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Abstract: Background: while most gut microbiota research has focused on term infants, the health
outcomes of preterm infants are equally important. Very-low-birth-weight (VLBW) or extremely-low-
birth-weight (ELBW) preterm infants have a unique gut microbiota structure, and probiotics have
been reported to somewhat accelerate the maturation of the gut microbiota and reduce intestinal
inflammation in very-low preterm infants, thereby improving their long-term outcomes. The aim
of this study was to investigate the structure of gut microbiota in ELBW neonates to facilitate the
early identification of different types of low-birth-weight (LBW) preterm infants. Methods: a total
of 98 fecal samples from 39 low-birth-weight preterm infants were included in this study. Three
groups were categorized according to different birth weights: ELBW (n = 39), VLBW (n = 39), and
LBW (n = 20). The gut microbiota structure of neonates was obtained by 16S rRNA gene sequencing,
and microbiome analysis was conducted. The community state type (CST) of the microbiota was
predicted, and correlation analysis was conducted with clinical indicators. Differences in the gut
microbiota composition among ELBW, VLBW, and LBW were compared. The value of gut microbiota
composition in the diagnosis of extremely low birth weight was assessed via a random forest-machine
learning approach. Results: we briefly analyzed the structure of the gut microbiota of preterm infants
with low birth weight and found that the ELBW, VLBW, and LBW groups exhibited gut microbiota
with heterogeneous compositions. Low-birth-weight preterm infants showed five CSTs dominated
by Enterococcus, Staphylococcus, Klebsiella, Streptococcus, Pseudescherichia, and Acinetobacter. The birth
weight and clinical indicators related to prematurity were associated with the CST. We found the
composition of the gut microbiota was specific to the different types of low-birth-weight premature
infants, namely, ELBW, VLBW, and LBW. The ELBW group exhibited significantly more of the
potentially harmful intestinal bacteria Acinetobacter relative to the VLBW and LBW groups, as well
as a significantly lower abundance of the intestinal probiotic Bifidobacterium. Based on the gut
microbiota’s composition and its correlation with low weight, we constructed random forest model
classifiers to distinguish ELBW and VLBW/LBW infants. The area under the curve of the classifiers
constructed with Enterococcus, Klebsiella, and Acinetobacter was found to reach 0.836 by machine
learning evaluation, suggesting that gut microbiota composition may be a potential biomarker
for ELBW preterm infants. Conclusions: the gut bacteria of preterm infants showed a CST with
Enterococcus, Klebsiella, and Acinetobacter as the dominant genera. ELBW preterm infants exhibit an
increase in the abundance of potentially harmful bacteria in the gut and a decrease in beneficial
bacteria. These potentially harmful bacteria may be potential biomarkers for ELBW preterm infants.
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1. Introduction

Extremely-low-birth-weight (ELBW) infants refers to newborns whose birth weights
are less than 1000 g. ELBW preterm infants have less well-developed systems than other
low-birth-weight (LBW) preterm infants, and their poor immune systems make them more
susceptible to infections and other preterm complications, often involving the nervous
system, which increase the risk of cerebral palsy, intellectual disability, mission, and deaf-
ness [1,2]. The mortality rate of premature infants with ELBW is high. It was reported
that the probability of ELBW premature infants dying from clinical complications (such as
necrotizing enterocolitis and sepsis) is as high as 23% [3–5].

