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Abstract: Background/Objectives: In paediatric liver transplantation, donor–recipient compatibility
depends on graft size. We explored whether the graft weight can be predicted using the donor’s
biometric parameters. Methods: We used seven easily available biometric variables in 142 anonymised
paediatric and adult donors, with data collected between 2016 and 2022. The whole or partial liver
was transplanted in our hospital from these donors. We identified the variables that had the strongest
correlation to our response variable: whole liver graft weight. Results: In child donors, we determined
two linear models: using donor weight and height on the one hand and using donor weight and
right liver span on the other hand. Both models had a coefficient of determination R2 = 0.86 and
p-value < 10−5. We also determined two models in adult donors using donor weight and height
(R2 = 0.33, p < 10−4) and donor weight and sternal height (R2 = 0.38, p < 10−4). The models proved
valid based on our external dataset of 245 patients from two institutions. Conclusions: In clinical
practise, our models could provide rapidly accessible estimates to determine whole graft dimension
compatibility in liver transplantation in children and adults. Determining similar models predicting
the left lobe and lateral segment weight could prove invaluable in paediatric transplantation.

Keywords: liver transplantation; model; linear regression

1. Introduction

End-stage liver disease is a common cause of morbidity and mortality, making up
2% of total annual deaths worldwide in 2010 [1]. It is, to date, incurable using medical
treatments. With survival rates of, respectively, 95% and 85% at one and five years, liver
transplantation has become the key treatment strategy [2].

As in all organ transplantations, donor–recipient compatibility depends on molecular
and genetic parameters. A specificity of the liver resides in its inter-individual diversity
in terms of size. In the recipient, while an undersized liver can result in small-for-size
syndrome, an excessively large liver can cause large-for-size syndrome [3–5]. In both
cases, the graft dysfunctions, resulting in clinical symptoms of acute liver failure such
as cholestasis, coagulopathy, portal hypertension, and ascites [6,7]. Predicting liver size
prior to transplantation is essential to the operation’s success, especially in paediatric liver
transplantation, where the recipient’s age influences the liver weight.
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Liver volume can be calculated using Computer Tomography (CT) scan imaging. The
process is tedious and consists of delineating an area of interest on CT scan slides. It has
warranted the development of machine learning algorithms attempting to optimise the
job [3]. Both human and machine-learning-based determinations are prone to errors. CT
estimation tends to over- or underestimate the liver volume depending on the phase of
contrast enhancement, individual properties, abdominal organ densities, and CT section
thickness [8]. Moreover, such time-consuming calculations are not adapted to the urgent
decision-making process of accepting a graft for transplantation.

The technical challenges and unreliability of these techniques call for developing other
solutions. Some authors have suggested regressions to estimate liver volumes using other
donor parameters [4,9,10]. An accurate mathematical model to estimate liver weight or
volume would prove invaluable. It could offer a widely accessible, rapidly applicable,
and cheap solution to perform better-suited liver transplantations. Once it is built, a
mathematical model can be made to evolve as larger numbers of donors are included,
constantly improving its proficiency in the modelled population. To our knowledge, no
model granting clinically sufficient precision and reliability in modelling liver graft weights
in the Caucasian population has been established yet.

The goal of our study was to develop a mathematical model predicting whole liver
weights in both paediatric and adult donors, using only a few widely accessible biometrics
variables, through our national harvesting system.

