Description of Copy Number Variations in a Series of Children and Adolescents with FASD in Reunion Island
Abstract
:1. Introduction
2. Materials and Methods
- −
- “Group 5”—pathogenic CNVs: these CNVs are associated with a consistent clinical phenotype described in multiple peer-reviewed publications with well-documented penetrance and expressivity; or CNVs overlapped completely with an established dosage-sensitive region; or multigenic CNVs in which at least one gene is known to be dosage sensitive. One subgroup was represented by genetic risk factors for neurodevelopmental disorders with Incomplete Penetrance and/or Variable Expressivity (“PIEV in French”, often inherited, which can be associated with variable and often not very specific phenotypes, making the prediction of the phenotype, and therefore genetic counseling, very difficult). These CNVs can shape the phenotype of the patient, but their pathogenicity could be influenced by a second event (double-”hit”) genetic, epigenetic, or environmental. Most of the time, this second “hit” is not identified, and even so, the modes of interaction between the two events and their phenotypic consequences are difficult to assess.
- −
- “Group 4”—likely pathogenic including CNVs with strong evidence suggesting that they might ultimately be disease-causing, but without enough evidence available yet to definitively assert pathogenicity.
- −
- “Group 3”—uncertain significance (VUS): corresponding to a broad category and including findings that are later described with additional evidence to be either pathogenic or benign.
- −
- “Group 2”—likely benign corresponding to CNVs with strong evidence that they are likely not to be involved in Mendelian diseases, but not enough available evidence to state this definitively.
- −
- “Group 1”—benign reported in multiple peer-reviewed publications or annotated in curated databases as benign variants. These CNVs should be documented in >1% of the population.
3. Results
3.1. Description of the Cohort
3.2. Genetic Analyses
Case Number | Sex | Prenatal Alcohol Exposure (PAE) | Age at Definitive Diagnosis (Years) | Weight (Percentile) | Height (Percentile) | Head Circumference (Percentile) | Clinical Features | Cognitive Deficit | Verbal Comprehension | Fluid Reasoning | Working Memory | Processing Speed | CNV | Size (Mb) | Type | Classification | Genes of Interest (Brain Structure or Brain Functions) | Diagnosis |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1487 | M | Chronic | 7 | >10th | >10th | >3rd | Short palpebral fissures, nasal root hypoplasia, short philtrum | 73 | 81 | 80 | 80 | 82 | 1q21.1q21.2 (146506310_147824207) | 1.15 | deletion | IPVE | HYDIN2, GJA5 | ARND |
10162 | M | NA 1 | 16 | <10th | <10th | <3rd | Short palpebral fissures, long flat philtrum, thin upper lip | NA 2 | NA 2 | NA 2 | NA 2 | NA 2 | 1q21.1q21.2 (146476526_148000829) | 1.5 | deletion | IPVE | GJA5, GJA8 | FAS |
319 | F | Chronic | 17 | <10th | <10th | <3rd | Hypertelorism, thin upper lip, smooth philtrum, brachydactyly | 65 | 67 | 76 | 66 | 75 | 16p11.2(29673954_30198600)×1 | 0.525 | deletion | IPVE | QPRT, DOC2A, TAOK2, ALDOA, PRRT2 | FAS |
