, V.; Gimenes Junior, J.A.; Honeker, L.K.; Vercelli, D. The role of innate immunity in asthma development and protection: Lessons from the environment. Clin. Exp. Allergy 2020, 50, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Hallit, S.; Sacre, H.; Kheir, N.; Hobeika, E.; Hallit, R.; Waked, M.; Salameh, P. Hygiene hypothesis: Association between hygiene and asthma among preschool children in Lebanon. Allergol. Immunopathol. 2021, 49, 135–145. [Google Scholar] [CrossRef]
- Alshahwani, N.; Briatico, D.; Lee, W.; Farrokhyar, F. Review and Quality Assessment of Systematic Reviews and Meta-analyses on the Management of Pediatric Inguinal Hernias: A Descriptive Study. J. Surg. Res. 2022, 278, 404–417. [Google Scholar] [CrossRef]
- Su, Q.; Gao, S.; Chen, J.; Lu, C.; Mao, W.; Wu, X.; Zhang, L.; Zuo, L. A Comparative Study on the Clinical Efficacy of Modified Circumcision and Two Other Types of Circumcision. Urol. J. 2020, 18, 556–560. [Google Scholar] [CrossRef]
- Fraser, J.D.; Duran, Y.K.; Deans, K.J.; Downard, C.D.; Fallat, M.E.; Gadepalli, S.K.; Hirschl, R.B.; Lal, D.R.; Landman, M.P.; Leys, C.M.; et al. Natural history and consequence of patent processus vaginalis: An interim analysis from a multi-institutional prospective observational study. J. Pediatric Surg. 2023, 58, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Radacsi, A.; Katona, K.; Farkas, N.; Kovesi, T.; Szanto, I.; Sandor, B. Pain-related complaints of paediatric patients after dental treatment under general anaesthesia. Eur. J. Paediatr. Dent. 2023, 24, 61–68. [Google Scholar] [CrossRef]
- Gomez-Rios, I.; Perez-Silva, A.; Serna-Munoz, C.; Ibanez-Lopez, F.J.; Periago-Bayonas, P.M.; Ortiz-Ruiz, A.J. Deep Sedation for Dental Care Management in Healthy and Special Health Care Needs Children: A Retrospective Study. Int. J. Environ. Res. Public Health 2023, 20, 3435. [Google Scholar] [CrossRef] [PubMed]
- McInnis-Smith, K.; Chen, K.; Klanderman, M.; Abruzzo, T.; Ramasubramanian, A. Quantity and duration of exposure to general anesthesia for pediatric patients with retinoblastoma. J. AAPOS 2022, 26, 313.e311–313.e315. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Chung, J.H.; Byun, H.; Zheng, T.; Jeong, J.H.; Lee, S.H. Clinical Characteristics of External Auditory Canal Foreign Bodies in Children and Adolescents. Ear. Nose Throat J. 2020, 99, 648–653. [Google Scholar] [CrossRef]
- Awad, A.H.; ElTaher, M. ENT Foreign Bodies: An Experience. Int. Arch. Otorhinolaryngol. 2018, 22, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Thung, A.; Tumin, D.; Uffman, J.C.; Tobias, J.D.; Buskirk, T.; Garrett, W.; Karczewski, A.; Saadat, H. The Utility of the Modified Yale Preoperative Anxiety Scale for Predicting Success in Pediatric Patients Undergoing MRI Without the Use of Anesthesia. J. Am. Coll. Radiol. 2018, 15, 1232–1237. [Google Scholar] [CrossRef]
- Oubenyahya, H.; Bouhabba, N. General anesthesia in the management of early childhood caries: An overview. J. Dent. Anesth. Pain Med. 2019, 19, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Salaun, J.P.; Poirel, N.; Dahmani, S.; Chagnot, A.; Gakuba, C.; Ali, C.; Gerard, J.L.; Hanouz, J.L.; Orliaguet, G.; Vivien, D. Preventing the Long-term Effects of General Anesthesia on the Developing Brain: How Translational Research can Contribute. Neuroscience 2021, 461, 172–179. [Google Scholar] [CrossRef]
