Exploring the Utility of Urinary Creatinine Adjustment for KIM-1, NGAL, and Cystatin C for the Assessment of Kidney Function: Insights from the C-KidnEES Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Communities
2.2. Data and Samples
2.3. Assays for Biomarkers
2.4. Data and Analyses
3. Results
3.1. Participant Characteristics
3.2. Associations of Urinary Biomarkers with Creatinine
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, P.H.; Sarwal, R.D.; Sarwal, M.M. Urinary Biomarkers for Kidney Allograft Injury. Transplantation 2022, 106, 1330–1338. [Google Scholar] [CrossRef] [PubMed]
- Lisowska-Myjak, B. Serum and Urinary Biomarkers of Acute Kidney Injury. Blood Purif. 2010, 29, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Han, W.K.; Bailly, V.; Abichandani, R.; Thadhani, R.; Bonventre, J.V. Kidney Injury Molecule-1 (KIM-1): A Novel Biomarker for Human Renal Proximal Tubule Injury. Kidney Int. 2002, 62, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Assadi, F.; Sharbaf, F.G. Urine KIM-1 as a Potential Biomarker of Acute Renal Injury after Circulatory Collapse in Children. Pediatr. Emerg. Care 2019, 35, 104–107. [Google Scholar] [CrossRef]
- Gunasekara, T.D.K.S.C.; De Silva, P.M.C.S.; Herath, C.; Siribaddana, S.; Siribaddana, N.; Jayasumana, C.; Jayasinghe, S.; Cardenas-Gonzalez, M.; Jayasundara, N. The Utility of Novel Renal Biomarkers in Assessment of Chronic Kidney Disease of Unknown Etiology (CKDu): A Review. Int. J. Environ. Res. Public Health 2020, 17, 9522. [Google Scholar] [CrossRef]
- Gaitens, J.M.; Brown, C.H.; Strathmann, F.G.; Xu, H.; Lewin-Smith, M.R.; Velez-Quinones, M.A.; McDiarmid, M.A. The Utility of Spot vs 24-Hour Urine Samples for Metal Determination in Veterans with Retained Fragments. Am. J. Clin. Pathol. 2021, 155, 428–434. [Google Scholar] [CrossRef]
- Perrone, R.D.; Madias, N.E.; Levey, A.S. Serum Creatinine as an Index of Renal Function: New Insights into Old Concepts. Clin. Chem. 1992, 38, 1933–1953. [Google Scholar] [CrossRef]
- Shavandi, N.; Samiei, A.; Afshar, R.; Saremi, A.; Sheikhhoseini, R. The Effect of Exercise on Urinary Gamma-Glutamyltransferase and Protein Levels in Elite Female Karate Athletes. Asian J. Sports Med. 2012, 3, 41–46. [Google Scholar] [CrossRef]
- van Acker, B.A.; Koomen, G.C.; Koopman, M.G.; de Waart, D.R.; Arisz, L. Creatinine Clearance during Cimetidine Administration for Measurement of Glomerular Filtration Rate. Lancet 1992, 340, 1326–1329. [Google Scholar] [CrossRef]
- Sallsten, G.; Barregard, L. Variability of Urinary Creatinine in Healthy Individuals. Int. J. Environ. Res. Public Health 2021, 18, 3166. [Google Scholar] [CrossRef]