324_1 | M | Acute | 7 | >10th | 10th | >3rd | Retrognathism, unilateral cryptorchydia | 83 | 89 | 85 | 91 | 123 | 16p12.2(217398862,21951379_22380197x1,22645705×2) | 0.429 | deletion | IPVE | CDR2 | ARND |
324_2 | M | Acute | 5 | >10th | >10th | >3rd | Smooth philtrum, thin upper lip, short nails | 65 | 69 | 77 | 78 | 69 | 16p12.2(21739886×2,21951379_22380197×1,22645705×2) | 0.429 | deletion | IPVE | CDR2 | pFAS |
1006 | M | Chronic | 6 | >10th | >10th | >3rd | Short palpebral fissures, thin upper lip, smooth philtrum, camptodactyly, short nails | 60 | 54 | 65 | 72 | 74 | 2q31.1(172608208×2,172666705_173038935×1,173197025×2) | 0.380 | deletion | Pathogenic | RAPGEF4 | pFAS |
1004 | F | Chronic | 3 | <10th | <10th | <3rd | Thin upper lip, retrognathism, low-set ears | NA 2 | NA 2 | NA 2 | NA 2 | NA 2 | Xq21.1q28(82,335,645×2,82,461,036-155,232,907×1) | 72 | deletion | Pathogenic | FAS | |
7241_1 | M | NA 1 | 9 | <10th | <10th | <3rd | Short palpebral fissures, thin upper lip | 52 | 65 | 67 | 65 | 56 | 2p16.2(52942477_54649776)×1 | 1.7 | deletion | Likely pathogenic | SPTBN1 | FAS |
7241_2 | M | NA 1 | 5 | <10th | <10th | <3rd | Smooth philtrum, thin upper lip, camptodactyly, hypertelorism | NA 2 | 89 | 95 | 100 | 94 | 2p16.2(52942477_54649776)×1 | 1.7 | deletion | Likely pathogenic | SPTBN1 | FAS |
7241_3 | F | Acute | 8 | <10th | <10th | >3rd | camptodactyly | NA 2 | NA 2 | NA 2 | NA 2 | NA 2 | 2p16.2(52917002_54649776)×1 | 1.7 | deletion | Likely pathogenic | SPTBN1 | ARND |
7241_4 | F | Acute | 9 | NA | NA | NA | Smooth philtrum, camptodactyly | NA 2 | 70 | 106 | 85 | 95 | 2p16.2(52917002_54649776)×1 | 1.7 | deletion | Likely pathogenic | SPTBN1 | pFAS |
7241_5 | F | NA 1 | 6 | >10th | >10th | >3rd | Hypertelorism, nasal root hypoplasia, nostril anteversion, flat philtrum, thin upper lip, camptodactyly | NA 2 | 72 | 83 | 90 | 97 | 2p16.2(52917002_54649776)×1 | 1.7 | deletion | Likely pathogenic | SPTBN1 | pFAS |
178 | M | Acute | 12 | <10th | NA | NA | camptodactyly | 76 | 73 | 88 | 76 | 92 | 17q25.3(80529730×2,80561130_81029×1) | 0.469 | deletion | VUS | FOXK2 | ARND |
6256 | M | Chronic | 3 | <10th | <10th | <3rd | Smooth philtrum, thin upper lip, camptodactyly, clinodactyly | NA 2 | NA 2 | NA 2 | NA 2 | NA 2 | 1q32.1(204097859_204946764)×3 | 0.849 | duplication | VUS | PPP1R15B, NFASC | FAS |
326 | M | NA 1 | 18 | <10th | <10th | <3rd | No | 57 | 67 | 70 | 63 | 61 | 7q21.11(204097859_204946764)×3 | 0.263 | duplication | VUS | PCLO | ARND |
9219 | M | Chronic | 16 | <10th | <10th | >3rd | Short palpebral fissures, thin upper lip, smooth philtrum | NA 2 | NA 2 | NA 2 | NA 2 | NA 2 | 8q23.3(112972853_113128118)×1 | 0.16 | deletion | VUS | CSMD3 | FAS |
3918 | M | NA 1 | 4 | <10th | <10th | <3rd | Short palpebral fissures, smooth phitrum, nasal wings hyperplasia | NA 2 | NA 2 | NA 2 | NA 2 | NA 2 | 5q22.1(109,813,483×2,109,851,548-111,194,538×3,111,370,920×2) | 1.35 | duplication | VUS | NREP | FAS |
5930 | F | Binge | 5 | >10th | >10th | >3rd | Short palpebral fissures, smooth philtrum, thin upper lip | NA 2 | NA 2 | NA 2 | NA 2 | NA 2 | 4q12(53416699_53631029)×3 | 0.214 | duplication | VUS | LNX1 | pFAS |
2333 | M | Acute | 7 | >10th | <10th | >3rd | Thin upper lip | NA 2 | 76 | 88 | 76 | 98 | Xq28(149386745×1,149410730_149709802x0,149750397×1) | 0.299 | deletion | Likely benign | ARND | |