The gut microbiota begins to colonize the gastrointestinal tract at birth and plays an
important role in the growth and development of newborns in the early stages of life and
beyond. However, the diversity of gut microbiota is low in early neonatal life, and the
structure of the gut microbiota is influenced by a variety of factors, including the mode of
delivery, gestational age, birth weight, feeding method, and the environment [6–11]. The
mode of delivery is one of the most important determinants of gut microbiota composi-
tion [12]. In vaginally delivered newborns, the abundance of Bacteroidetes is higher, while in
cesarean-delivered newborns, Klebsiella and Haemophilus are the dominant species 6. Studies
have shown that gestational age and birth weight are the most important factors influencing
differences in intestinal microecology. Preterm infants have a unique gut microbiota in the
early postnatal period [13], which is dominated by conditionally pathogenic bacteria, such
as Staphylococci, Enterococci, and Enterobacteria, and beneficial bacteria such as Bifidobacteria
do not exist as dominant species [14]. Most LBW preterm infants are transferred to a neona-
tal intensive care unit (NICU) after birth to be maintained on respiratory support equipment
because of respiratory distress or other reasons. The gut microbiome colonization in LBW
preterm infants can also be influenced by the NICU’s ambient settings and the usage of
appropriate equipment. Extended respiratory support in preterm infants can lead to an
increase in intestinal aerobic and facultative anaerobic bacteria [15]. Gut microbiota genera
in LBW preterm infants in the NICU are dominated by Klebsiella, Enterobacter, and Entero-
cocci, and differences among the gut microbiota decrease with an increase in hospitalization
time [16]. An other significant element influencing the gut microbiota makeup in preterm
newborns is feeding method. Breast-fed and non-breast-fed infants have different gut mi-
crobiota [17]. However, breastfeeding can help premature infants’ immune systems mature
and encourage the colonization of intestinal bacteria Bifidobacterium [18]. The maternal diet
can also affect the composition of the infant’s gut microbiota [19–22]. For instance, if the
mother consumes plant-based protein or a high-fat diet, it can lead to a significant reduction
in the presence of Bacteroides bacteria in the newborn’s gut, and the decrease in Bacteroides
may affect the early-immune and metabolic development of newborns [20,21]. In addition,
the use of antibiotics also has a certain impact on the composition of gut microbiota in
premature infants. Antibiotics can reduce the diversity of gut microbiota and delay the
colonization of Bifidobacterium [23]. The community state type (CST) is based on the gut
microbiota abundance obtained from sequencing analysis and classified into different CSTs
by clustering [24,25]. There are also variations in the types of gut microbiota-community
states among infants of different age groups. In healthy infants under 6 months old, the
gut microbiota CSTs are mainly characterized by a higher abundance of Bifidobacterium,
while in infants aged 12 to 36 months typical adult bacterial genera such as Bacteroides and
Faecalibacterium predominate [26]. It can be seen that, as the newborn grows and develops,
the composition of gut microbiota in the body also undergoes dynamic changes.

Current research has found that preterm infants, because of their prolonged exposure
to the NICU environment and the relatively frequent clinical interventions such as respira-
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tory support and antibiotic use they experience, undergo changes in their gut microbiota
composition, making them more susceptible to conditions like NEC and late-onset sepsis
(LOS) [3,27,28]. Supplementing the food of early-stage newborns with probiotics such as
Bifidobacterium can promote the colonization of the intestine by beneficial bacteria, thereby
preventing or reducing the occurrence of NEC, LOS, and feeding intolerance [29–32]. Pro-
biotic supplementation improves gut microbial composition, making it closer to that of
full-term infants, which is beneficial for promoting immunity and metabolism [33–36].
Probiotic-supplemented ELBW preterm newborns had low levels of harmful bacteria and
a substantial increase in the gut bacterial Bifidobacterium. The results showed that the
abundance of Bifidobacterium in the intestinal bacteria of preterm infants of ELBW who
received probiotic supplementation was significantly higher than those who did not re-
ceive probiotics, and the abundance of pathogenic bacteria was lower. Simultaneously,
preterm infants who received probiotic supplementation had higher levels of acetate and
lactate (end products of HMO metabolism), and the abundance of acetate was positively
correlated with the abundance of Bifidobacterium [37]. At the same time, the gut microbiota
diversity of ELBW preterm infants who received probiotic Lactobacillus supplementation
increased, and the abundance of the supplemented probiotics also rose. Compared with the
control-group infants, ELBW preterm infants who received probiotic supplementation had
reduced abundances of Staphylococcaceae and Enterobacteriaceae in their intestines [38]. It can
be seen that probiotic supplementation for preterm infants can facilitate colonization of the
intestine by beneficial bacteria and reduce harmful bacteria. Probiotics can also promote
the metabolism of HMO in breast milk, enabling the beneficial metabolites in HMO to exert
their immune-enhancing effects.