- Tang, K.W.A.; Toh, Q.C.; Teo, B.W. Normalisation of Urinary Biomarkers to Creatinine for Clinical Practice and Research–When and Why. Singap. Med. J. 2015, 56, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Delanaye, P.; Cavalier, E.; Pottel, H. Serum Creatinine: Not So Simple! Nephron 2017, 136, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Helmersson-Karlqvist, J.; Ärnlöv, J.; Carlsson, A.C.; Lind, L.; Larsson, A. Urinary KIM-1, but Not Urinary Cystatin C, Should Be Corrected for Urinary Creatinine. Clin. Biochem. 2016, 49, 1164–1166. [Google Scholar] [CrossRef] [PubMed]
- Shemesh, O.; Golbetz, H.; Kriss, J.P.; Myers, B.D. Limitations of Creatinine as a Filtration Marker in Glomerulopathic Patients. Kidney Int. 1985, 28, 830–838. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.; Moutereau, S.; Esmilaire, L.; Desbene, C.; Lallali, K.; Devanlay, M.; Durrbach, A.; Manivet, P.; Eschwège, P.; Loric, S. Should Kidney Tubular Markers Be Adjusted for Urine Creatinine? The Example of Urinary Cystatin C. Clin. Chem. Lab. Med. 2009, 47, 1553–1556. [Google Scholar] [CrossRef]
- Leibler, J.H.; Ramirez-Rubio, O.; Velázquez, J.J.A.; Pilarte, D.L.; Obeid, W.; Parikh, C.R.; Gadupudi, S.; Scammell, M.K.; Friedman, D.J.; Brooks, D.R. Biomarkers of Kidney Injury among Children in a High-Risk Region for Chronic Kidney Disease of Uncertain Etiology. Pediatr. Nephrol. 2021, 36, 387–396. [Google Scholar] [CrossRef]
- Trasande, L.; Aldana, S.I.; Trachtman, H.; Kannan, K.; Morrison, D.; Christakis, D.A.; Whitlock, K.; Messito, M.J.; Gross, R.S.; Karthikraj, R.; et al. Glyphosate Exposures and Kidney Injury Biomarkers in Infants and Young Children. Environ. Pollut. 2020, 256, 113334. [Google Scholar] [CrossRef]
- Polidori, N.; Giannini, C.; Salvatore, R.; Pelliccia, P.; Parisi, A.; Chiarelli, F.; Mohn, A. Role of Urinary NGAL and KIM-1 as Biomarkers of Early Kidney Injury in Obese Prepubertal Children. J. Pediatr. Endocrinol. Metab. 2020, 33, 1183–1189. [Google Scholar] [CrossRef]
- Taşdemir, M.; Fuçucuoğlu, D.; Küçük, S.H.; Erol, M.; Yiğit, Ö.; Bilge, I. Urinary Biomarkers in the Early Detection and Follow-up of Tubular Injury in Childhood Urolithiasis. Clin. Exp. Nephrol. 2018, 22, 133–141. [Google Scholar] [CrossRef]
- Ucakturk, A.; Avci, B.; Genc, G.; Ozkaya, O.; Aydin, M. Kidney Injury Molecule-1 and Neutrophil Gelatinase Associated Lipocalin in Normoalbuminuric Diabetic Children. J. Pediatr. Endocrinol. Metab. 2016, 29, 145–151. [Google Scholar] [CrossRef]
- Latoch, E.; Konończuk, K.; Muszyńska-Rosłan, K.; Taranta-Janusz, K.; Wasilewska, A.; Szymczak, E.; Trochim, J.; Krawczuk-Rybak, M. Urine NGAL and KIM-1-Tubular Injury Biomarkers in Long-Term Survivors of Childhood Solid Tumors: A Cross-Sectional Study. J. Clin. Med. 2021, 10, 399. [Google Scholar] [CrossRef] [PubMed]
