Delayed and Interrupted Ventilation with Excess Suctioning after Helping Babies Breathe with Congolese Birth Attendants
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Knowledge and Skills after HBB Training
3.2. Newborn Demographics
3.3. Newborn Respiratory Status
3.4. Order of Resuscitation Practices
3.5. Timing of Resuscitation Practices
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, A.C.; Cousens, S.; Wall, S.N.; Niermeyer, S.; Darmstadt, G.L.; Carlo, W.A.; Keenan, W.J.; Bhutta, Z.A.; Gill, C.; Lawn, J.E. Neonatal resuscitation and immediate newborn assessment and stimulation for the prevention of neonatal deaths: A systematic review, meta-analysis and Delphi estimation of mortality effect. BMC Public Health 2011, 11 (Suppl. S3), S12. [Google Scholar] [CrossRef] [Green Version]
- Lawn, J.E.; Lee, A.C.; Kinney, M.; Sibley, L.; Carlo, W.A.; Paul, V.K.; Pattinson, R.; Darmstadt, G.L. Two million intrapartum-related stillbirths and neonatal deaths: Where, why, and what can be done? Int. J. Gynaecol. Obstet. 2009, 107 (Suppl. S1), S5–S19. [Google Scholar] [CrossRef]
- Lawn, J.E.; Blencowe, H.; Oza, S.; You, D.; Lee, A.C.; Waiswa, P.; Lalli, M.; Bhutta, Z.; Barros, A.J.; Christian, P.; et al. Every Newborn: Progress, priorities, and potential beyond survival. Lancet 2014, 384, 189–205. [Google Scholar] [CrossRef]
- Dol, J.; Campbell-Yeo, M.; Murphy, G.T.; Aston, M.; McMillan, D.; Richardson, B. The impact of the Helping Babies Survive program on neonatal outcomes and health provider skills: A systematic review. JBI Database Syst. Rev. Implement. Rep. 2018, 16, 701–737. [Google Scholar] [CrossRef]
- Budhathoki, S.S.; Gurung, R.; Ewald, U.; Thapa, J.; KC, A. Does the Helping Babies Breathe Programme impact on neonatal resuscitation care practices? Results from systematic review and meta-analysis. Acta Paediatr. 2019, 108, 806–813. [Google Scholar] [CrossRef] [Green Version]
- Arabi, A.M.E.; Ibrahim, S.A.; Manar, A.R.; Abdalla, M.S.; Ahmed, S.E.; Dempsey, E.P.; Ryan, C.A. Perinatal outcomes following Helping Babies Breathe training and regular peer-peer skills practice among village midwives in Sudan. Arch. Dis. Child. 2018, 103, 24–27. [Google Scholar] [CrossRef] [Green Version]
- Kc, A.; Wrammert, J.; Clark, R.B.; Ewald, U.; Vitrakoti, R.; Chaudhary, P.; Pun, A.; Raaijmakers, H.; Målqvist, M. Reducing Perinatal Mortality in Nepal Using Helping Babies Breathe. Pediatrics 2016, 137, e20150117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudar, S.S.; Somannavar, M.S.; Clark, R.; Lockyer, J.M.; Revankar, A.P.; Fidler, H.M.; Sloan, N.L.; Niermeyer, S.; Keenan, W.J.; Singhal, N. Stillbirth and newborn mortality in India after Helping Babies Breathe training. Pediatrics 2013, 131, e344–e352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Msemo, G.; Massawe, A.; Mmbando, D.; Rusibamayila, N.; Manji, K.; Kidanto, H.L.; Mwizamuholya, D.; Ringia, P.; Ersdal, H.L.; Perlman, J. Newborn mortality and fresh stillbirth rates in Tanzania after Helping Babies Breathe training. Pediatrics 2013, 131, e353–e360. [Google Scholar] [CrossRef] [Green Version]
- Haug, I.A.; Holte, K.; Chang, C.L.; Purington, C.; Eilevstjønn, J.; Yeconia, A.; Kidanto, H.; Ersdal, H.L. Video Analysis of Newborn Resuscitations After Simulation-Based Helping Babies Breathe Training. Clin. Simul. Nurs. 2020, 44, 68–78. [Google Scholar] [CrossRef]
- Patterson, J.; Berkelhamer, S.; Ishoso, D.; Iyer, P.; Lowman, C.; Bauserman, M.; Eilevstjønn, J.; Haug, I.; Lokangaka, A.; Kamath-Rayne, B.; et al. Effect of resuscitation training and implementation of continuous electronic heart rate monitoring on identification of stillbirth. Resuscitation 2022, 171, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Newborn Heart Rate as a Catalyst for Improved Survival. ClinicalTrials.gov Identifier: NCT03799861. Available online: https://clinicaltrials.gov/ct2/show/NCT03799861?term=helping+babies+breathe&draw=2&rank=6 (accessed on 10 February 2023).