429 | F | Acute | 6 | >10th | <10th | >3rd | Smooth philtrum, thin upper lip | NA 2 | 62 | 58 | NA 2 | NA 2 | 19p13.11 (17927322_18052605)×3 | 0,125 | duplication | benign | FAS | |
334 | F | Acute | 5 | <10th | <10th | <3rd | Smooth philtrum, thin upper lip, nasal root hypoplasia | 62 | 57 | 74 | 82 | 88 | 5q14.3(88450293_90077119)×3 | 1.63 | duplication | benign | FAS |
3.2.1. Pathogenic CNVs (Neurodevelopmental Susceptibility Factors)
3.2.2. Other Pathogenic CNVs
3.2.3. Likely Pathogenic CNVs
3.2.4. Variant of Uncertain Significance (VUS)
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lemoine, P.; Harousseau, H.; Borteyru, J.P.; Menuet, J.C. Children of Alcoholic Parents—Observed Anomalies: Discussion of 127 Cases. Ther. Drug Monit. 2003, 25, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.; Smith, D.; Ulleland, C.; Streissguth, A. Pattern of malformation in offspring of chronic alcoholic mothers. Lancet 1973, 301, 1267–1271. [Google Scholar] [CrossRef] [PubMed]
- Stratton, K.; Howe, C.; Battaglia, F.C. (Eds.) Fetal Alcohol Syndrome: Diagnosis, Epidemiology, Prevention, and Treatment; National Academies Press: Washington, DC, USA, 1996; ISBN 978-0-309-57807-3. [Google Scholar]
- Astley, S.J. Diagnosing the full spectrum of Fetal Alcohol-exposed individuals: Introducing the 4-Digit Diagnostic Code. Alcohol Alcohol. 2000, 35, 400–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoyme, H.E.; May, P.A.; Kalberg, W.O.; Gossage, J.P.; Trujillo, P.M.; Buckley, D.G.; Miller, J.H.; Aragon, A.S.; Khaole, N.; Jones, K.L.; et al. A Practical Clinical Approach to Diagnosis of Fetal Alcohol Spectrum Disorders: Clarification of the 1996 Institute of Medicine Criteria. Pediatrics 2006, 115, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Hoyme, H.E.; Kalberg, W.O.; Elliott, A.J.; Blankenship, J.; Buckley, D.; Marais, A.-S.; Manning, M.A.; Robinson, L.K.; Adam, M.P.; Abdul-Rahman, O.; et al. Updated Clinical Guidelines for Diagnosing Fetal Alcohol Spectrum Disorders. Pediatrics 2016, 138, e20154256. [Google Scholar] [CrossRef] [Green Version]
- Sambo, D.; Goldman, D. Genetic Influences on Fetal Alcohol Spectrum Disorder. Genes 2023, 14, 195. [Google Scholar] [CrossRef]
- Committee on Substance Abuse and Committee on Children with Disabilities. Fetal Alcohol Syndrome and Alcohol-Related Neurodevelopmental Disorders. Pediatrics 2000, 106, 358–361. [Google Scholar] [CrossRef] [Green Version]
- Lange, S.; Probst, C.; Gmel, G.; Rehm, J.; Burd, L.; Popova, S. Global Prevalence of Fetal Alcohol Spectrum Disorder Among Children and Youth. JAMA Pediatr. 2017, 171, 948–956. [Google Scholar] [CrossRef]
- Laporal, S.; Demiguel, V.; Cogordan, C.; Barry, Y.; Guseva, C.; Goulet, V. Surveillance des Troubles causés par l’Alcoolisation Foetale: Analyse des Données du Programme de Médicalisation des Systèmes d’Information en France Entre 2006 et 2013. [Synthèse] Saint-Maurice: Santé Publique France, Coll. Données de Surveillance. 2018. Available online: https://www.santepubliquefrance.fr/determinants-de-sante/alcool/documents/rapport-synthese/surveillance-des-troubles-causes-par-l-alcoolisation-foetale-analyse-des-donnees-du-programme-de-medicalisation-des-systemes-d-information-en-fra (accessed on 19 December 2022).
