Bimaxillary Dentoalveolar Protrusion Case Treated with Anchorage by Buccally Implemented Mini-Implants Using a 3D-Printed Surgical Guide
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bills, D.A.; Handelman, C.S.; BeGole, E.A. Bimaxillary dentoalveolar protrusion: Traits and orthodontic correction. Angle Orthod. 2005, 75, 333–339. [Google Scholar]
- Lamberton, C.M.; Reichart, P.A.; Triratananimit, P. Bimaxillary protrusion as a pathologic problem in the Thai. Am. J. Orthod. 1980, 77, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Lew, K. Profile changes following orthodontic treatment of bimaxillary protrusion in adults with the Begg appliance. Eur. J. Orthod. 1989, 11, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, R.; Annunziata, A.; Licciardello, V.; Barbato, E. Soft Tissue Changes Following the Extraction of Premolars in Nongrowing Patients With Bimaxillary Protrusion. A systematic review. Angle Orthod. 2010, 80, 211–216. [Google Scholar] [CrossRef]
- Lee, J.K.; Chung, K.R.; Baek, S.H. Treatment outcomes of orthodontic treatment, corticotomy-assisted orthodontic treatment and anterior segmental osteotomy for bimaxillary dentoalveolar protrusion. Plast. Reconstr. Surg. 2007, 120, 1027–1036. [Google Scholar] [CrossRef]
- Park, J.U.; Hwang, Y.-S. Evaluation of the Soft and Hard Tissue Changes After Anterior Segmental Osteotomy on the Maxilla and Mandible. J. Oral Maxillofac. Surg. 2008, 66, 98–103. [Google Scholar] [CrossRef]
- Baik, U.-B.; Han, K.-H.; Yoo, S.-J.; Park, J.-U.; Kook, Y.-A. Combined multisegmental surgical-orthodontic treatment of bialveolar protrusion and chin retrusion with severe facial asymmetry. Am. J. Orthod. Dentofac. Orthop. 2013, 143, S148–S160. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.-Y.; Choi, B.-J.; Lee, B.-S.; Kwon, Y.-D.; Lee, J.-W.; Jung, J.; Ohe, J.-Y. Comparison between anterior segmental osteotomy versus conventional orthodontic treatment in root resorption: A radiographic study using cone-beam computed tomography. Maxillofac. Plast. Reconstr. Surg. 2017, 39, 34. [Google Scholar] [CrossRef]
- Baek, S.-H.; Kim, B.-H. Determinants of Successful Treatment of Bimaxillary Protrusion: Orthodontic Treatment versus Anterior Segmental Osteotomy. J. Craniofacial Surg. 2005, 16, 234–246. [Google Scholar] [CrossRef]
- Stock, G. Die Chirurgische Immediatre-Gulierung der Keifer, Speziell Die Chirurgische Behandlung der Prognathie; Vjschr Zahnheilk: Berlin, Germany, 1921; Volume 37, p. 320. [Google Scholar]
- Cupar, I. Surgical treatment of alterations in form and positionof the maxilla. Osterreichische Z. Stomatol. 1954, 51, 565. [Google Scholar]
- Wassmund, M. Lehrbuch der Praktischen Chirurgie de Mundes und der Keifer; Verlag Von Hermann Meusser: Berlin, Germany, 1935; pp. 260–282. [Google Scholar]
- Yong, C.; Sng, T.; Quah, B.; Lee, C.; Lim, A.; Wong, R. The role of anterior segmental osteotomies in orthognathic surgery for protrusive faces in a Southeast Asian population: 10-year retrospective data of 51 patients treated in a single centre. Int. J. Oral Maxillofac. Surg. 2023, 52, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Yoon, H.S.; Ono, T. Asymmetrical distalization of maxillary molars with zygomatic anchorage, improved superelastic nickel-titanium alloy wires, and open-coil springs. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Erverdi, N.; Acar, A. Zygomatic anchorage for en masse retraction in the treatment of severe Class II division 1. Angle Orthod. 2005, 75, 483–490. [Google Scholar]
- Kook, Y.-A.; Kim, S.-H.; Chung, K.-R. A modified palatal anchorage plate for simple and efficient distalization. J. Clin. Orthod. JCO 2010, 44, 719. [Google Scholar]
- Kook, Y.-A.; Park, J.H.; Bayome, M.; Jung, C.Y.; Kim, Y.; Kim, S.-H. Application of palatal plate for nonextraction treatment in an adolescent boy with severe overjet. Am. J. Orthod. Dentofac. Orthop. 2017, 152, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Park, J.; Jung, C.; Kook, Y.; Hong, M. Full-step Class II Correction Using a Modified C-palatal Plate for Total Arch Distalization in an Adolescent. J. Clin. Pediatr. Dent. 2018, 42, 307–313. [Google Scholar] [CrossRef]