2. Materials and Methods

From 2016 to 2020, we recorded the biometric data of the donors accepted for liver
transplantation in our team, which is the largest paediatric liver transplantation centre in
our country. Since 2016, our national allocation system has required donors to undergo
routine CT scans. These scans are performed at the local hospital, where the on-call
radiologist measures and records basic parameters such as the right hepatic height, liver–
spleen density gradient, and variation in the vascularisation of the liver. However, it was
only possible to view the imaging starting in 2018 using a basic image viewer that does
not allow for reconstruction, meaning that the volumetric tool is not available. Apart from
acute liver failure, in the context of paediatric liver transplantation, particularly when
splitting the liver and increasing the ischemia time, our team has a practise of rejecting
adult steatotic livers based on CT scan imaging or a BMI above 30 associated with abnormal
liver function tests. The outcome variable was the whole liver graft weight, measured using
the same scales for each graft. Each graft consisted of the whole liver with the coeliac trunk
after the removal of attached organs if harvested with the liver (diaphragm, pancreas. . .).
The training dataset consisted of 44 paediatric donors (≤18 years old) and 98 adult donors.
Two individuals were excluded from analysis, as their liver weight over 2000 g and donor
age over 60 years were above the 99.5th percentile of the donor population. Analyses were
performed using RStudio Version 2023.06.1+524, and the scripts can be made available upon
reasonable demand. Departures from linearity were explored by fractional polynomials
and smoothing functions. The external validation dataset contained 101 paediatric and
144 adult donors from our institution and third largest paediatric liver transplantation
teams in our country. The available donor variables (systematically reported by our national
harvesting system during the decision process for graft acceptation) were age (years), sex,
height (cm), donor weight (kg), length of right liver span (cm) (vertical length of liver
measured on a coronal CT scan plan, along the midclavicular line), chest perimeter (cm)
(measured at nipple level), sternal height (cm), and abdominal perimeter (cm) (measured
at navel level).
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3. Results
3.1. Patient Characteristics

A total of 142 donors were included in this study’s training dataset. Tables 1 and 2
report their principal characteristics.

Table 1. Statistical parameters of children in the training dataset.

Number of Values Number of NA Min Max Median IQR Mean

Age (years) 44 0 0 18 12 10 11

Height (cm) 44 0 65 190 151 54 141

Weight (kg) 44 0 7 92 42 36 40

BMI (kg/m2) 44 0 11 27 18 4 18

Graft weight (g) 44 0 240 1688 900 654 912

Right liver span (mm) 43 1 89 184 137 49 137

Left liver span (mm) 7 37 48 120 64 25 74

Chest perimeter (cm) 43 1 43 102 70 22 70

Sternal height (cm) 43 1 7 24 16 5.5 16

Abdominal perimeter (cm) 43 1 43 99 63 14 64

Sex M 31 0 NA NA NA NA NA

BMI: Body Mass Index, NA: not available (missing data), Min: minimal value, Max: maximal value,
IQR: inter-quartile ratio.

Table 2. Statistical parameters of adults in the training dataset, with two outliers removed.

Number of Values Number of NA Min Max Median IQR Mean

Age (years) 96 0 19 59 32 23 34

Height (cm) 96 0 158 188 170 10 171

Weight (kg) 96 0 42 89 66 17 67

BMI (kg/m2) 96 0 17 30 23 4 23

Graft weight (g) 94 2 845 1780 1300 268 1293

Right liver span (mm) 94 2 100 220 157 36 157

Left liver span (mm) 13 83 45 166 86 33 89

Chest perimeter (cm) 94 2 54 130 91 11 90

Sternal height (cm) 94 2 15 29 20 3 20

Abdominal perimeter (cm) 94 2 66 160 82 15 84

Sex M 45 0 NA NA NA NA NA

BMI: Body Mass Index, NA: not available (missing data), Min: minimal value, Max: maximal value, IQR: inter-
quartile ratio.

In the training dataset, the median age was 12 years in the under-eighteen population
(range 0 to 18) and 32 years in the over-eighteen population (range 19 to 59). In the paediatric
group, there were 31 males (70%). In the adult population, there were 45 males (47%).

A further 245 donors were included in the external validation dataset (Tables 3 and 4).
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Table 3. Statistical parameters of children in the test dataset.

Number of Values Number of NA Min Max Median IQR Mean

Age (years) 101 0 0 18 12 9 11

Height (cm) 101 0 65 190 154 51 141

Weight (kg) 101 0 7 92 44 35 41

BMI (kg/m2) 101 0 12 27 19 5 19

Graft weight (g) 101 0 240 1850 910 724 898

Right liver span (mm) 18 83 99 202 160 21 159

Sex M 66 0 NA NA NA NA NA

BMI: Body Mass Index, NA: not available (missing data), Min: minimal value, Max: maximal value,
IQR: inter-quartile ratio.

