Parenting Influences on Frontal Lobe Gray Matter and Preterm Toddlers’ Problem-Solving Skills
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Toddler Noncompliance
3.2. Toddler Engagement
3.3. Parent Support
3.4. Parent Support and Toddler Noncompliance
3.5. Parent Support and Toddler Engagement
3.6. Frontal Lobe GMV
3.7. Frontal Lobe GMV and Parent Support
3.8. NICU Stay Length
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foster-Cohen, S.; Edgin, J.O.; Champion, P.R.; Woodward, L.J. Early delayed language development in very preterm infants: Evidence from the MacArthur-Bates CDI. J. Child Lang. 2007, 34, 655–675. [Google Scholar] [CrossRef]
- Gerstein, E.D.; Woodman, A.C.; Burnson, C.; Cheng, E.R.; Poehlmann-Tynan, J. Trajectories of externalizing and internalizing behaviors in preterm children admitted to a neonatal intensive care unit. J. Pediatr. 2017, 187, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Janssens, A.; Uvin, K.; Van Impe, H.; Laroche, S.M.F.; Van Reempts, P.; Deboutte, D. Psychopathology among preterm infants using the Diagnostic Classification Zero to Three. Acta Paediatr. 2009, 98, 1988–1993. [Google Scholar] [CrossRef] [PubMed]
- Taylor, H.G.; Clark, C.A. Executive function in children born preterm: Risk factors and implications for outcome. Semin. Perinatol. 2016, 40, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Bouyssi-Kobar, M.; du Plessis, A.J.; McCarter, R.; Brossard-Racine, M.; Murnick, J.; Tinkleman, L.; Robertson, R.L.; Limperopoulos, C. Third trimester brain growth in preterm infants compared with in utero healthy fetuses. Pediatrics 2016, 138, e20161640. [Google Scholar] [CrossRef] [PubMed]
- Kapellou, O.; Counsell, S.J.; Kennea, N.; Dyet, L.; Saeed, N.; Stark, J.; Maalouf, E.; Duggan, P.; Ajayi-Obe, M.; Hajnal, J.; et al. Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Med. 2006, 3, e265. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.W.; Castellanos, N.; Simmons, A.; Froudist-Walsh, S.; Allin, M.P.; Walshe, M.; Murray, R.M.; Evans, A.; Muehlboeck, J.S.; Nosarti, C. Alterations in cortical thickness development in preterm-born individuals: Implications for high-order cognitive functions. NeuroImage 2015, 115, 64–75. [Google Scholar] [CrossRef]
- Volpe, J.J. Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009, 8, 110–124. [Google Scholar] [CrossRef]
- Volpe, J.J. The encephalopathy of prematurity—Brain injury and impaired brain development inextricably intertwined. Semin. Pediatr. Neurol. 2009, 16, 167–178. [Google Scholar] [CrossRef]
- Gerstein, E.D.; Poehlmann-Tynan, J. Transactional processes in children born preterm: Influences of mother–child interactions and parenting stress. J. Fam. Psychol. 2015, 29, 777. [Google Scholar] [CrossRef]
- Subedi, D.; DeBoer, M.D.; Scharf, R.J. Developmental trajectories in children with prolonged NICU stays. Arch. Dis. Child. 2016, 102, 29–34. [Google Scholar] [CrossRef]
- Belfort, M.B.; Ramel, S.E. NICU Diet, Physical Growth and Nutrient Accretion, and Preterm Infant Brain Development. Neoreviews 2019, 20, e385–e396. [Google Scholar] [CrossRef]