- Md Ralib, A.; Pickering, J.W.; Shaw, G.M.; Devarajan, P.; Edelstein, C.L.; Bonventre, J.V.; Endre, Z.H. Test Characteristics of Urinary Biomarkers Depend on Quantitation Method in Acute Kidney Injury. J. Am. Soc. Nephrol. 2012, 23, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Hahn, R.G.; Zdolsek, J. Nephrocheck® Results Should Be Corrected for Dilution. Acta Anaesthesiol. Scand. 2017, 61, 261–262. [Google Scholar] [CrossRef] [PubMed]
- Kimmel, M.; Shi, J.; Wasser, C.; Biegger, D.; Alscher, M.D.; Schanz, M.B. Urinary [TIMP-2]·[IGFBP7]-Novel Biomarkers to Predict Acute Kidney Injury. Am. J. Nephrol. 2016, 43, 375–382. [Google Scholar] [CrossRef]
- Meersch, M.; Schmidt, C.; Van Aken, H.; Martens, S.; Rossaint, J.; Singbartl, K.; Görlich, D.; Kellum, J.A.; Zarbock, A. Urinary TIMP-2 and IGFBP7 as Early Biomarkers of Acute Kidney Injury and Renal Recovery Following Cardiac Surgery. PLoS ONE 2014, 9, e93460. [Google Scholar] [CrossRef] [PubMed]
- Ichino, M.; Kusaka, M.; Kuroyanagi, Y.; Mori, T.; Morooka, M.; Sasaki, H.; Shiroki, R.; Shishido, S.; Kurahashi, H.; Hoshinaga, K. Urinary Neutrophil-Gelatinase Associated Lipocalin Is a Potential Noninvasive Marker for Renal Scarring in Patients with Vesicoureteral Reflux. J. Urol. 2010, 183, 2001–2007. [Google Scholar] [CrossRef] [PubMed]
- Parmaksız, G.; Noyan, A.; Dursun, H.; İnce, E.; Anarat, R.; Cengiz, N. Role of New Biomarkers for Predicting Renal Scarring in Vesicoureteral Reflux: NGAL, KIM-1, and L-FABP. Pediatr. Nephrol. 2016, 31, 97–103. [Google Scholar] [CrossRef]
- Toker, A.; Ziypak, T.; Orsal, E.; Laloglu, E.; Bedir, F.; Aksoy, Y. Is Urinary Kidney Injury Molecule-1 a Noninvasive Marker for Renal Scarring in Children with Vesicoureteral Reflux? Urology 2013, 81, 168–172. [Google Scholar] [CrossRef]
- Yavuz, S.; Anarat, A.; Bayazıt, A.K. Assessment of Cystatin C and Cystatin C-Based GFR Formulas in Reflux Nephropathy. J. Pediatr. Urol. 2014, 10, 262–267. [Google Scholar] [CrossRef]
- Naik, P.B.; Jindal, B.; Kumaravel, S.; Halanaik, D.; Rajappa, M.; Naredi, B.K.; Govindarajan, K. Utility of Urinary Biomarkers Neutrophil Gelatinase-Associated Lipocalin and Kidney Injury Molecule-1 as a Marker for Diagnosing the Presence of Renal Scar in Children with Vesicoureteral Reflux (VUR): A Cross-Sectional Study. J. Indian Assoc. Pediatr. Surg. 2022, 27, 83–90. [Google Scholar] [CrossRef]
- Islekel, H.; Soylu, A.; Altun, Z.; Yis, U.; Turkmen, M.; Kavukcu, S. Serum and Urine Cystatin C Levels in Children with Post-Pyelonephritic Renal Scarring: A Pilot Study. Int. Urol. Nephrol. 2007, 39, 1241–1250. [Google Scholar] [CrossRef]
- Kovacevic, L.; Lu, H.; Kovacevic, N.; Thomas, R.; Lakshmanan, Y. Cystatin C, Neutrophil Gelatinase-Associated Lipocalin, and Lysozyme C: Urinary Biomarkers for Detection of Early Kidney Dysfunction in Children with Urolithiasis. Urology 2020, 143, 221–226. [Google Scholar] [CrossRef]
- Balasar, M.; Pişkin, M.M.; Topcu, C.; Demir, L.S.; Gürbilek, M.; Kandemir, A.; Öztürk, A. Urinary Kidney Injury Molecule-1 Levels in Renal Stone Patients. World J. Urol. 2016, 34, 1311–1316. [Google Scholar] [CrossRef]