Most studies on intestinal microbiota have focused on full-term infants; however, the
health outcomes of ELBW and VLBW preterm infants are equally important. Because of
their immature systemic physiology and immature intestinal microbiota structure, they
may be predisposed to long-term outcomes such as neurodevelopmental disorders [39].
Studies have found that there is a correlation between gut microbiota and brain func-
tion. A study established a connection between the gut microbiota, immunology, and
neurodevelopment in extremely-preterm infants and discovered that excessive growth of
the intestinal microbiota can be a strong predictor of brain injury. Abnormal development
of the gut-microbiota–immune-system–brain axis may drive or exacerbate brain injury in
extremely-preterm infants [40]. The underlying mechanisms of these effects have not been
fully elucidated, and some have not even been considered. Therefore, this study aimed
to investigate the gut microbiota structure of preterm infants with LBW using 16S rRNA
gene sequencing technology. We analyzed the gut microbiota structure, corresponding
microbiota profiles, and the CST of the gut microbiota among preterm infants of different
birth weights. Correlation analysis of the CST and clinical indicators of preterm infants was
conducted, and the clinical value of the intestinal microbiota in diagnosing extremely-LBW
preterm infants was evaluated.

2. Methods
2.1. Participant Enrollment and Sample Collection

This study included a total of 98 fecal samples from 39 preterm infants with LBW.
Inclusion criteria: premature infants hospitalized in the NICU of the neonatology depart-
ment; gestational age at birth of <37 weeks and a birth weight of <2500 g; hospitalization
time > 7 days. Exclusion criteria: neonates with a gestational age at birth of ≥37 weeks and
a birth weight of ≥2500 g; hospitalization time < 7 days; premature infants with severe
congenital heart disease and severe digestive tract malformation who need surgery; pre-
mature infants with Down syndrome, hereditary metabolic diseases and severe asphyxia;
stillbirths, induced abortions, combined with severe cardiac and renal dysfunction. We
selected the first stool sample of NICU low-birth-weight premature infants who met the
inclusion criteria, then planned to collect fecal samples every 2 weeks until discharge
or until the 8th week of collection. Finally, the preterm infants were divided into three



Children 2024, 11, 770 4 of 17

groups based on their birth weights: ELBW (<1000 g), VLBW (1000–1499 g), and LBW
(1500–2499 g).

The guardians of the participants collected fecal samples in sterile containers and
transported them overnight on ice to the laboratory. The researchers immediately aliquoted
the samples into tubes containing 3–5 g each and stored them in a −80 ◦C freezer. The
research protocol of this study was approved by the hospital’s medical ethics committee,
and each neonate’s parents provided written informed consent. The research protocol
was designed in compliance with the Helsinki Declaration and approved by the hospital’s
medical ethics committee.

2.2. Analysis of Gut Microbiota

Refer to our published articles [41–46] for detailed methodology on 16S rRNA gene
sequencing and bioinformatic analyses (detailed in the Supplementary Materials).

2.3. Analysis of Ecological Diversity Indices

The diversity function from the R package Vegan (version 2.6-4) was used to calculate
the Shannon and Inverse Simpson indices for the samples. The estimateR function from
the R package Vegan was used to calculate the richness index for the samples.

2.4. Stacked Bar Chart, Chord Diagram, Venn Plot, Volcano Plot, Manhattan Plot

The processes used to obtain the stacked bar charts, chord diagrams, Venn plots,
volcano plots, and Manhattan plots were completed by referring to the EasyAmplicon
protocol [47].