- Yang, Y.L.; Wang, L.J.; Chang, J.C.; Ho, S.C.; Kuo, H.C. A National Population Cohort Study Showed That Exposure to General Anesthesia in Early Childhood Is Associated with an Increase in the Risk of Developmental Delay. Children 2021, 8, 840. [Google Scholar] [CrossRef]
- Salaun, J.P.; Chagnot, A.; Cachia, A.; Poirel, N.; Datin-Dorriere, V.; Dujarrier, C.; Lemarchand, E.; Rolland, M.; Delalande, L.; Gressens, P.; et al. Consequences of General Anesthesia in Infancy on Behavior and Brain Structure. Anesth. Analg. 2023, 136, 240–250. [Google Scholar] [CrossRef]
- Chen, Y.R.; Zhang, S.X.; Fang, M.; Zhang, P.; Zhou, Y.F.; Yu, X.; Zhang, X.N.; Chen, G. Egr2 contributes to age-dependent vulnerability to sevoflurane-induced cognitive deficits in mice. Acta Pharmacol. Sin. 2022, 43, 2828–2840. [Google Scholar] [CrossRef]
- Ing, C.; Bellinger, D.C. Long-term cognitive and behavioral outcomes following early exposure to general anesthetics. Curr. Opin. Anaesthesiol. 2022, 35, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.C.; Yang, Y.L.; Ho, S.C.; Guo, M.M.; Jiang, J.H.; Huang, Y.H. General anesthesia exposure in early life reduces the risk of allergic diseases: A nationwide population-based cohort study. Medicine 2016, 95, e4269. [Google Scholar] [CrossRef] [PubMed]
- Goretzki, A.; Zimmermann, J.; Rainer, H.; Lin, Y.J.; Schulke, S. Immune Metabolism in TH2 Responses: New Opportunities to Improve Allergy Treatment—Disease-Specific Findings (Part 1). Curr. Allergy Asthma Rep. 2022, 23, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Feng, Q.; Chen, Y.; Liu, G.; Gao, Z.; Xiao, J.; Feng, C. Effect of Dezocine on the Ratio of Th1/Th2 Cytokines in Patients Receiving Postoperative Analgesia Following Laparoscopic Radical Gastrectomy: A Prospective Randomised Study. Drug Des. Dev. Ther. 2021, 15, 2289–2297. [Google Scholar] [CrossRef]
- Sheeran, P.; Hall, G.M. Cytokines in anaesthesia. Br. J. Anaesth. 1997, 78, 201–219. [Google Scholar] [CrossRef]
- Sofra, M.; Fei, P.C.; Fabrizi, L.; Marcelli, M.E.; Claroni, C.; Gallucci, M.; Ensoli, F.; Forastiere, E. Immunomodulatory effects of total intravenous and balanced inhalation anesthesia in patients with bladder cancer undergoing elective radical cystectomy: Preliminary results. J. Exp. Clin. Cancer Res. CR 2013, 32, 6. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.M. Reflections on the 20th anniversary of Taiwan's single-payer National Health Insurance System. Health Aff. 2015, 34, 502–510. [Google Scholar] [CrossRef]
- Kuo, H.C.; Chang, W.C.; Yang, K.D.; Yu, H.R.; Wang, C.L.; Ho, S.C.; Yang, C.Y. Kawasaki disease and subsequent risk of allergic diseases: A population-based matched cohort study. BMC Pediatr. 2013, 13, 38. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.P.; Wu, S.J.; Chang, W.C.; Kuo, H.C. Population-based study of the association between urbanization and Kawasaki disease in Taiwan. Sci. World J. 2013, 2013, 169365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgmeier, C.; Dreyhaupt, J.; Schier, F. Gender-related differences of inguinal hernia and asymptomatic patent processus vaginalis in term and preterm infants. J. Pediatric Surg. 2015, 50, 478–480. [Google Scholar] [CrossRef]