- Moresco, R.N.; Sangoi, M.B.; De Carvalho, J.A.M.; Tatsch, E.; Bochi, G.V. Diabetic Nephropathy: Traditional to Proteomic Markers. Clin. Chim. Acta 2013, 421, 17–30. [Google Scholar] [CrossRef]
- Siddiqi, Z.; Karoli, R.; Kaul, A.; Fatima, J.; Varshney, S.; Beg, M.S. Evaluation of Neutrophil Gelatinase-Associated Lipocalin and Cystatin C as Early Markers of Diabetic Nephropathy. Ann. Afr. Med. 2017, 16, 101–106. [Google Scholar] [CrossRef]
- Levey, A.S.; Perrone, R.D.; Madias, N.E. Serum Creatinine and Renal Function. Annu. Rev. Med. 1988, 39, 465–490. [Google Scholar] [CrossRef]
- Waikar, S.S.; Sabbisetti, V.S.; Bonventre, J.V. Normalization of Urinary Biomarkers to Creatinine during Changes in Glomerular Filtration Rate. Kidney Int. 2010, 78, 486–494. [Google Scholar] [CrossRef]
- Skinner, A.M.; Addison, G.M.; Price, D.A. Changes in the Urinary Excretion of Creatinine, Albumin and N-Acetyl-Beta-D-Glucosaminidase with Increasing Age and Maturity in Healthy Schoolchildren. Eur. J. Pediatr. 1996, 155, 596–602. [Google Scholar] [CrossRef]
- Wang, W.; Du, C.; Lin, L.; Chen, W.; Tan, L.; Shen, J.; Pearce, E.N.; Zhang, Y.; Gao, M.; Bian, J.; et al. Anthropometry-Based 24-h Urinary Creatinine Excretion Reference for Chinese Children. PLoS ONE 2018, 13, e0197672. [Google Scholar] [CrossRef]
- Delanaye, P.; Mariat, C.; Cavalier, E.; Maillard, N.; Krzesinski, J.-M.; White, C.A. Trimethoprim, Creatinine and Creatinine-Based Equations. Nephron Clin. Pract. 2011, 119, c187–C194. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, M.A.; Arieff, A.I. Unpredictability of Clinical Evaluation of Renal Function in Cirrhosis. Prospective Study. Am. J. Med. 1987, 82, 945–952. [Google Scholar] [CrossRef]
- Suwazono, Y.; Akesson, A.; Alfvén, T.; Järup, L.; Vahter, M. Creatinine versus Specific Gravity-Adjusted Urinary Cadmium Concentrations. Biomarkers 2005, 10, 117–126. [Google Scholar] [CrossRef]
- Akerstrom, M.; Barregard, L.; Lundh, T.; Sallsten, G. Variability of Urinary Cadmium Excretion in Spot Urine Samples, First Morning Voids, and 24 h Urine in a Healthy Non-Smoking Population: Implications for Study Design. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 171–179. [Google Scholar] [CrossRef]
- Akerstrom, M.; Lundh, T.; Barregard, L.; Sallsten, G. Sampling of Urinary Cadmium: Differences between 24-h Urine and Overnight Spot Urine Sampling, and Impact of Adjustment for Dilution. Int. Arch. Occup. Environ. Health 2012, 85, 189–196. [Google Scholar] [CrossRef]
- Moriguchi, J.; Ezaki, T.; Tsukahara, T.; Furuki, K.; Fukui, Y.; Okamoto, S.; Ukai, H.; Sakurai, H.; Shimbo, S.; Ikeda, M. Comparative Evaluation of Four Urinary Tubular Dysfunction Markers, with Special References to the Effects of Aging and Correction for Creatinine Concentration. Toxicol. Lett. 2003, 143, 279–290. [Google Scholar] [CrossRef]