2.5. Constrained Principal Coordinates Analysis

Constrained Principal Coordinate Analysis (CPCoA) refers to the addition of grouping
information to the Principal Coordinate Analysis (PCoA) in order to find a plane that can
best explain the differences between groups under self-defined grouping conditions. The
process was completed by referring to the EASYAMPLICON protocol [47].

2.6. Gut-Microbiota Network Analysis

The layout and visualization of the gut microbiota network diagram were completed
with reference to the article published by the Zhou Jizhong Team, Li Ji Team, and Shen
Qirong Team [48–50].

2.7. Analysis of Microbial Community Structure

Gap statistics were used to determine the optimal number of clusters in the microbial
community structure. This method identifies the best number of clusters by comparing the
distribution of clustered data with that of a random distribution through the calculation of
the gap (or “gap statistic”) between them.

2.8. Non-Metric Multidimensional Scaling

Non-metric multidimensional scaling (NMDS) was completed with reference to the
authors’ previously published research [51,52]. Firstly, based on the genus-level data, the
metaMDS function in the R package Vegan (version 2.6-4) was used to conduct NMDS
ordination analysis and obtain the stress value. Simultaneously, the adonis2 function in
the R package Vegan was employed to conduct a permutational multivariate analysis of
variance (PERMANOVA) based on Bray–Curtis distance, yielding p-values and R2 values.
The ordisurf function in the R package Vegan was used to passively add environmental
variables to the NMDS ordination. Finally, the geom_point function in the R package
ggplot2 (version 3.3.2) was employed to visualize the results of the NMDS ordination.
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2.9. Random Forest Analysis

Refer to previously published articles [53–55] for detailed methodology on the random
forest analysis (detailed in the Supplementary Materials).

2.10. Other Analyses

To evaluate the correlation between the significantly different gut microbiota composi-
tions between groups and clinical manifestations, the lm function in R software (version
4.2.3) was used to construct a logistic regression model. The p-value and coefficient of
determination (R-squared) of the logistic regression model were obtained through the
summary function. The beeswarm function in the R package beeswarm (version 0.4.0) was
used to create boxplots, and the wilcox.test function from the R package stats (version 4.2.3)
was used for statistical testing to obtain p-values. The visualization of clinical data and
other aspects were completed using customized scripts.

3. Results

This study included 98 fecal samples from 39 preterm infants. We conducted a visual
analysis of clinical data on premature infants, and the results are shown in Figure 1A.
To determine the saturation of sequencing data for the 16s rRNA gene, that is, whether
the number of sequencing data were sufficient, we performed saturation curve analysis
based on species richness, and the results are shown in Figure 1B. It can be seen that the
saturation curves for ELBW, LBW, and VLBW all tended to saturate, indicating that the
16s rRNA gene sequencing data were sufficient. At the same time, the species richness
in the LBW group was slightly higher than those of ELBW and VLBW infants. We used
ANOSIM, which stands for analysis of similarities, to compare the similarity of the gut
microbiota composition data among ELBW, LBW, and VLBW infants. As a non-parametric
test method, ANOSIM is often used to test for the similarities among high-dimensional
data. We also compared the magnitude of differences in gut microbiota compositions both
between and within the groups of ELBW, LBW, and VLBW infants, and the results are
presented in Figure 1C. The R-value of 0.0418 indicated the presence of a certain degree of
difference both within and between the groups. The p-value of 0.043 suggested that this
difference was restricted. To further understand the shared and unique gut microbiota
profiles among ELBW, LBW, and VLBW infants, and to visually demonstrate the overlaps
in gut microbiota among the three groups, we conducted an analysis using a Venn plot and
found that the number of OTUs shared among the three groups was 118, indicating that the
majority of gut microbiota were common to ELBW, LBW, and VLBW infants (Figure 1D).