- Landry, S.H.; Smith, K.E.; Miller-Loncar, C.L.; Swank, P.R. Predicting cognitive-language and social growth curves from early maternal behaviors in children at varying degrees of biological risk. Dev. Psychol. 1997, 33, 1040. [Google Scholar] [CrossRef]
- Steelman, L.M.; Assel, M.A.; Swank, P.R.; Smith, K.E.; Landry, S.H. Early maternal warm responsiveness as a predictor of child social skills: Direct and indirect paths of influence over time. J. Appl. Dev. Psychol. 2002, 23, 135–156. [Google Scholar] [CrossRef]
- Kok, R.; Thijssen, S.; Bakermans-Kranenburg, M.J.; Jaddoe, V.W.; Verhulst, F.C.; White, T.; van IJzendoorn, M.H.; Tiemeier, H. Normal variation in early parental sensitivity predicts child structural brain development. J. Am. Acad. Child Adolesc. Psychiatry 2015, 54, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, S.; Muetzel, R.L.; Bakermans-Kranenburg, M.J.; Jaddoe, V.W.; Tiemeier, H.; Verhulst, F.C.; White, T.; Van Ijzendoorn, M.H. H. Insensitive parenting may accelerate the development of the amygdala–medial prefrontal cortex circuit. Dev. Psychopathol. 2017, 29, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Keen, R. The development of problem solving in young children: A critical cognitive skill. Annu. Rev. Psychol. 2011, 62, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Gagne, J.R.; Liew, J.; Nwadinobi, O.K. How does the broader construct of self-regulation relate to emotion regulation in young children? Dev. Rev. 2021, 60, 100965. [Google Scholar] [CrossRef]
- Blair, C.; Zelazo, P.D.; Greenberg, M.T. The Measurement of executive function in early childhood. Dev. Neuropsychol. 2005, 28, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Braun, K. The prefrontal-limbic system: Development, neuroanatomy, function, and implications for socioemotional development. Clin. Perinatol. 2011, 38, 685–702. [Google Scholar] [CrossRef] [PubMed]
- Best, J.R.; Miller, P.H.; Naglieri, J.A. Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learn. Individ. Differ. 2011, 21, 327–336. [Google Scholar] [CrossRef]
- Clark, C.A.; Woodward, L.J. Relation of perinatal risk and early parenting to executive control at the transition to school. Dev. Sci. 2015, 18, 525–542. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Wolke, D.; Hennessy, E.; Marlow, N. Educational outcomes in extremely preterm children: Neuropsychological correlates and predictors of attainment. Dev. Neuropsychol. 2011, 36, 74–95. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, R.; Pietsch, M.; Ciarrusta, J.; Fitzgibbon, S.P.; Williams, L.Z.J.; Christiaens, D.; Cordero-Grande, L.; Batalle, D.; Makropoulos, A.; Schuh, A.; et al. Preterm birth alters the development of cortical microstructure and morphology at term-equivalent age. NeuroImage 2021, 243, 118488. [Google Scholar] [CrossRef] [PubMed]
- Tsujimoto, S. The Prefrontal Cortex: Functional Neural Development During Early Childhood. Neuroscientist 2008, 14, 345–358. [Google Scholar] [CrossRef] [PubMed]
- Belsky, J.; De Haan, M. Annual research review: Parenting and children’s brain development: The end of the beginning. J. Child Psychol. Psychiatry 2011, 52, 409–428. [Google Scholar] [CrossRef] [PubMed]