- Ikeda, M.; Ezaki, T.; Tsukahara, T.; Moriguchi, J.; Furuki, K.; Fukui, Y.; Okamoto, S.; Ukai, H.; Sakurai, H. Bias Induced by the Use of Creatinine-Corrected Values in Evaluation of Beta2-Microgloblin Levels. Toxicol. Lett. 2003, 145, 197–207. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Age (years) | 14.27 (13.15–15.29) |
BMI (kg/m2) | 17.44 (15.51–19.76) |
UCr (mg/dL) | 76.690 (49.365–119.012) |
Creatinine-adjusted urinary biomarker levels | |
KIM-1 (ng/mgCr) | 0.165 (0.003–0.488) |
NGAL (ng/mgCr) | 3.241 (1.659–6.364) |
Cys-C (ng/mgCr) | 48.501 (18.921–112.106) |
Absolute urinary biomarker levels | |
KIM-1 (ng/mgCr) | 0.143 (0.001–0.387) |
NGAL (ng/mgCr) | 2.826 (1.241–4.975) |
Cys-C (ng/mgCr) | 36.857 (15.460–83.853) |
Biomarker | B | 95% CI of B | β | t | p | |
---|---|---|---|---|---|---|
KIM-1 | 0.001 | 0.001 | 0.002 | 0.171 | 7.031 | <0.001 |
NGAL | 0.013 | 0.003 | 0.022 | 0.065 | 2.620 | 0.009 |
Cys-C | 0.115 | 0.081 | 0.310 | 0.032 | 1.152 | 0.250 |
Biomarker | B | 95% CI of B | β | t | p | |
---|---|---|---|---|---|---|
KIM-1 | −0.003 | −0.003 | −0.002 | −0.198 | −8.182 | <0.001 |
NGAL | −0.028 | −0.038 | −0.019 | −0.148 | −6.060 | <0.001 |
Cys-C | −0.451 | −0.704 | −0.198 | −0.099 | −3.493 | <0.001 |
Biomarker | B | 95% CI of B | β | t | p | |
---|---|---|---|---|---|---|
KIM-1 | 1.101 | 1.039 | 1.162 | 0.654 | 35.037 | <0.001 |
NGAL | 0.890 | 0.871 | 0.871 | 0.918 | 94.024 | <0.001 |
Cys-C | 0.975 | 0.928 | 0.928 | 0.756 | 40.510 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunasekara, T.D.K.S.C.; Herath, C.; De Silva, P.M.C.S.; Jayasundara, N. Exploring the Utility of Urinary Creatinine Adjustment for KIM-1, NGAL, and Cystatin C for the Assessment of Kidney Function: Insights from the C-KidnEES Cohort. Children 2024, 11, 15. https://doi.org/10.3390/children11010015
Gunasekara TDKSC, Herath C, De Silva PMCS, Jayasundara N. Exploring the Utility of Urinary Creatinine Adjustment for KIM-1, NGAL, and Cystatin C for the Assessment of Kidney Function: Insights from the C-KidnEES Cohort. Children. 2024; 11(1):15. https://doi.org/10.3390/children11010015
Chicago/Turabian StyleGunasekara, T. D. K. S. C., Chula Herath, P. Mangala C. S. De Silva, and Nishad Jayasundara. 2024. "Exploring the Utility of Urinary Creatinine Adjustment for KIM-1, NGAL, and Cystatin C for the Assessment of Kidney Function: Insights from the C-KidnEES Cohort" Children 11, no. 1: 15. https://doi.org/10.3390/children11010015
APA StyleGunasekara, T. D. K. S. C., Herath, C., De Silva, P. M. C. S., & Jayasundara, N. (2024). Exploring the Utility of Urinary Creatinine Adjustment for KIM-1, NGAL, and Cystatin C for the Assessment of Kidney Function: Insights from the C-KidnEES Cohort. Children, 11(1), 15. https://doi.org/10.3390/children11010015