- Park, J.H.; Kook, Y.-A.; Kim, Y.; Ham, L.K.; Lee, N.-K. Improved facial profile with non-extraction treatment of severe protrusion using TSADs. Semin. Orthod. 2022, 28, 157–163. [Google Scholar] [CrossRef]
- Chang, C. Clinical applications of orthodontic bone screw in Beethoven Orthodontic Center. Int. J. Orthod. Implantol. 2011, 23, 50–51. [Google Scholar]
- Chang, C.; Liu, S.S.; Roberts, W.E. Primary failure rate for 1680 extra-alveolar mandibular buccal shelf mini-screws placed in movable mucosa or attached gingiva. Angle Orthod. 2015, 85, 905–910. [Google Scholar] [CrossRef]
- Park, H.S.; Lee, S.K.; Kwon, O.W. Group distal movement of teeth using micro-screw implant anchorage. Angle Orthod. 2005, 75, 602–609. [Google Scholar]
- Oh, Y.H.; Park, H.S.; Kwon, T.G. Treatment effects of microimplant-aided sliding mechanics on distal retraction of posterior teeth. Am. J. Orthod. Dentofacial Orthop. 2011, 139, 470–481. [Google Scholar] [CrossRef]
- Kapila, S.D.; Nervina, J.M. CBCT in orthodontics: Assessment of treatment outcomes and indications for its use. Dentomaxillofacial Radiol. 2015, 44, 20140282. [Google Scholar] [CrossRef]
- Mangano, F.; Gandolfi, A.; Luongo, G.; Logozzo, S. Intraoral scanners in dentistry: A review of the current literature. BMC Oral Health 2017, 17, 149. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.J.; Kim, J.Y.; Park, J.T.; Cha, J.Y.; Kim, H.J.; Yu, H.S.; Hwang, C.J. Accuracy of miniscrew surgical guides assessed from cone-beam computed tomography and digital models. Am. J. Orthod. Dentofac. Orthop. 2013, 143, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Vasoglou, G.; Stefanidaki, I.; Apostolopoulos, K.; Fotakidou, E.; Vasoglou, M. Accuracy of Mini-Implant Placement Using a Computer-Aided Designed Surgical Guide, with Information of Intraoral Scan and the Use of a Cone-Beam CT. Dent. J. 2022, 10, 104. [Google Scholar] [CrossRef]
- Shahnaz, M.; Maimoona, A.K.; Haslim, A. Applications of 3-Dprinting in orthodontics: A review. Int. J. Sci. Study 2016, 3, 267–270. [Google Scholar]
- Bartkowiak, T.; Walkowiak-Śliziuk, A. 3D printing technology in orthodontics—Review of current applications. J. Stomatol. 2018, 71, 356–364. [Google Scholar] [CrossRef]
- Tartaglia, G.M.; Mapelli, A.; Maspero, C.; Santaniello, T.; Serafin, M.; Farronato, M.; Caprioglio, A. Direct 3D Printing of Clear Orthodontic Aligners: Current State and Future Possibilities. Materials 2021, 14, 1799. [Google Scholar] [CrossRef] [PubMed]
- Tsolakis, I.A.; Gizani, S.; Panayi, N.; Antonopoulos, G.; Tsolakis, A.I. Three-Dimensional Printing Technology in Orthodontics for Dental Models: A Systematic Review. Children 2022, 9, 1106. [Google Scholar] [CrossRef]
- O’Reilly, M.T. Integumental profile changes after surgical orthodontic correction of bimaxillary dentoalveolar protrusion in black patients. Am. J. Orthod. Dentofac. Orthop. 1989, 96, 242–248. [Google Scholar] [CrossRef]
- Kanomi, R. Mini-implant for orthodontic anchorage. J. Clin. Orthod. JCO 1997, 31, 763–767. [Google Scholar]
- Erverdi, N.; Keles, A.; Nanda, R. The use of skeletal anchorage in open bite treatment: A cephalometric evaluation. Angle Orthod. 2004, 74, 381–390. [Google Scholar]
- Melsen, B.; Verna, C. Miniscrew implants: The Aarhus anchorage system. Semin. Orthod. 2005, 11, 24–31. [Google Scholar] [CrossRef]
- Chen, G.; Teng, F.; Xu, T.-M. Distalization of the maxillary and mandibular dentitions with miniscrew anchorage in a patient with moderate Class I bimaxillary dentoalveolar protrusion. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Shpack, N.; Brosh, T.; Mazor, Y.; Shapinko, Y.; Davidovitch, M.; Sarig, R.; Reimann, S.; Bourauel, C.; Vardimon, A.D. Long- and short-term effects of headgear traction with and without the maxillary second molars. Am. J. Orthod. Dentofac. Orthop. 2014, 146, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Kinzinger, G.S.; Fritz, U.B.; Sander, F.-G.; Diedrich, P.R. Efficiency of a pendulum appliance for molar distalization related to second and third molar eruption stage. Am. J. Orthod. Dentofac. Orthop. 2004, 125, 8–23. [Google Scholar] [CrossRef]
- Poletti, L.; Silvera, A.A.; Ghislanzoni, L.T.H. Dentoalveolar class III treatment using retromolar miniscrew anchorage. Prog. Orthod. 2013, 14, 7. [Google Scholar] [CrossRef]