To further understand the gut microbiota composition of preterm infants, we analyzed
the gut microbiota at the genus level (Figure 1E,F). The results showed that the gut mi-
crobiota of the ELBW group was dominated by Enterococcus, followed by Staphylococcus,
Acinetobacter, and Klebsiella. The gut microbiota of the VLBW group was primarily com-
posed of Klebsiella, followed by Enterococcus, Staphylococcus, Streptococcus, Acinetobacter, and
Pseudescherichia. In the LBW group, Enterococcus, Staphylococcus, Klebsiella, and Streptococcus
were the main gut microbiota genera, followed by Bifidobacterium and Pseudescherichia.
Compared with those of the LBW group, the ELBW and VLBW groups’ abundances of
Acinetobacter were significantly increased, with a notable increase observed in the ELBW
group. Conversely, the abundance of Bifidobacterium was significantly reduced. We em-
ployed CPCoA to compare the differences in the gut microbiota composition among the
ELBW, LBW, and VLBW groups of infants. The results showed that the grouping could
explain 2.65% of the variation, and the separation was relatively distinct, indicating that
grouping had a certain influence on the composition of gut microbiota (Figure 1G). We
further analyzed the gut microbiota of preterm infants in the ELBW, LBW, and VLBW
groups by NMDS clustering at the genus level. The group data were calculated via the
Bray–Curtis index to generate NMDS to visualize the similarity of the gut microbiota. In
Figure 1H, each point in the graph represents the microbiota characteristics of an individual
preterm infant in a low-dimensional space. The results showed that there were distinct
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clusters of gut microbiota genera among the three groups, indicating significant differences
in their distribution (R2 = 0.041, p = 0.001). Simultaneously, we conducted clustering anal-
ysis based on the clinical phenotypes of the three groups of preterm infants. The results
showed significant differences in gestational age and birth weight among the three groups
(Figure S1A).
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Figure 1. Analysis of gut microbiota diversity in low-birth-weight preterm infants. (A) Visual analysis
of clinical data for three groups of preterm infants; (B) saturation curve analysis based on species
richness; (C) comparison of similarities and differences in ELBW, LBW, and VLBW gut microbiota
composition data by ANOSIM; (D) Venn plot illustrating shared and unique OTUs among the three
groups; (E,F) composition of gut microbiota at the genus level among the three groups; (G) CPCoA
explained 2.65% of the total variation in gut microbiota composition among the groups, and there
were significant differences between the groups (p < 0.05); (H) NMDS analysis used to rank the gut
microbiota of the ELBW, VLBW, and LBW groups. The Bray–Curtis index was calculated for the three
groups to generate the NMDS to visualize the similarities among the gut microbiota, and the results
showed that there was a significant difference in the distribution of the gut microbiota among the
three groups (p < 0.05).

To further understand whether the gut microbiota components were differentially
distributed among the ELBW, LBW, and VLBW groups, we performed an analysis of
gut microbiota at the genus level by volcano plots. The results showed that 118 genera
with differential abundances were identified between ELBW and LBW at the genus level.
Among them, 56 genera were less abundant in ELBW, while 62 genera were more abundant
in the ELBW than in the LBW group (Figure 2A). Compared with VLBW infants, ELBW
infants exhibited a total of 83 differentially abundant genera of gut microbiota at the
genus level, with 44 genera showing lower, and 39 genera showing higher, abundances
compared with those in the VLBW group (Figure 2B). A total of 67 differentially abundant
genus-level enterobacteria were identified in VLBW infants compared with the findings
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in LBW infants, with 36 genera less abundant and 31 genera more abundant than in the
LBW group (Figure 2C). We further specifically analyzed these differentially abundant
gut microbiota through Manhattan plots. The results showed that, compared with the
LBW group, the ELBW group exhibited more Enterococcus, Streptococcus, and Acinetobacter,
but lower amounts of Klebsiella. Enterococcus, Streptococcus, and Clostridium sensu stricto
abundances were predominantly lower, and that of Enterobacter was predominantly higher,
in ELBW compared with the findings in VLBW. Compared with LBW infants, VLBW infants
showed more Acinetobacter and less Enterococcus and Klebsiella (Figure 2D–F).
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Figure 2. The distribution of bacteria at the genus level in the gut microbiota. (A–C) Volcano plots
revealing differentially abundant gut microbiota among the VLBW, ELBW, and LBW groups. Red
represents significantly high-abundance bacteria, while green represents significantly low-abundance
bacteria. (D–F) Manhattan plots revealing the distribution of gut microbiota among the three groups.