- DeMaster, D.; Bick, J.; Johnson, U.; Montroy, J.J.; Landry, S.; Duncan, A.F. Nurturing the preterm infant brain: Leveraging neuroplasticity to improve neurobehavioral outcomes. Pediatr. Res. 2019, 85, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Duerden, E.G.; Card, D.; Lax, I.D.; Donner, E.J.; Taylor, M.J. Alterations in frontostriatal pathways in children born very preterm. Dev. Med. Child Neurol. 2013, 55, 952–958. [Google Scholar] [CrossRef]
- Hodel, A.S. Rapid infant prefrontal cortex development and sensitivity to early environmental experience. Dev. Rev. 2018, 48, 113–144. [Google Scholar] [CrossRef]
- Landry, S.H. The role of parents in early childhood learning. In Encyclopedia on Early Childhood Development; CEECD: Montreal, QC, Canada, 2008; pp. 1–6. [Google Scholar]
- Luby, J.L.; Belden, A.; Harms, M.P.; Tillman, R.; Barch, D.M. Preschool is a sensitive period for the influence of maternal support on the trajectory of hippocampal development. Proc. Natl. Acad. Sci. USA 2016, 113, 5742–5747. [Google Scholar] [CrossRef]
- Treyvaud, K.; Thompson, D.K.; Kelly, C.E.; Loh, W.Y.; Inder, T.E.; Cheong, J.L.Y.; Doyle, L.W.; Anderson, P.J. Early parenting is associated with the developing brains of children born very preterm. Clin. Neuropsychol. 2021, 35, 885–903. [Google Scholar] [CrossRef]
- Vaughn, K.A.; Moore, B.D.; DeMaster, D. Nurturing the developing brain to reduce neurological delay. In Diagnosis, Management and Modeling of Neurodevelopmental Disorders: The Neuroscience of Development; Academic Press: Cambridge, MA, USA, 2021; pp. 471–480. [Google Scholar]
- Eisenberg, N.; Cumberland, A.; Spinrad, T.L. Parental Socialization of Emotion. Psychol. Inq. 1998, 9, 241–273. [Google Scholar] [CrossRef]
- Eisenberg, N.; Spinrad, T.L.; Eggum, N.D. Emotion-related self-regulation and its relation to children's maladjustment. Annu. Rev. Clin. Psychol. 2010, 6, 495–525. [Google Scholar] [CrossRef] [PubMed]
- Landry, S.H.; Smith, K.E.; Swank, P.R. Responsive parenting: Establishing early foundations for social, communication, and independent problem-solving skills. Dev. Psychol. 2006, 42, 627. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.S.; Silk, J.S.; Steinberg, L.; Myers, S.S.; Robinson, L.R. The role of the family context in the development of emotion regulation. Soc. Dev. 2007, 16, 361–388. [Google Scholar] [CrossRef] [PubMed]
- Pineda, R.G.; Neil, J.; Dierker, D.; Smyser, C.D.; Wallendorf, M.; Kidokoro, H.; Reynolds, L.C.; Walker, S.; Rogers, C.; Mathur, A.M.; et al. Alterations in brain structure and neurodevelopmental outcome in preterm infants hospitalized in different neonatal intensive care unit environments. J. Pediatr. 2014, 164, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Matas, L.; Arend, R.A.; Sroufe, L.A. Continuity of adaptation in the second year: The relationship between quality of attachment and later competence. In Thebeginning. Readings on Infancy; Columbia University Press: New York, NY, USA, 1978; pp. 547–556. [Google Scholar] [CrossRef]