- Queruel, N.; Doray, B. Available online: https://www.santepubliquefrance.fr/docs/a-la-reunion-former-les-professionnels-aux-troubles-de-l-alcoolisation-foetale-interview (accessed on 19 December 2022).
- Chasnoff, I.J.; Wells, A.M.; King, L. Misdiagnosis and Missed Diagnoses in Foster and Adopted Children With Prenatal Alcohol Exposure. Pediatrics 2015, 135, 264–270. [Google Scholar] [CrossRef] [Green Version]
- McDonald-McGinn, D.M.; Sullivan, K.E.; Marino, B.; Philip, N.; Swillen, A.; Vorstman, J.A.S.; Zackai, E.H.; Emanuel, B.S.; Vermeesch, J.R.; Morrow, B.E.; et al. 22q11.2 Deletion Syndrome. Nat. Rev. Dis. Prim. 2015, 1, 15071. [Google Scholar] [CrossRef] [Green Version]
- Kozel, B.A.; Barak, B.; Kim, C.A.; Mervis, C.B.; Osborne, L.R.; Porter, M.; Pober, B.R. Williams Syndrome. Nat. Rev. Dis. Prim. 2021, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Boyle, M.; Jespersgaard, C.; Brøndum-Nielsen, K.; Bisgaard, A.-M.; Tümer, Z. Cornelia de Lange Syndrome. Clin. Genet. 2015, 88, 1–12. [Google Scholar] [CrossRef]
- Kingdon, D.; Cardoso, C.; McGrath, J.J. Research Review: Executive Function Deficits in Fetal Alcohol Spectrum Disorders and Attention-Deficit/Hyperactivity Disorder—A Meta-Analysis. J. Child Psychol. Psychiatry 2016, 57, 116–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarrei, M.; Hicks, G.G.; Reynolds, J.N.; Thiruvahindrapuram, B.; Engchuan, W.; Pind, M.; Lamoureux, S.; Wei, J.; Wang, Z.; Marshall, C.R.; et al. Copy Number Variation in Fetal Alcohol Spectrum Disorder. Biochem. Cell Biol. 2018, 96, 161–166. [Google Scholar] [CrossRef]
- Abdelmalik, N.; van Haelst, M.; Mancini, G.; Schrander-Stumpel, C.; Marcus-Soekarman, D.; Hennekam, R.; Cobben, J.M. Diagnostic outcomes of 27 children referred by pediatricians to a genetics clinic in the Netherlands with suspicion of fetal alcohol spectrum disorders. Am. J. Med. Genet. 2013, 161, 254–260. [Google Scholar] [CrossRef]
- Jamuar, S.S.; Picker, J.D.; Stoler, J.M. Utility of Genetic Testing in Fetal Alcohol Spectrum Disorder. J. Pediatr. 2018, 196, 270–274.e1. [Google Scholar] [CrossRef] [PubMed]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Technical Standards for the Interpretation and Reporting of Constitutional Copy-Number Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2020, 22, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Itsara, A.; Wu, H.; Smith, J.D.; Nickerson, D.A.; Romieu, I.; London, S.J.; Eichler, E.E. De Novo Rates and Selection of Large Copy Number Variation. Genome Res. 2010, 20, 1469–1481. [Google Scholar] [CrossRef] [Green Version]
- Conrad, D.F.; Pinto, D.; Redon, R.; Feuk, L.; Gokcumen, O.; Zhang, Y.; Aerts, J.; Andrews, T.D.; Barnes, C.; Campbell, P.; et al. Origins and Functional Impact of Copy Number Variation in the Human Genome. Nature 2010, 464, 704–712. [Google Scholar] [CrossRef] [Green Version]
- Bernier, R.; Steinman, K.J.; Reilly, B.; Wallace, A.S.; Sherr, E.H.; Pojman, N.; Mefford, H.C.; Gerdts, J.; Earl, R.; Hanson, E.; et al. Clinical Phenotype of the Recurrent 1q21.1 Copy-Number Variant. Genet. Med. 2016, 18, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Sønderby, I.E.; van der Meer, D.; Moreau, C.; Kaufmann, T.; Walters, G.B.; Ellegaard, M.; Abdellaoui, A.; Ames, D.; Amunts, K.; Andersson, M.; et al. 1q21.1 Distal Copy Number Variants Are Associated with Cerebral and Cognitive Alterations in Humans. Transl. Psychiatry 2021, 11, 182. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Yu, X.; Kim, Y.M.; Wang, X.; Jinkins, J.K.; Yin, J.; Li, S.; Gu, H. Disorders Associated With Diverse, Recurrent Deletions and Duplications at 1q21.1. Front. Genet. 2020, 11, 577. [Google Scholar] [CrossRef] [PubMed]