- Chauhan, B.F.; Chartrand, C.; Ni Chroinin, M.; Milan, S.J.; Ducharme, F.M. Addition of long-acting beta2-agonists to inhaled corticosteroids for chronic asthma in children. Cochrane Database Syst. Rev. 2015, 2015, CD007949. [Google Scholar] [CrossRef] [Green Version]
- Rehder, K.J. Adjunct Therapies for Refractory Status Asthmaticus in Children. Respir. Care 2017, 62, 849–865. [Google Scholar] [CrossRef]
- Carrie, S.; Anderson, T.A. Volatile anesthetics for status asthmaticus in pediatric patients: A comprehensive review and case series. Paediatr. Anaesth. 2015, 25, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Shankar, V.; Churchwell, K.B.; Deshpande, J.K. Isoflurane therapy for severe refractory status asthmaticus in children. Intensive Care Med. 2006, 32, 927–933. [Google Scholar] [CrossRef] [PubMed]
- Wasowicz, M.; Jerath, A. Expanding the use of volatile anesthetic agents beyond the operating room. Can. J. Anaesth. 2014, 61, 905–908. [Google Scholar] [CrossRef]
- Vaschetto, R.; Bellotti, E.; Turucz, E.; Gregoretti, C.; Corte, F.D.; Navalesi, P. Inhalational anesthetics in acute severe asthma. Curr. Drug Targets 2009, 10, 826–832. [Google Scholar] [CrossRef]
- Burburan, S.M.; Xisto, D.G.; Rocco, P.R. Anaesthetic management in asthma. Minerva Anestesiol. 2007, 73, 357–365. [Google Scholar]
- Bayable, S.D.; Melesse, D.Y.; Lema, G.F.; Ahmed, S.A. Perioperative management of patients with asthma during elective surgery: A systematic review. Ann. Med. Surg. 2021, 70, 102874. [Google Scholar] [CrossRef]
- Kim, D.C.; Choi, Y.W.; Lee, E.S.; Choi, J.W. No Association Between First Exposure to General Anaesthesia and Atopic Dermatitis in the Paediatric Population. Acta Derm. Venereol. 2022, 102, adv00813. [Google Scholar] [CrossRef]
- Schneemilch, C.E.; Hachenberg, T.; Ansorge, S.; Ittenson, A.; Bank, U. Effects of different anaesthetic agents on immune cell function in vitro. Eur. J. Anaesthesiol. 2005, 22, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Duffen, A.; Williams, A. Should sevoflurane be used for maintenance of anaesthesia in children? Br. J. Hosp. Med. 2011, 72, 598. [Google Scholar] [CrossRef]
- Palacios, A.; Mencia, S.; Llorente, A.M.; Cruz, J.; Toledo, B.; Ordonez, O.; Olmedilla, M.; Lopez-Herce, J. Sevoflurane Therapy for Severe Refractory Bronchospasm in Children. Pediatr. Crit. Care Med. 2016, 17, e380–e384. [Google Scholar] [CrossRef] [PubMed]
- Costi, D.; Cyna, A.M.; Ahmed, S.; Stephens, K.; Strickland, P.; Ellwood, J.; Larsson, J.N.; Chooi, C.; Burgoyne, L.L.; Middleton, P. Effects of sevoflurane versus other general anaesthesia on emergence agitation in children. Cochrane Database Syst. Rev. 2014, CD007084. [Google Scholar] [CrossRef]
- Regli, A.; Sommerfield, A.; von Ungern-Sternberg, B.S. Anesthetic considerations in children with asthma. Paediatr. Anaesth. 2022, 32, 148–155. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Wu, N.; Zhang, L.; Jiang, H. Multiple sevoflurane exposures don’t disturb the T-cell receptor repertoire in infant rhesus monkeys’ thymus. Life Sci. 2020, 248, 117457. [Google Scholar] [CrossRef]