Table 4. Statistical parameters of adults in test dataset.

Number of Values Number of NA Min Max Median IQR Mean

Age (years) 144 0 19 73 29 21 33

Height (cm) 144 0 150 195 170 13 171

Weight (kg) 144 0 42 95 66 17 67

BMI (kg/m2) 144 0 15 29 23 6 22

Graft weight (g) 144 0 709 2070 1300 984 1301

Right liver span (mm) 34 110 90 210 150 32 152

Sex M 73 0 NA NA NA NA NA

BMI: Body Mass Index, NA: not available (missing data), Min: minimal value, Max: maximal value,
IQR: inter-quartile ratio.

In the paediatric population, the median age was 12 years (range 0 to 18), and in the
adult population, the median age was 29 (range 19 to 73). There were 66 males in the
paediatric population (65%) and 73 among the adults (51%).

3.2. Training of Whole Graft Model

First, we performed an overview of how the graft weight over donor weight ratio
evolves with age (Figure 1a). The ratio decreases in childhood. In adulthood, the graft
weight/donor weight ratio seems stable, with inter-individual variations.

Next, the liver weight was plotted against age. The resulting plot is that of a piecewise
continuous function. We drew the cut-off at 18 y. In individuals aged ≤ 18, the liver
weight is strongly correlated to age (Pearson correlation coefficient R = 0.85, p-value < 10−5)
(Figure 1b).

In adults > 18, the liver weight does not vary significantly with age. We therefore
separated the population into ≤18 and >18 yo age groups.

We next explored whether the liver weight should be stratified by sex. In children, the
donor weight and height are variables that vary strongly with age. We therefore plotted
the liver weight against the donor weight and height (Figure 2).

In children, the liver weight in females coincided with that in males. In adults, the
male regression line was consistently above the female one. Nonetheless, the gap was
non-significant; therefore, we built our model pooling both genders together.

In order to select the variables to build our model, we performed a multivariate
analysis in children on the one hand and in adults on the other hand (Supplementary
Figure S1).
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Figure 1. The liver weight depends on the donor age. (a) The ratio of liver graft weight to donor
weight as a function of the donor age in the training population. (b) The graft weight plotted against
the donor age in the training population. The linear regression equation, correlation coefficient, and
p-value in donors ≤ 18 are shown in top left corner.
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Figure 2. The graft weight evolves similarly with donor weight and donor height in females and
males. The linear regressions of total graft weight in females (F) and males (M), plotted against (a,b)
the donor height and (c,d) donor weight in (a,c) children and (b,d) in adults. The 95% confidence
interval is shown in grey. The number of plotted females (n_f) and males (n_m) are shown in top left.

We selected the variables which correlate the most with graft weight and removed the
variables that correlate strongly between each other in order to avoid redundancy. Two
combinations of variables led to the strongest regressions (highest coefficient of determi-
nation, R2). In children, these were the linear combinations of donor weight and height
(AIC = 566) and also donor weight and right liver span (AIC = 553). In Figure 3a,b, we
plotted the graft weight as a function of these two optimal combinations.
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Figure 3. The graft weight can be successfully modelled using linear combinations of the donor
weight, height, right liver span, and sternal height. The total graft weight against the optimal linear
combinations in (a,b) children and (c,d) adults. The X-axis represents the linear combination shown
in the top left corner of each panel. The R2 coefficient of determination and p-value of each model are
shown in the top left of the corresponding panel. The sample size (n) is also shown in the top left.
The 95% confidence interval is shown in grey.

In adults, the two best combinations were the donor weight and height (AIC = 1247)
and the donor weight and sternal height (AIC = 1228) (Figure 3c,d).