To further understand the interrelationships among the intestinal microbiota in each
group, we employed the molecular ecological networks (MENs) method and visualization
tools based on 16S rRNA high-throughput sequencing. The results showed that the gut
microbial interaction network of the VLBW group consisted of 416 nodes (ASVs) and
8856 links (interactions). In the network constructed for the ELBW group, more nodes were
observed, but fewer links were present (Figure 3A). Compared with non-breastfed preterm
infants, breastfed preterm infants exhibited a higher number of nodes but fewer links in
their gut microbiota networks. Preterm infants with jaundice had fewer nodes and even
fewer links compared with those without jaundice (Figure S1B). To further understand
whether the differences between all enrolled subjects affected their corresponding gut mi-
crobiota and clinical phenotypes, for example, we used gap statistics, a clustering method
based on interval statistics, and analyzed the optimal number of clusters based on the total
sample size. The study subjects were grouped according to their similarities, resulting in
high similarity levels within groups and significant differences between groups. Figure 3B
displays the gap statistic plots based on clustering by sample size. Based on B = 100 itera-
tions for each k, the results showed that k = 5 was the optimal k-value, indicating that the
clustering performance was basically optimal. As k continued to increase, the performance
improved, relatively slowly. Therefore, the final clustering algorithm was chosen with a
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k-value of 5, meaning that we grouped the samples into five clusters. We further employed
NMDS to analyze the five clusters identified through the clustering analysis. By calculating
the Bray–Curtis index, we generated an NMDS plot to visually display the similarities
among the samples. To further understand the connection between the gut microbiota
and clinical phenotypes in preterm infants with low birth weight, we first conducted an
analysis of CSTs based on their gut microbiota. Through multidimensional scaling (MDS),
we performed ordination analysis based on the sorting of eigenvalues and visualized the
first four eigenvectors using NMDS (Figure 3C,D). Then, five CST samples were visualized
using the NMDS method. In Figure 3E, each point on the plot represents the characteristics
of a single sample in the low-dimensional space, and the results indicated that the five
CSTs exhibited distinct clustering patterns. To understand the relationships among the gut
microbiotic abundances of the five clusters identified through clustering analysis, we used a
further clustering heatmap to display the variations in the abundance of key gut microbiota
across the five CST samples. This allowed us to compare the compositional similarities and
differences in the gut microbiota at the genus level among the different groups. The results
indicated that the gut microbiota in the five CSTs was primarily composed of harmful
bacteria. The six bacteria species with relatively high abundance in the gut microbiota
were Enterococcus, Klebsiella, Staphylococcus, Streptococcus, Pseudescherichia, and Acinetobacter.
The abundance of gut bacteria also varied among the different CSTs. Specifically, the
abundances of Streptococcus and Pseudescherichia were higher in CST 1; Staphylococcus had a
higher abundance in CST 2, Enterococcus was more abundant in CST 4, and Klebsiella was
more prevalent in CST 5 (Figure 3F).

We further analyzed the relationships among the five CSTs and clinical phenotypes,
and the results are presented in Figure 4A. Overall, there were significant differences
(p < 0.05) between the five CSTs in terms of gestational age, parity, birth weight and length,
weight and length at 1 month, weight and length at 3 months, and the percentage of
neutrophils. In terms of the gestational age, birth weight, and birth length of the infants,
there were significant differences between CST 3 and CST 5. In a comparison of body length
at 1 month, there were significant differences between CST 1 and CST 3. In a comparison
of body length at 3 months, CST 5 exhibited significant differences compared with CST 1,
CST 2, and CST 3. There were also significant differences in the percentage of neutrophils
between CST 4 and CST 5. In terms of parity, there was also a significant difference between
CST 2 and CST 5. We further analyzed the correlation between each group and the clinical
indicators (Figure 4B). The results showed a significant positive correlation between body
length at 1 month and CST 1, while there was a significant negative correlation between
body length at 1 month and CST 5. Additionally, there was a significant negative correlation
between CST 1 and platelet count (PLT), as well as a negative correlation between CST 4
and total bile acid (TBA).