- Nordell, A.; Lundh, M.; Horsch, S.; Hallberg, B.; Aden, U.; Nordell, B.; Blennow, M. The acoustic hood: A patient-independent device improving acoustic noise protection during neonatal magnetic resonance imaging. Acta Paediatr. 2009, 98, 1278–1283. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Nie, J.; Wang, L.; Shi, F.; Gilmore, J.H.; Lin, W.; Shen, D. Measuring the dynamic longitudinal cortex development in infants by reconstruction of temporally consistent cortical surfaces. Neuroimage 2014, 90, 266–279. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, L.; Shi, F.; Gilmore, J.H.; Lin, W.; Shen, D. Construction of 4D high-definition cortical surface atlases of infants: Methods and applications. Med. Image Anal. 2015, 25, 22–36. [Google Scholar] [CrossRef]
- Li, G.; Wang, L.; Yap, P.T.; Wang, F.; Wu, Z.; Meng, Y.; Dong, P.; Kim, J.; Shi, F.; Rekik, I.; et al. Computational neuroanatomy of baby brains: A review. NeuroImage 2019, 185, 906–925. [Google Scholar] [CrossRef]
- Wang, L.; Li, G.; Shi, F.; Cao, X.; Lian, C.; Nie, D.; Liu, M.; Zhang, H.; Li, G.; Wu, Z.; et al. Volume-based analysis of 6-month-old infant brain MRI for autism biomarker identification and early diagnosis. In Proceedings of the 21st International Conference on Medical Image Computing and Computer Assisted Intervention, Granada, Spain, 16–20 September 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 411–419. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Z.; Chen, L.; Sun, Y.; Lin, W.; Li, G. iBEAT V2. 0: A multisite-applicable, deep learning-based pipeline for infant cerebral cortical surface reconstruction. Nat. Protoc. 2023, 18, 1488–1509. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wu, Z.; Hu, D.; Wang, Y.; Zhao, F.; Zhong, T.; Lin, W.; Wang, L.; Li, G. A 4D Infant Brain Volumetric Atlas based on the UNC/UMN Baby Connectome Project (BCP) Cohort. NeuroImage 2022, 253, 119097. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, version 27.0; IBM Corp: Armonk, NY, USA, 2020. [Google Scholar]
- Topçiu, M.; Myftiu, J. Vygotsky theory on social interaction and its influence on the development of pre-school children. Eur. J. Soc. Sci. Educ. Res. 2015, 2, 172–179. [Google Scholar] [CrossRef]
- Mermelshtine, R. Parent–child learning interactions: A review of the literature on scaffolding. Br. J. Educ. Psychol. 2017, 87, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, O.H.; Salas, C.E. The neuropsychology of emotion and emotion regulation: The role of laterality and hierarchy. Brain Sci. 2021, 11, 1075. [Google Scholar] [CrossRef] [PubMed]
- Belsky, J.; Pluess, M. Differential susceptibility to long-term effects of quality of child care on externalizing behavior in adolescence? Int. J. Behav. Dev. 2012, 36, 2–10. [Google Scholar] [CrossRef]
Sample Characteristics | n (%) |
---|---|
Child Sex | |
Male | 30 (52.63) |
Female | 27 (47.37) |
Child Race | |
Black or African American | 20 (35.09) |
White | 21 (36.84) |
Asian | 2 (3.51) |
American Indian or Alaska Native | 1 (1.75) |
Native Hawaiian or Other Pacific Islander | 1 (1.75) |
Declined to respond | 12 |
Child Ethnicity | |
Yes, Hispanic or Latino | 30 (52.63) |
No, not Hispanic or Latino | 24 (42.10) |
Declined to respond | 3 |
Gestation Classification | |
Extreme Preterm (22–27) | 28 (44.92) |
Very Preterm (28–33) | 15 (26.32) |