- Puvabanditsin, S.; February, M.; Shaik, T.; Kashyap, A.; Bruno, C.; Mehta, R. 2q31.1 Microdeletion Syndrome: Case Report and Literature Review. Clin. Case Rep. 2015, 3, 357–360. [Google Scholar] [CrossRef]
- Mitter, D.; Chiaie, B.D.; Lüdecke, H.-J.; Gillessen-Kaesbach, G.; Bohring, A.; Kohlhase, J.; Caliebe, A.; Siebert, R.; Roepke, A.; Ramos-Arroyo, M.A.; et al. Genotype–Phenotype Correlation in Eight New Patients with a Deletion Encompassing 2q31.1. Am. J. Med. Genet. Part A 2010, 152, 1213–1224. [Google Scholar] [CrossRef]
- Molecular Genetic Characterization of a Prenatally Detected De Novo Interstitial Deletion of Chromosome 2q (2q31.1-Q32.1) Encompassing HOXD13, ZNF385B and ZNF804A Associated with Syndactyly and Increased First-Trimester Nuchal Translucency|Elsevier Enhanced Reader. Available online: https://reader.elsevier.com/reader/sd/pii/S1028455917300967?token=5CC4B19E86697518B9450C7BA07BCFF45ACBCEA4547C4A6C6068920C892DBB1216375C0087B0D750600C70C6968B3029&originRegion=eu-west-1&originCreation=20221018082818 (accessed on 18 October 2022).
- Dimitrov, B.; Balikova, I.; de Ravel, T.; Van Esch, H.; De Smedt, M.; Baten, E.; Vermeesch, J.R.; Bradinova, I.; Simeonov, E.; Devriendt, K.; et al. 2q31.1 Microdeletion Syndrome: Redefining the Associated Clinical Phenotype. J. Med. Genet. 2011, 48, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Cousin, M.A.; Creighton, B.A.; Breau, K.A.; Spillmann, R.C.; Torti, E.; Dontu, S.; Tripathi, S.; Ajit, D.; Edwards, R.J.; Afriyie, S.; et al. Pathogenic SPTBN1 Variants Cause an Autosomal Dominant Neurodevelopmental Syndrome. Nat. Genet. 2021, 53, 1006–1021. [Google Scholar] [CrossRef]
- Rosenfeld, J.A.; Xiao, R.; Bekheirnia, M.R.; Kanani, F.; Parker, M.J.; Koenig, M.K.; van Haeringen, A.; Ruivenkamp, C.; Rosmaninho-Salgado, J.; Almeida, P.M.; et al. Heterozygous Variants in SPTBN1 Cause Intellectual Disability and Autism. Am. J. Med. Genet. Part A 2021, 185, 2037–2045. [Google Scholar] [CrossRef] [PubMed]
- Probst, F.J.; James, R.A.; Burrage, L.C.; Rosenfeld, J.A.; Bohan, T.P.; Melver, C.H.W.; Magoulas, P.; Austin, E.; Franklin, A.I.A.; Azamian, M.; et al. De Novo Deletions and Duplications of 17q25.3 Cause Susceptibility to Cardiovascular Malformations. Orphanet. J. Rare Dis. 2015, 10, 75. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, A.; Asakawa, S.; Sasaki, T.; Yamazaki, S.; Yamagata, H.; Kudoh, J.; Minoshima, S.; Kondo, I.; Shimizu, N. A Novel Giant Gene CSMD3 Encoding a Protein with CUB and Sushi Multiple Domains: A Candidate Gene for Benign Adult Familial Myoclonic Epilepsy on Human Chromosome 8q23.3–Q24.1. Biochem. Biophys. Res. Commun. 2003, 309, 143–154. [Google Scholar] [CrossRef]
- Floris, C.; Rassu, S.; Boccone, L.; Gasperini, D.; Cao, A.; Crisponi, L. Two Patients with Balanced Translocations and Autistic Disorder: CSMD3 as a Candidate Gene for Autism Found in Their Common 8q23 Breakpoint Area. Eur. J. Hum. Genet. 2008, 16, 696–704. [Google Scholar] [CrossRef]
- Epigenetics Studies of Fetal Alcohol Spectrum Disorder: Where Are We Now? Available online: https://www-futuremedicine-com.proxy.insermbiblio.inist.fr/doi/epub/10.2217/epi-2016-0163 (accessed on 21 November 2022).