To further explore whether there were differences in the gut microbiota between ELBW
infants and other LBW infants, we initially classified the preterm infants into two groups.
One was the ELBW group (ELBW+), and the other group comprised infants with VLBW
and LBW, collectively known as the non-extremely-low-birth-weight group (ELBW−).
According to the classification of gut microbiota under ASV conditions, the gut microbiota
of the two groups of children were compared, and the results are shown in Figure 5A. The
four bacteria with significantly increased abundance in the ELBS+ group were Acineto-
bacter_ASV_46, Acinetobacter_ASV_49, Acinetobacter_ASV_51, and Acinetobacter_ASV_54.
The abundance of intestinal bacteria Bifidobacterium_ASV_107 and Klebsiella_ASV_2 were
significantly lower in the ELBS+ group of infants. To further evaluate the clinical appli-
cation value of the gut microbiota, we constructed a classifier based on a random forest
model, as shown in Figure 5B,C. The top-three gut microbiota (Klebsiella_ASV_2, Ente-
rococcus_ASV_38, Klebsiella_ASV_11) used for preterm infant classification had an AUC
value of 0.836. The AUC values for preterm infant classification using the top-5 and top-10
gut microbiota were 0.793 and 0.753, respectively. These results indicated that intestinal
bacteria may be potential biomarkers for ELBW preterm infants.
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ria across the five CST sample 

Figure 3. The relationships among the five clusters of samples identified through clustering analysis
and the diversity of the gut microbiota. (A) MENs method based on 16S rRNA high-throughput
sequencing and visualization tools to analyze the interrelationships among gut microorganisms
between groups. (B) The gap statistic method was used to analyze the optimal number of clusters
based on the Bray–Curtis distance of the incoming samples; the results show that 5 was the optimal
k value. (C) Ordination analysis of eigenvalue obtained from MDS. (D) NMDS visualization based
on the first four eigenvectors obtained by MDS. (E) Demonstration of 5 CSTs samples based on the
NMDS method. (F) Heatmap showcasing the variations in the abundance of driver intestinal bacteria
across the five CST sample.
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Figure 4. The correlation analysis between the five CST samples and clinical phenotypes. (A) Sig-
nificant differences between the five CST samples and clinical phenotypes (*** p < 0.001, ** p < 0.01,
* p < 0.05); a, b, and c are defined as using the significant difference letter marking method to arrange
all the means from largest to smallest. Any difference with the same marking letter is not significant,
and any difference with a different marking letter is significant. (B) Significant linear correlation
between the five CST samples and clinical phenotypes.
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Figure 5. Intestinal bacteria may be a potential biomarkers for ELBW premature infants. (A) The
abundances of intestinal bacteria Acinetobacter_ASV_46, Acinetobacter_ASV_49, Acinetobacter_ASV_51,
and Acinetobacter_ASV_54 were significantly elevated in the ELBW infant group. The abundances
of intestinal bacteria Bifidobacterium_ASV_107 and Klebsiella_ASV_2 were significantly reduced in
the ELBW group of infants. ** p < 0.01, * p < 0.05. (B,C) Intestinal bacteria can be used as potential
biomarkers for ELBW preterm infants. (B) Based on the random forest model, the potential use of
intestinal bacteria in the classification of ELBW preterm infants was evaluated. The results showed
that the AUC value of the top-three intestinal bacteria in the classification of ELBW preterm infants
was 0.836. (C) Rank of intestinal bacterial markers.