- Patterson, J.K.; Girnary, S.; North, K.; Data, S.; Ishoso, D.; Eilevstjønn, J.; Bose, C.L. Innovations in Cardiorespiratory Monitoring to Improve Resuscitation with Helping Babies Breathe. Pediatrics 2020, 146, S155–S164. [Google Scholar] [CrossRef] [PubMed]
- Bush, J.B.; Cooley, V.; Perlman, J.; Chang, C. NeoBeat offers rapid newborn heart rate assessment. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 550–552. [Google Scholar] [CrossRef]
- Bucher, S.L.; Cardellichio, P.; Muinga, N.; Patterson, J.K.; Thukral, A.; Deorari, A.K.; Data, S.; Umoren, R.; Purkayastha, S. Digital Health Innovations, Tools, and Resources to Support Helping Babies Survive Programs. Pediatrics 2020, 146, S165–S182. [Google Scholar] [CrossRef] [PubMed]
- Yao, A.C.; Moinian, M.; Lind, J. Distribution of blood between infant and placenta after birth. Lancet 1969, 2, 871–873. [Google Scholar] [CrossRef]
- Mccartney, P.R. Bulb Syringes in Newborn Care. MCN Am. J. Matern. Child. Nurs. 2000, 25, 217. [Google Scholar] [CrossRef]
- Gungor, S.; Kurt, E.; Teksoz, E.; Goktolga, U.; Ceyhan, T.; Baser, I. Oronasopharyngeal suction versus no suction in normal and term infants delivered by elective cesarean section: A prospective randomized controlled trial. Gynecol. Obstet. Investig. 2006, 61, 9–14. [Google Scholar] [CrossRef]
- Gungor, S.; Teksoz, E.; Ceyhan, T.; Kurt, E.; Goktolga, U.; Baser, I. Oronasopharyngeal suction versus no suction in normal, term and vaginally born infants: A prospective randomised controlled trial. Aust. N. Z. J. Obstet. Gynaecol. 2005, 45, 453–456. [Google Scholar] [CrossRef]
- Konstantelos, D.; Ifflaender, S.; Dinger, J.; Rüdiger, M. Suctioning habits in the delivery room and the influence on postnatal adaptation—A video analysis. J. Perinat. Med. 2015, 43, 777–782. [Google Scholar] [CrossRef]
- Carrasco, M.; Martell, M.; Estol, P.C. Oronasopharyngeal suction at birth: Effects on arterial oxygen saturation. J. Pediatr. 1997, 130, 832–834. [Google Scholar] [CrossRef]
- Kohlhauser, C.; Bernert, G.; Hermon, M.; Popow, C.; Seidl, R.; Pollak, A. Effects of endotracheal suctioning in high-frequency oscillatory and conventionally ventilated low birth weight neonates on cerebral hemodynamics observed by near infrared spectroscopy (NIRS). Pediatr. Pulmonol. 2000, 29, 270–275. [Google Scholar] [CrossRef]
- Cordero, L., Jr.; Hon, E.H. Neonatal bradycardia following nasopharyngeal stimulation. J. Pediatr. 1971, 78, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, J.R.; Gauss, C.H.; Williams, D.K. Tracheal suctioning is associated with prolonged disturbances of cerebral hemodynamics in very low birth weight infants. J. Perinatol. 2008, 28, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Wyckoff, M.H.; Wyllie, J.; Aziz, K.; de Almeida, M.F.; Fabres, J.; Fawke, J.; Guinsburg, R.; Hosono, S.; Isayama, T.; Kapadia, V.S.; et al. Neonatal Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 2020, 142, S185–S221. [Google Scholar] [CrossRef] [PubMed]