- Felicita, A.S. A simple three-dimensional stent for proper placement of mini-implant. Prog. Orthod. 2013, 14, 45. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, E.Y.; Suzuki, B. Accuracy of Miniscrew Implant Placement With a 3-Dimensional Surgical Guide. J. Oral Maxillofac. Surg. 2008, 66, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.; Heffernan, M.; Ruskin, J. Template fabrication for a midpalatal orthodontic implant: Technical note. Int. J. Oral Maxillofac. Implant. 2002, 17, 720–722. [Google Scholar]
- Morea, C.; Dominguez, G.C.; Wuo, A.D.V.; Tortamano, A. Surgical guide for optimal positioning of mini-implants. J. Clin. Orthod. 2005, 39, 317–321. [Google Scholar] [PubMed]
- Yu, J.H.; Wang, Y.T.; Lin, C.L. Customized surgical template fabrication under biomechanical consideration by integrating CBCT image, CAD system and finite element analysis. Dent. Mater. J. 2018, 37, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Yu, J.H.; Lo, L.J.; Hsu, P.H.; Lin, C.L. Developing Customized Dental Miniscrew Surgical Template from Thermoplastic Polymer Material Using Image Superimposition, CAD System, and 3D Printing. BioMed Res. Int. 2017. [Google Scholar] [CrossRef] [PubMed]
- Vasoglou, G.; Lyros, I.; Patatou, A.; Vasoglou, M. Orthodontic Treatment of Palatally Impacted Maxillary Canines with the Use of a Digitally Designed and 3D-Printed Metal Device. Dent. J. 2023, 11, 102. [Google Scholar] [CrossRef]
- Merrett, S.J.; Drage, N.A.; Durning, P. Cone beam computed tomography: A useful tool in orthodontic diagnosis and treatment planning. J. Orthod. 2009, 36, 202–210. [Google Scholar] [CrossRef] [PubMed]
- De Grauwe, A.; Ayaz, I.; Shujaat, S.; Dimitrov, S.; Gbadegbegnon, L.; Vannet, B.V.; Jacobs, R. CBCT in orthodontics: A systematic review on justification of CBCT in a paediatric population prior to orthodontic treatment. Eur. J. Orthod. 2018, 41, 381–389. [Google Scholar] [CrossRef]
- Alqerban, A.; Jacobs, R.; Lambrechts, P.; Loozen, G.; Willems, G. Root resorption of the maxillary lateral incisor caused by impacted canine: A literature review. Clin. Oral Investig. 2009, 13, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Scarfe, W.C.; Azevedo, B.; Toghyani, S.; Farman, A.G. Cone Beam Computed Tomographic imaging in orthodontics. Aust. Dent. J. 2017, 62 (Suppl. 1), 33–50. [Google Scholar] [CrossRef]
- El, A.S.; El, H.; Palomo, J.M.; Baur, D.A. A 3-dimensional airway analysis of an obstructive sleep apnea surgical correction with cone beam computed tomography. J. Oral Maxillofac. Surg. 2011, 69, 2424–2436. [Google Scholar] [CrossRef] [PubMed]
Measurement | Mean ± SD | Pretreatment | Posttreatment |
---|---|---|---|
1. SNA (°) | 81 ± 3 | 88.1 | 89 |
2. SNB (°) | 78 ± 3 | 83 | 84.2 |
3. ANB (°) | 3 ± 2 | 5.1 | 4.9 |
4. Wits (mm) | 1 ± 2.9 | 0.1 | 0.8 |
5. GoGN/SN (°) | 32.5 ± 5.2 | 27.1 | 25.8 |
6. U1/PP (°) | 109 ± 6 | 125.9 | 117.1 |
7. L1/MP (°) | 93 ± 6 | 110.8 | 94.5 |
8. Interincisal angle (°) | 135 ± 10 | 104.6 | 130.2 |
9. Labionasal angle (°) | 95.96 ± 2.57 | 106.6 | 99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasoglou, G.; Patatou, A.; Vasoglou, M. Bimaxillary Dentoalveolar Protrusion Case Treated with Anchorage by Buccally Implemented Mini-Implants Using a 3D-Printed Surgical Guide. Children 2023, 10, 879. https://doi.org/10.3390/children10050879
Vasoglou G, Patatou A, Vasoglou M. Bimaxillary Dentoalveolar Protrusion Case Treated with Anchorage by Buccally Implemented Mini-Implants Using a 3D-Printed Surgical Guide. Children. 2023; 10(5):879. https://doi.org/10.3390/children10050879
Chicago/Turabian StyleVasoglou, Georgios, Athanasia Patatou, and Michail Vasoglou. 2023. "Bimaxillary Dentoalveolar Protrusion Case Treated with Anchorage by Buccally Implemented Mini-Implants Using a 3D-Printed Surgical Guide" Children 10, no. 5: 879. https://doi.org/10.3390/children10050879
APA StyleVasoglou, G., Patatou, A., & Vasoglou, M. (2023). Bimaxillary Dentoalveolar Protrusion Case Treated with Anchorage by Buccally Implemented Mini-Implants Using a 3D-Printed Surgical Guide. Children, 10(5), 879. https://doi.org/10.3390/children10050879