- Chutipongtanate, A.; Prukviwat, S.; Pongsakul, N.; Srisala, S.; Kamanee, N.; Arpornsujaritkun, N.; Gesprasert, G.; Apiwattanakul, N.; Hongeng, S.; Ittichaikulthol, W.; et al. Effects of Desflurane and Sevoflurane anesthesia on regulatory T cells in patients undergoing living donor kidney transplantation: A randomized intervention trial. BMC Anesthesiol. 2020, 20, 215. [Google Scholar] [CrossRef]
- Elena, G.; Amerio, N.; Ferrero, P.; Bay, M.L.; Valenti, J.; Colucci, D.; Puig, N.R. Effects of repetitive sevoflurane anaesthesia on immune response, select biochemical parameters and organ histology in mice. Lab. Anim. 2003, 37, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Gerber, T.J.; Fehr, V.C.O.; Oliveira, S.D.S.; Hu, G.; Dull, R.; Bonini, M.G.; Beck-Schimmer, B.; Minshall, R.D. Sevoflurane Promotes Bactericidal Properties of Macrophages through Enhanced Inducible Nitric Oxide Synthase Expression in Male Mice. Anesthesiology 2019, 131, 1301–1315. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zha, B.; Shen, Q.; Zou, H.; Cheng, C.; Wu, H.; Liu, R. Sevoflurane Inhibits the Th2 Response and NLRP3 Expression in Murine Allergic Airway Inflammation. J. Immunol. Res. 2018, 2018, 9021037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, L.S.; Jia, M.; Sun, J.; Sun, X.R.; Zhang, H.; Ji, M.H.; Yang, J.J.; Wang, Z.Y. Hypermethylation of Hippocampal Synaptic Plasticity-Related genes is Involved in Neonatal Sevoflurane Exposure-Induced Cognitive Impairments in Rats. Neurotox. Res. 2016, 29, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.; Iijima, N.; Higo, S.; Aikawa, S.; Matsuo, I.; Takumi, K.; Sakamoto, A.; Ozawa, H. Epigenetic suppression of mouse Per2 expression in the suprachiasmatic nucleus by the inhalational anesthetic, sevoflurane. PLoS ONE 2014, 9, e87319. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Chen, L.; Yue, C.J.; Xu, H.; Cheng, J.; Cornett, E.M.; Kaye, A.D.; Urits, I.; Viswanath, O.; Liu, H. Effects of propofol and sevoflurane on T-cell immune function and Th cell differentiation in children with SMPP undergoing fibreoptic bronchoscopy. Ann. Med. 2022, 54, 2574–2580. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, R.S.; Luddy, K.A.; Icard, B.E.; Pineiro Fernandez, J.; Gatenby, R.A.; Muncey, A.R. The Effects of Anesthetics and Perioperative Medications on Immune Function: A Narrative Review. Anesth. Analg. 2021, 133, 676–689. [Google Scholar] [CrossRef]
- Helmy, S.A.; Wahby, M.A.; El-Nawaway, M. The effect of anaesthesia and surgery on plasma cytokine production. Anaesthesia 1999, 54, 733–738. [Google Scholar] [CrossRef]
Variables | Patients with GA Exposure | Patients Without GA Exposure | p-Value | ||
---|---|---|---|---|---|
n | % | n | % | ||
n = 212 | n = 424 | ||||
Age (means ± SD) | 2.07 ± 0.60 | 2.01 ± 0.54 | 0.2234 | ||
Follow-up (years, mean ± SD) | 5.36 ± 3.62 | 5.06 ±3.63 | 0.3289 | ||
Gender | |||||
Female | 71 | 33.49 | 142 | 33.49 | |
Male | 141 | 66.51 | 282 | 66.51 | |
Clinical visits before GA | |||||
Outpatient visits (No., mean ± SD) | 4.19 ± 5.77 | 4.74 ± 6.50 | 0.2995 | ||
Cumulative clinical visits (No., mean ± SD) | 4.47 ± 5.93 | 5.31 ± 6.90 | 0.1108 | ||
Clinical visits after GA | |||||
Outpatient visits (No., mean ± SD) | 11.33 ± 17.90 | 17.47 ± 27.60 | 0.0008 | ||
Cumulative clinical visits (No., mean ± SD) | 11.55 ± 18.22 | 17.92 ± 28.30 | 0.0007 |
Variables | Patients with GA Exposure | Patients without GA Exposure | p-Value | ||