- Skov, L.; Ryding, J.; Pryds, O.; Greisen, G. Changes in cerebral oxygenation and cerebral blood volume during endotracheal suctioning in ventilated neonates. Acta Paediatr. 1992, 81, 389–393. [Google Scholar] [CrossRef]
- Perlman, J.M.; Volpe, J.J. Suctioning in the preterm infant: Effects on cerebral blood flow velocity, intracranial pressure, and arterial blood pressure. Pediatrics 1983, 72, 329–334. [Google Scholar] [CrossRef]
- Van Bel, F.; van de Bor, M.; Baan, J.; Ruys, J.H. The influence of abnormal blood gases on cerebral blood flow velocity in the preterm newborn. Neuropediatrics 1988, 19, 27–32. [Google Scholar] [CrossRef]
- Fisher, D.M.; Frewen, T.; Swedlow, D.B. Increase in intracranial pressure during suctioning--stimulation vs. rise in PaCO2. Anesthesiology 1982, 57, 416–417. [Google Scholar] [CrossRef]
- Ersdal, H.L.; Mduma, E.; Svensen, E.; Perlman, J.M. Early initiation of basic resuscitation interventions including face mask ventilation may reduce birth asphyxia related mortality in low-income countries: A prospective descriptive observational study. Resuscitation 2012, 83, 869–873. [Google Scholar] [CrossRef]
- Becker, J.; Becker, C.; Oprescu, F.; Wu, C.J.; Moir, J.; Shimwela, M.; Gray, M. Silent voices of the midwives: Factors that influence midwives’ achievement of successful neonatal resuscitation in sub-Saharan Africa: A narrative inquiry. BMC Pregnancy Childbirth 2022, 22, 39. [Google Scholar] [CrossRef]
- Sobel, H.L.; Silvestre, M.A.; Mantaring, J.B., 3rd; Oliveros, Y.E.; Nyunt, U.S. Immediate newborn care practices delay thermoregulation and breastfeeding initiation. Acta Paediatr. 2011, 100, 1127–1133. [Google Scholar] [CrossRef] [Green Version]
- Kc, A.; Peven, K.; Ameen, S.; Msemo, G.; Basnet, O.; Ruysen, H.; Zaman, S.B.; Mkony, M.; Sunny, A.K.; Rahman, Q.S.; et al. Neonatal resuscitation: EN-BIRTH multi-country validation study. BMC Pregnancy Childbirth 2021, 21, 235. [Google Scholar] [CrossRef] [PubMed]
- Moshiro, R.; Perlman, J.M.; Kidanto, H.; Kvaloy, J.T.; Mdoe, P.; Ersdal, H.L. Predictors of death including quality of positive pressure ventilation during newborn resuscitation and the relationship to outcome at seven days in a rural Tanzanian hospital. PLoS ONE 2018, 13, e0202641. [Google Scholar] [CrossRef] [Green Version]
- Trevisanuto, D.; Bertuola, F.; Lanzoni, P.; Cavallin, F.; Matediana, E.; Manzungu, O.W.; Gomez, E.; Da Dalt, L.; Putoto, G. Effect of a Neonatal Resuscitation Course on Healthcare Providers’ Performances Assessed by Video Recording in a Low-Resource Setting. PLoS ONE 2015, 10, e0144443. [Google Scholar] [CrossRef] [PubMed]