Late Preterm (34–36) | 14 (24.56) |
Caregiver Relationship to Child | |
Mother | 52 (91.2) |
Father | 4 (7) |
Other | 1 (1.8) |
Caregiver Education: Highest Grade Completed | |
Primary school, Finished 5th grade | 2 (3.5) |
Middle School | 4 (7) |
Some High School | 8 (14) |
High School diploma or GED | 7 (12.3) |
Vocational or technical training | 2 (3.5) |
Some College | 11 (19.3) |
Bachelor’s degree (BA/BS) | 15 (26.3) |
Master’s degree MA, MS, JD | 4 (7) |
Other | 3 (5.3) |
Declined to respond | 1 (1.8) |
Means (SD) | |
Adjusted Gestational Age in months | 19.24 (4.904) |
Gestational Age at Birth (weeks) | 28.60 (4.39) |
Primary Caregiver Age | 32.74 (7.22) |
Measure | Extremely Preterm | Very Preterm | Late Preterm | F(df) | p |
---|---|---|---|---|---|
Means (SE) | Means (SE) | Means (SE) | |||
Child Behavioral Measures | |||||
Child Noncompliance | |||||
Level 1 | 2.824 (0.277) | 2.946 (0.360) | 2.523 (0.373) | 0.350 (2,46) | 0.707 |
Level 2 | 3.210 (0.294) | 3.795 (0.382) | 3.080 (0.395) | 1.005 (2,46) | 0.374 |
Level 3 | 4.127 (0.281) | 3.682 (0.365) | 3.734 (0.377) | 0.608 (2,46) | 0.549 |
Child Anger + | |||||
Level 1 | 1.044 (0.193) | 1.421 (0.251) | 1.392 (0.260) | 0.954 (2,46) | 0.393 |
Level 2 | 1.083 (0.198) | 1.470 (0.257) | 1.886 (0.266) | 3.012 (2,46) | 0.059 |
Level 3 | 1.564 (0.292) | 1.373 (0.380) | 2.140 (0.393) | 1.065 (2,46) | 0.353 |
Child Coping + | |||||
Level 1 | 2.869 (0.157) | 3.220 (0.204) | 3.380 (0.211) | 2.158 (2,46) | 0.127 |
Level 2 | 2.781 (0.178) | 3.015 (0.231) | 3.140 (0.239) | 0.809 (2,46) | 0.452 |
Level 3 | 2.607 (0.172) | 2.946 (0.223) | 2.907 (0.231) | 0.945 (2,46) | 0.396 |
Child Engagement | |||||
Level 1 | 3.921 (0.259) | 3.776 (0.337) | 5.151 (0.349) | 5.018 (2,46) | 0.011 * |
Level 2 | 4.010 (0.299) | 3.394 (0.388) | 4.865 (0.401) | 3.418 (2,46) | 0.041 * |
Level 3 | 3.191 (0.299) | 3.539 (0.388) | 4.620 (0.401) | 4.145 (2,46) | 0.022 * |
Child Persistence + | |||||
Level 1 | 3.176 (0.241) | 3.193 (0.313) | 4.019 (0.324) | 2.455 (2,46) | 0.097 |
Level 2 | 3.225 (0.266) | 2.634 (0.346) | 3.612 (0.357) | 1.941 (2,46) | 0.155 |
Level 3 | 2.660 (0.249) | 2.846 (0.323) | 3.383 (0.335) | 1.520 (2,46) | 0.229 |
Parent Assistance Sum | |||||
Level 1 | 10.500 (0.615) | 9.911 (0.799) | 11.672 (0.827) | 1.195 (2,46) | 0.312 |
Level 2 | 11.017 (0.527) | 9.888 (0.685) | 11.705 (0.708) | 1.720 (2,46) | 0.190 |
Level 3 | 10.271 (0.522) | 10.109 (0.678) | 12.173 (0.702) | 2.884 (2,46) | 0.066 |
Across Levels | 3.84 (2,46) | 0.029 * |
Measure | Extremely Preterm | Very Preterm | Late Preterm | F(df) | p |
---|---|---|---|---|---|
Means (SE) | Means (SE) | Means (SE) | |||
Left Frontal Gray Matter Regional Volumes | |||||
Sum of frontal regions | 58,678 (1056) | 58,346 (1427) | 60,719 (1354) | 0.911 (2,30) | 0.413 |
Middle frontal gyrus | 10,261 (367) | 10,743 (497) | 10,803 (471) | 0.533 (2,30) | 0.592 |
Precentral gyrus | 7228 (236) | 7197 (319) | 7691 (303) | 0.867 (2,30) | 0.430 |
Supplementary motor area | 4172 (169) | 4137 (229) | 4342 (217) | 0.255 (2,30) | 0.776 |
Medial orbitofrontal cortex | 1506 (107) | 1421 (144) | 1424 (137) | 0.165 (2,30) | 0.849 |