Following Urata et al. [9], we tested a logarithmic transformation. Applying the least
squares, we found the following: graft weight = (donor weight)0.449 × (donor weight)0.577 ×
2.307. This model yields R = 0.74 and p < 10−4 (Supplementary Figure S2a); this is a weaker
relationship than the linear regressions described above. The same reasoning in children
alone yielded a model with R2 = 0.85 and p < 10−4 (Supplementary Figure S2b), and in
adults, R2 = 0.33 and p < 10−4 (Supplementary Figure S2c). The logarithmic regression was
discarded in favour of the linear regression.
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3.3. External Validation of Whole Graft Model

The models were tested on a pooled population of patients from another institution
and new patients from ours (Tables 3 and 4). The right liver span was only available for
18 paediatric and 34 adult patients. The sternal height was not available. The graphical
representations of the models applied to the test dataset are shown in Figure 4a,b and
Supplementary Figure S3a. In children and adults, the tested models are valid on the test
dataset. The prediction intervals of our models in children are shown in Figure 4c,d. The
confidence interval shows that our model is a satisfactory fit for the training dataset. The
80% prediction interval shows that, should we apply the model to a new child donor from
the external validation dataset, we have an 80% certainty that the error margin will not
exceed 380 g (Figure 4c, Supplementary Figure S3c). In adults, the prediction interval
reached 500 g (Figure 4d, Supplementary Figure S3d). Thus, with 80% certainty, liver
weight prediction can over- or underestimate liver weight by a maximum of 190 g in
children and 250 g in adults.
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Figure 4. The established models are valid in the test dataset. The graft weights of the test dataset
are plotted as a function of the optimal linear regressions established on the test dataset. The X-axis
represents the linear combination shown in the top left corner of each panel. The tested models were
those using (a) the donor weight and height in children and (b) in adults. An 80 % prediction interval
of the (c) paediatric model and (d) adult model is shown in red dashes. The 95% confidence interval
is shown in grey.
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3.4. User Interface

Having established clinically relevant and mathematically precise models, the next
step is to present the model in a user-friendly manner. The interface allowing any surgeon
to estimate the weight of a potential donor graft is available online at https://masha-k.
shinyapps.io/App-thp/, (accessed on 30 September 2024).

4. Discussion

We have successfully established two linear regression models in children and two in
adults to predict the total liver weight using exclusively easily accessible biometric donor
parameters. The most relevant combinations of variables proved, in children, to be the
donor weight and height, as well as weight and right liver span. In adults, these were
weight and height and weight and sternal height.

We were able to analyse the impact of seven different donor variables, most of which
had high strengths of correlation with the graft weight. We selected those that, together,
best predicted our response variable. The models in the paediatric population have a high
capacity of predicting the total liver weight (high determination coefficient, R2). The adult
models have a weaker capacity to predict the graft weight. The coefficient of determination
of our adult model was 36%, meaning that only 36% of our data fit the model. The 80%
prediction interval was 500 g, meaning that in 80% of the cases, a graft’s real weight is
within a 250 g margin of the estimated weight. While such an error can be unacceptable
in some clinical situations, our model can be used, if not to accept a graft, then at least
to refuse it if the estimated weight is too far from the target weight. Moreover, it can be
a useful tool in determining best matches in cases when several are possible. Despite
our model’s error margin, these applications could make it a useful tool in the surgeon’s
decision-making process.

It may be relevant to continue building our models on a larger training dataset,
potentially allowing us to stratify the donors by sex and improve the models’ predictive
capacity. Although donors were selected at random, some bias may remain. For instance,
the percentage of donors with obesity was under the percentage of overall obesity in our
country (17%). Another potential method for improving the models in the future could be
to introduce new variables, such as the left liver span. Prospective measuring of the left
liver lobes in new donors is currently underway.

By including two variables in each model, we were able to optimise our capacity to
predict the response variable. This multivariate approach is both mathematically more
precise and more resilient to inter-individual variations. For children, both models are
mathematically equivalent. The model using the donor height and weight may be eas-
ier to use in clinical practise, as these variables are more frequently measured than the
right liver span.

The major goal in liver graft volume prediction is to avoid both small- or big-for-size
syndrome [4,5]. In the first case, the transplantations that are considered to be at risk of
the phenomenon are those in which the graft liver weighs less than 30% of the recipient’s
liver [5]. This cut-off is to be taken into consideration when deciding whether to accept a
graft based on the estimated graft weight, especially in the case of whole liver grafts in
paediatric patients and when splitting a liver graft between an adult and paediatric team.
It is common practise to direct the right part of the liver to an adult team. The paediatric
team often receives small lateral segments, as recipients can weigh as little as 5–10 kg.
Accepting a whole graft intended for splitting is therefore a difficult decision, which calls
for modern and accurate tools. In paediatric liver transplantation, the most important
variable to consider is the weight of the left liver lobe. Based on the findings of this study,
our next step is to create a model that can predict the weight of the left lobe. This study
serves as an initial step in this strategy, helping us to identify and understand the most
relevant and accessible variables.