- Thornton, M.; Ishoso, D.; Lokangaka, A.; Berkelhamer, S.; Bauserman, M.; Eilevstjønn, J.; Iyer, P.; Kamath-Rayne, B.D.; Mafuta, E.; Myklebust, H.; et al. Perceptions and experiences of Congolese midwives implementing a low-cost battery-operated heart rate meter during newborn resuscitation. Front. Pediatr. 2022, 10, 943496. [Google Scholar] [CrossRef]
- Linde, J.E.; Perlman, J.M.; Oymar, K.; Schulz, J.; Eilevstjonn, J.; Thallinger, M.; Kusulla, S.; Kidanto, H.L.; Ersdal, H.L. Predictors of 24-h outcome in newborns in need of positive pressure ventilation at birth. Resuscitation 2018, 129, 1–5. [Google Scholar] [CrossRef]
Assessment % Correct | Participant Scores n = 59 Median (Quartiles) |
---|---|
Knowledge check (out of 19 items) | |
Before | 68 (58, 82) |
After | 79 (74, 87) |
BMV 1 skills check (out of 14 items) | |
Before | 36 (21, 57) |
After | 79 (68, 93) |
OSCE 2 A (out of 14 items) | |
Before | 43 (29, 57) |
After | 79 (71, 86) |
Characteristic | Livebirths n = 2592 n (%) |
---|---|
Maternal age 1 | |
<20 20–35 >35 | 163 (6.3) 2094 (80.9) 332 (12.8) |
Parity 2 0 1–2 ≥3 | |
825 (32.0) | |
1057 (40.9) | |
700 (27.1) | |
Birthweight 1000–1499 g 1500–2499 g ≥2500 g | |
9 (0.3) | |
233 (9.0) | |
2350 (90.7) | |
Gestational age 3 <37 weeks ≥37 weeks | |
260 (10.8) | |
2149 (89.2) | |
Small for gestational age 3 Yes No | |
196 (8.1) | |
2213 (91.9) | |
Multiplicity Singleton Twins | |
2501 (96.5) | |
91 (3.5) | |
Newborn Sex 1 Male Female | |
1321 (51.0) | |
1268 (49.0) | |
Facility of Birth 4 A B C | |
2546 (98.2) | |
14 (0.5) | |
32 (1.2) |
Resuscitation Care Practice, Median (Quartiles) 1 | Breathing Well by 30 s after Birth n = 1818 | Not Breathing Well by 30 s after Birth n = 774 | Ventilated 2 n = 81 |
---|---|---|---|
Skin-to-Skin, n (%) Initiation time from birth | 1635 (89.9) 6 (3, 14) | 681 (88.0) 7 (3, 16) | 51 (63) 11 (5, 23) |
Drying/Stimulation, n (%) | 1816 (99.9) | 774 (100.0) | 81 (100) |
Number of episodes per newborn | 3.0 (2.0, 3.0) | 3.0 (2.0, 5.0) | 6.0 (4.0, 8.0) |
Initiation time from birth | 10 (6, 17) | 11 (7, 17) | 11 (7, 22) |
Duration of first episode | 17 (11, 29) | 20 (13, 32) | 17 (11, 29) |
Total duration of all episodes | 42 (29, 59) | 62 (44, 94) | 132 (82, 177) |
Average duration of each episode | 16 (11, 22) | 19 (14, 27) | 19 (15, 27) |
Average time between each episode | 95 (61, 151) | 79 (51, 121) | 76 (53, 106) |
Cord Clamp, n (%) Initiation time from birth | 1785 (98.2) 124 (95, 164) | 751 (97.0) 159 (122, 209) | 77 (95) 164 (63, 226) |
Suction, n (%) | 1030 (56.7) | 608 (78.6) | 81 (100) |
Number of episodes per newborn | 1.0 (1.0, 2.0) | 2.0 (1.0, 3.0) | 3.0 (2.0, 6.0) |
Initiation time from birth | 138 (70, 250) | 90 (54, 205) | 76 (45, 146) |