- Edwards, J.R.; Yarychkivska, O.; Boulard, M.; Bestor, T.H. DNA Methylation and DNA Methyltransferases. Epigenet. Chromatin 2017, 10, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaminen-Ahola, N. Fetal Alcohol Spectrum Disorders: Genetic and Epigenetic Mechanisms. Prenat. Diagn. 2020, 40, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
- Laufer, B.I.; Kapalanga, J.; Castellani, C.A.; Diehl, E.J.; Yan, L.; Singh, S.M. Associative DNA Methylation Changes in Children with Prenatal Alcohol Exposure. Epigenomics 2015, 7, 1259–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobben, J.M.; Krzyzewska, I.M.; Venema, A.; Mul, A.N.; Polstra, A.; Postma, A.V.; Smigiel, R.; Pesz, K.; Niklinski, J.; Chomczyk, M.A.; et al. DNA Methylation Abundantly Associates with Fetal Alcohol Spectrum Disorder and Its Subphenotypes. Epigenomics 2019, 11, 767–785. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, A.S.; Gutierrez, H.L.; Luo, L.; Davies, S.; Savage, D.D.; Bakhireva, L.N.; Perrone-Bizzozero, N.I. Alcohol Use During Pregnancy Is Associated with Specific Alterations in MicroRNA Levels in Maternal Serum. Alcohol Clin. Exp. Res. 2016, 40, 826–837. [Google Scholar] [CrossRef] [Green Version]
- Rothbart, S.B.; Strahl, B.D. Interpreting the Language of Histone and DNA Modifications. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 2014, 1839, 627–643. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sennsfelder, L.; Guilly, S.; Leruste, S.; Hoareau, L.; Léocadie, W.; Beuvain, P.; Nekaa, M.; Bagard, M.; Robin, S.; Lanneaux, J.; et al. Description of Copy Number Variations in a Series of Children and Adolescents with FASD in Reunion Island. Children 2023, 10, 694. https://doi.org/10.3390/children10040694
Sennsfelder L, Guilly S, Leruste S, Hoareau L, Léocadie W, Beuvain P, Nekaa M, Bagard M, Robin S, Lanneaux J, et al. Description of Copy Number Variations in a Series of Children and Adolescents with FASD in Reunion Island. Children. 2023; 10(4):694. https://doi.org/10.3390/children10040694
Chicago/Turabian StyleSennsfelder, Laëtitia, Susie Guilly, Sébastien Leruste, Ludovic Hoareau, Willy Léocadie, Pauline Beuvain, Meïssa Nekaa, Maïté Bagard, Stéphanie Robin, Justine Lanneaux, and et al. 2023. "Description of Copy Number Variations in a Series of Children and Adolescents with FASD in Reunion Island" Children 10, no. 4: 694. https://doi.org/10.3390/children10040694
APA StyleSennsfelder, L., Guilly, S., Leruste, S., Hoareau, L., Léocadie, W., Beuvain, P., Nekaa, M., Bagard, M., Robin, S., Lanneaux, J., Etchebarren, L., Tallot, M., Spodenkiewicz, M., Alessandri, J. -L., Morel, G., Blanluet, M., Gueguen, P., & Roy-Doray, B. (2023). Description of Copy Number Variations in a Series of Children and Adolescents with FASD in Reunion Island. Children, 10(4), 694. https://doi.org/10.3390/children10040694