Our models can be readily taken into consideration in a clinical decision; however, it
is no more than a tool in the box of the clinician, and other clinically relevant parameters

https://masha-k.shinyapps.io/App-thp/
https://masha-k.shinyapps.io/App-thp/


Children 2024, 11, 1248 10 of 11

must not be put aside. The models we have established are, to our knowledge, the first
mathematically successful attempt at modelling livers using biometric donor variables in
the Caucasian population. Previous work by Urata et al. [9] has succeeded somewhat in
modelling livers in an Asian population, using both liver harvesting and CT volumetric
analysis. Heinemann et al. [10] demonstrated that these formulae tend to underestimate
liver weights in the Caucasian population. Donadon et al. [11] compared seven major
available models of liver weight in the literature. Several studies [4,9] have used the CT-
derived liver volume estimation as a reference. The weights of our donor livers, on the other
hand, were directly measured. While CT volumetry is a precise method, the volumetric
tool is not available in our national donation allocation system. Therefore, it is not used
for volumetric evaluation in our study. Instead, we use a conventional CT scan (slides) to
calculate the right hepatic height (routinely reported in the allocation system) and liver–
spleen density gradient. In our paediatric team, a steatotic liver (suspected by more than 10
UH spleen–liver density gradient) is systematically discarded in a patient with a high Body
Mass Index (BMI > 30), alcoholic habits, or with an age above 40 years. Liver function tests
are also used to assess graft acceptance, especially when splitting the liver (transaminases
below 80 IU/L are usually required). Our models can be used to inform clinical decisions,
but they should be used in conjunction with other relevant parameters, such as the donor’s
liver function tests. According to Lim et al. [8], while automated volumetry can take as
little as 34 s (0.57 ± 0.06 min/case), semi-automated and manual volumetry can take up
to 40 min/case. In our country, with automated volumetry not being standard practise,
it may prove more realistic to be able to estimate the graft weight in a matter of seconds.
The volumetric tool is important, but our national allocation agency needs to negotiate and
purchase it. We intend to fund and carry out this project, but it also needs to be evaluated.
One limitation is the small number of paediatric liver transplantations (80/year) in our
country compared to the amount of adult liver transplantations (1300/year) [12].

Several models have used estimations of body surface or, alternatively, BMI to predict
liver weight. Although body surface estimation and BMI calculation makes use of both
the donor weight and height, in our study, we were able to build mathematically stronger
models using bivariate linear regressions. Moreover, in paediatric transplantation, using
the BMI variable is less relevant than in adults. This is because the BMI limits depend on
age in the paediatric population, making them more difficult to interpret before accepting
the graft. In the context of paediatric liver transplantation, particularly when splitting
the liver and increasing the ischemia time, our team makes a practise of rejecting adult
steatotic livers based on CT scan imaging or a BMI above 30 associated with abnormal liver
function tests. The models from the literature achieve determination coefficients, R2s, of
approximately 0.35, meaning that their models are undeniably less successful at predicting
liver weight than the models we have established in children.

In conclusion, we have built basic and reliable mathematical models to predict whole
liver graft from easily available biometrics variables found in pediatric and adult liver
donors. This prediction models are available online at: https://masha-k.shinyapps.io/
App-thp/, (accessed on 30 September 2024).

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/children11101248/s1, Figure S1: Explanatory variables
have different strengths of correlation to the response variable (graft weight), and some explanatory
variables correlate strongly between each other; Figure S2: Graft weight can be modelled using
logarithmic transformations of tested explanatory variables; however, these models are less precise
than linear regressions; Figure S3: Graft models using linear regressions of donor weight, right liver
span, and sternal height are valid on the test dataset.
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