Inf. orbitofrontal cortex | 4181 (223) | 4306 (301) | 5003 (286) | 2.684 (2,30) | 0.085 |
Middle orbitofrontal cortex | 1915 (123) | 1580 (166) | 2161 (158) | 3.147 (2,30) | 0.057 |
Medial sup. frontal gyrus | 5093 (279) | 4920 (377) | 4914 (358) | 0.107 (2,30) | 0.898 |
Dorsal sup. frontal gyrus | 5455 (230) | 5581 (311) | 5439 (296) | 0.067 (2,30) | 0.935 |
Rolandic operculum | 3649 (71) | 3513 (96) | 3738 (91) | 1.436 (2,30) | 0.254 |
Triangular inf. frontal gyrus | 6521 (171) | 6226 (231) | 6788 (219) | 1.522 (2,30) | 0.235 |
Opercular inf. frontal gyrus | 2450 (69) | 2452 (93) | 2594 (88) | 0.930 (2,30) | 0.405 |
Rectus gyrus | 1792 (198) | 2029 (268) | 1365 (254) | 1.662 (2,30) | 0.207 |
Anterior cingulate cortex | 4455 (147) | 4243 (199) | 4457 (189) | 0.422 (2,30) | 0.660 |
Right Frontal Gray Matter Regional Volumes | |||||
Sum of frontal regions | 59,944 (1460) | 59,620 (1973) | 63,532 (1973) | 1.386 (2,30) | 0.266 |
Middle frontal gyrus | 10,241 (486) | 10,323 (657) | 10,950 (623) | 0.427 (2,30) | 0.656 |
Precentral gyrus | 7219 (307) | 7291 (416) | 7849 (394) | 0.844 (2,30) | 0.440 |
Supplementary motor area | 4356 (175) | 4748 (236) | 4762 (224) | 1.411 (2,30) | 0.260 |
Medial orbitofrontal cortex | 2159 (113) | 2075 (152) | 2259 (144) | 0.379 (2,30) | 0.688 |
Inf. orbitofrontal cortex | 4638 (198) | 4341 (267) | 5202 (254) | 2.824 (2,30) | 0.075 |
Middle orbitofrontal cortex | 2348 (163) | 1958 (221) | 2743 (209) | 3.254 (2,30) | 0.053 |
Medial sup. frontal gyrus | 3252 (242) | 3423 (327) | 3253 (310) | 0.100 (2,30) | 0.905 |
Dorsal sup. frontal gyrus | 6383 (301) | 6266 (407) | 6458 (386) | 0.058 (2,30) | 0.944 |
Rolandic operculum | 4618 (75) | 4386 (101) | 4624 (96) | 1.967 (2,30) | 0.157 |
Triangular inf. frontal gyrus | 4798 (116) | 4538 (157) | 5238 (149) | 5.316 (2,30) | 0.011 * |
Opercular inf. frontal gyrus | 3678 (123) | 3768 (166) | 3885 (158) | 0.541 (2,30) | 0.588 |
Rectus gyrus | 1708 (191) | 1864 (258) | 1488 (245) | 0.557 (2,30) | 0.579 |
Anterior cingulate cortex | 4546 (144) | 4642 (195) | 4822 (185) | 0.686 (2,30) | 0.511 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz, J.S.; Giles, M.E.; Vaughn, K.A.; Wang, Y.; Landry, S.H.; Bick, J.R.; DeMaster, D.M. Parenting Influences on Frontal Lobe Gray Matter and Preterm Toddlers’ Problem-Solving Skills. Children 2024, 11, 206. https://doi.org/10.3390/children11020206
Muñoz JS, Giles ME, Vaughn KA, Wang Y, Landry SH, Bick JR, DeMaster DM. Parenting Influences on Frontal Lobe Gray Matter and Preterm Toddlers’ Problem-Solving Skills. Children. 2024; 11(2):206. https://doi.org/10.3390/children11020206
Chicago/Turabian StyleMuñoz, Josselyn S., Megan E. Giles, Kelly A. Vaughn, Ying Wang, Susan H. Landry, Johanna R. Bick, and Dana M. DeMaster. 2024. "Parenting Influences on Frontal Lobe Gray Matter and Preterm Toddlers’ Problem-Solving Skills" Children 11, no. 2: 206. https://doi.org/10.3390/children11020206
APA StyleMuñoz, J. S., Giles, M. E., Vaughn, K. A., Wang, Y., Landry, S. H., Bick, J. R., & DeMaster, D. M. (2024). Parenting Influences on Frontal Lobe Gray Matter and Preterm Toddlers’ Problem-Solving Skills. Children, 11(2), 206. https://doi.org/10.3390/children11020206