---|---|---|---|---|---|
n | % | n | % | ||
After asthma | n = 486 | n = 972 | |||
Age (mean ± SD) | 1.83 ± 0.59 | 1.83 ± 0.59 | 0.8077 | ||
Follow-up (years, mean ± SD) | 5.59 ± 2.93 | 5.24 ± 2.99 | 0.0373 | ||
Gender | |||||
Female | 144 | 29.63 | 288 | 29.63 | |
Male | 342 | 70.37 | 684 | 70.37 | |
Clinical visits | |||||
Outpatient visits (No., mean ± SD) | 12.49 ± 15.61 | 13.84 ± 17.34 | 0.1369 | ||
Cumulative clinical visits. (No., mean ± SD) | 12.70 ± 15.84 | 14.10 ± 17.51 | 0.1245 |
No. of Patients | No. of Person-Years | No. of Patients with Anesthesia Use | Incident Rate (per 10,000 Person-Years) | Crude HR (95% CI) | Adjusted HR * (95% CI) | |
---|---|---|---|---|---|---|
Gender | ||||||
Female | 213 | 1078.11 | 71 | 658.56 | 1.00 | |
Male | 423 | 2205.35 | 141 | 639.35 | 0.98 (0.73~1.30) | |
No. of outpatient visits | ||||||
0~≤3 | 246 | 1282.02 | 99 | 772.22 | 1.00 | 1.00 |
3~≤14 | 205 | 805.74 | 62 | 769.48 | 1.00 (0.57~1.75) | 1.04 (0.59~1.84) |
>14 | 185 | 1195.70 | 51 | 426.53 | 0.39 (0.21~0.71) | 0.40 (0.21~0.73) |
Cumulative No. of clinical visits | ||||||
0~≤3 | 242 | 1271.92 | 98 | 770.49 | 1.00 | 1.00 |
3~≤14 | 204 | 800.95 | 63 | 786.57 | 1.03 (0.89~1.81) | 1.07 (0.60~1.90) |
>14 | 190 | 1210.59 | 51 | 421.28 | 0.38 (0.21~0.71) | 0.39 (0.21~0.73) |
No. of Patients | No. of Person-Years | No. of Patients with Anesthesia Use | Incident Rate (per 10,000 Person-Years) | Crude HR (95% CI) | Adjusted HR * (95% CI) | |
---|---|---|---|---|---|---|
Gender | ||||||
Female | 432 | 2215.26 | 144 | 650.04 | 1.00 | |
Male | 1026 | 5605.02 | 342 | 610.17 | 0.89 (0.73~1.08) | |
No. of outpatient visits | ||||||
0~≤4 | 517 | 2024.61 | 191 | 943.39 | 1.00 | 1.00 |
4~≤17 | 605 | 3324.76 | 192 | 577.49 | 0.32 (0.22~0.47) | 0.33 (0.22~0.48) |
>17 | 336 | 2470.91 | 103 | 416.85 | 0.12 (0.07~0.20) | 0.12 (0.07~0.20) |
Cumulative No. of clinical visits | ||||||
0~≤5 | 613 | 2481.10 | 216 | 870.58 | 1.00 | 1.00 |
5~≤13 | 400 | 2129.65 | 134 | 629.21 | 0.46 (0.31~0.68) | 0.47 (0.32~0.69) |
>13 | 445 | 3209.53 | 136 | 423.74 | 0.15 (0.10~0.24) | 0.15 (0.10~0.23) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.-L.; Chang, J.-C.; Ho, S.-C.; Yeh, C.-N.; Kuo, H.-C. General Anesthesia in Early Childhood Significantly Reduces Asthma Incidence and Clinical Visits: A Nationwide Population-Based Cohort Study. Children 2023, 10, 626. https://doi.org/10.3390/children10040626
Yang Y-L, Chang J-C, Ho S-C, Yeh C-N, Kuo H-C. General Anesthesia in Early Childhood Significantly Reduces Asthma Incidence and Clinical Visits: A Nationwide Population-Based Cohort Study. Children. 2023; 10(4):626. https://doi.org/10.3390/children10040626
Chicago/Turabian StyleYang, Ya-Ling, Jung-Chan Chang, Shu-Chen Ho, Chien-Ning Yeh, and Ho-Chang Kuo. 2023. "General Anesthesia in Early Childhood Significantly Reduces Asthma Incidence and Clinical Visits: A Nationwide Population-Based Cohort Study" Children 10, no. 4: 626. https://doi.org/10.3390/children10040626
APA StyleYang, Y. -L., Chang, J. -C., Ho, S. -C., Yeh, C. -N., & Kuo, H. -C. (2023). General Anesthesia in Early Childhood Significantly Reduces Asthma Incidence and Clinical Visits: A Nationwide Population-Based Cohort Study. Children, 10(4), 626. https://doi.org/10.3390/children10040626