Duration of first episode | 39 (26, 56) | 38 (24, 57) | 34 (20, 51) |
Total duration of all episodes | 50 (32, 73) | 68 (43, 108) | 98 (62, 171) |
Average duration of each episode | 38 (26, 54) | 36 (25, 55) | 30 (20, 42) |
Average time between each episode | 90 (34, 145) | 79 (34, 127) | 64 (34, 87) |
Bag-Mask Ventilation, n (%) | 8 (0.4) | 73 (9.4) | 81 (100) |
Number of episodes per newborn | 2.0 (1.0, 3.0) | 3.0 (1.0, 5.0) | 3.0 (1.0, 5.0) |
Initiation time from birth | 437 (380–583) | 326 (103–567) | 347 (103–583) |
BMV initiated prior to 60 s, n (%) | 0 (0) | 0 (0) | 0 (0) |
First episode lasting ≥ 60 s, n (%) | 5 (62) | 18 (25) | 23 (28) |
Duration of first episode | 81 (49, 122) | 26 (16, 60) | 30 (17, 71) |
Total duration of all episodes | 144 (84, 206) | 83 (55, 173) | 93 (58, 189) |
Average duration of each episode | 71 (40, 137) | 28 (18, 47) | 31 (19, 58) |
Average time between each episode | 8 (8, 18) | 23 (13, 44) | 22 (12, 40) |
Improve Ventilation, n (%) 3 | 3 (37.5) | 55 (75.3) | 58 (72) |
Number of episodes | 1.0 (1.0, 6.0) | 2.0 (1.0, 4.0) | 2.0 (1.0, 4.0) |
Initiation time from birth | 490 (457, 548) | 366 (310, 460) | 380 (313, 473) |
Average time between each episode | 30 (30, 30) | 28 (0, 59) | 30 (0, 59) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patterson, J.K.; Ishoso, D.; Eilevstjønn, J.; Bauserman, M.; Haug, I.; Iyer, P.; Kamath-Rayne, B.D.; Lokangaka, A.; Lowman, C.; Mafuta, E.; et al. Delayed and Interrupted Ventilation with Excess Suctioning after Helping Babies Breathe with Congolese Birth Attendants. Children 2023, 10, 652. https://doi.org/10.3390/children10040652
Patterson JK, Ishoso D, Eilevstjønn J, Bauserman M, Haug I, Iyer P, Kamath-Rayne BD, Lokangaka A, Lowman C, Mafuta E, et al. Delayed and Interrupted Ventilation with Excess Suctioning after Helping Babies Breathe with Congolese Birth Attendants. Children. 2023; 10(4):652. https://doi.org/10.3390/children10040652
Chicago/Turabian StylePatterson, Jackie K., Daniel Ishoso, Joar Eilevstjønn, Melissa Bauserman, Ingunn Haug, Pooja Iyer, Beena D. Kamath-Rayne, Adrien Lokangaka, Casey Lowman, Eric Mafuta, and et al. 2023. "Delayed and Interrupted Ventilation with Excess Suctioning after Helping Babies Breathe with Congolese Birth Attendants" Children 10, no. 4: 652. https://doi.org/10.3390/children10040652
APA StylePatterson, J. K., Ishoso, D., Eilevstjønn, J., Bauserman, M., Haug, I., Iyer, P., Kamath-Rayne, B. D., Lokangaka, A., Lowman, C., Mafuta, E., Myklebust, H., Nolen, T., Patterson, J., Tshefu, A., Bose, C., & Berkelhamer, S. (2023). Delayed and Interrupted Ventilation with Excess Suctioning after Helping Babies Breathe with Congolese Birth Attendants. Children, 10(4), 652. https://doi.org/10.3390/children10040652