4. Discussion

The CSTs can be used to discover the dominant bacterial community composition
in different age groups and samples. Currently, most studies have focused on analyzing
the CSTs of gut microbiota based on samples from the reproductive tract. One study
categorized the female vaginal microbiota into five CSTs by 16S rRNA gene sequencing,
of which CSTs I, II, III, and V were all dominated by Lactobacillus 24. A study based on
adult gut microorganisms found that adult gut microorganisms can be categorized into
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three distinct clusters, known as enterotypes, driven by different genera of bacteria, namely
Bacteroides (enterotype 1), Prevotella (enterotype 2), and Ruminococcus (enterotype 3) [56].
A study conducted on the gut microbiota of school-age children identified three distinct
enterotypes: Bacteroides, Prevotella, and Bifidobacterium [57].

There have been fewer CST analyses conducted on samples from neonates. A study
focusing on the gut microbiota of infants found that infants under 6 months of age primarily
had five community state types, which were dominated by the genus Bifidobacterium. There
were seven main infant community state types (ICSTs) for infants aged 6–36 months; these
ICSTs were characterized by typical adult bacterial genera and primarily manifested as
decreased Bifidobacterium and increased Bacteroides 24. Grier and his team conducted a lon-
gitudinal CST analysis by collecting intestinal samples from preterm and full-term infants.
The results revealed the existence of CSTs potentially characterized by Enterobacteriaceae,
Veillonella, Ruminococcus, Streptococcus, Prevotella, Bacteroides, and Bifidobacterium [58]. The
detection of a large number of ICSTs is believed to reflect the high variability and dynamics
of the microbiota during early life [59]. In this study, CST analysis was conducted on
the gut microbiota of low-weight preterm infants, and we found diverse gut microbiota
compositions among the VLBW, LBW, and WELBW infants. Low-weight preterm infants
exhibited five distinct CSTs, primarily characterized by Enterococcus, Staphylococcus, Kleb-
siella, Streptococcus, Pseudescherichia, and Acinetobacter. The primary intestinal bacteria in
CST 1 were Streptococcus and Pseudescherichia. CST 2 was dominated by Staphylococcus.
CST 4 was primarily made up of Enterococcus, while CST 3 and CST 5 were mainly Kleb-
siella. It can be seen that the CSTs of the neonatal intestine were generally dominated by
opportunistic pathogens.

The gut microbiota of neonates is influenced by various factors, and there is a correla-
tion between the community state types of neonatal microbiota and clinical phenotypes.
The community state types of the neonatal gut microbiota also differ based on the mode
of delivery. Infants delivered vaginally tend to have CSTs dominated by Bifidobacterium,
while those delivered by cesarean section are more likely to have Bacteroides as the primary
bacteria 24. In this study, preterm infants exhibited significant differences in gestational
age, birth weight, and birth length in terms of CSTs, and there were especially significant
differences between CST 3 and CST 5. There was a linear relationship between the CST
and the length, PLT, and TBA of preterm infants. However, further verification is needed
to determine whether there is a causal relationship between the gut microbiota and these
clinical indicators.

Particularly in preterm children, the degree of intestinal growth is immature during
the neonatal era, and the gut microbiota’s structure and function varies markedly. The gut
microbiota of preterm infants is often dominated by facultative anaerobic and opportunistic
pathogens such as Enterobacter, Enterococcus, and Staphylococcus [60,61]. In this study, we
analyzed the structure of the intestinal bacteria in different low-birth-weight preterm
infants. We discovered that, although the intestinal bacterial composition of preterm infants
with different low-birth-weights varied, the main bacterial species were still opportunistic
pathogens such as Enterococcus, Staphylococcus, Klebsiella, Streptococcus, and Acinetobacter.
Compared with the VLBW and LBW groups, the ELBW group in this study exhibited
a significant increase in the potentially harmful intestinal bacterial genus Acinetobacter.
Acinetobacter belongs to the category of opportunistic pathogens, is also a major cause
of neonatal infections and outbreaks in neonatal intensive care units (NICUs) [62], and
can lead to the occurrence of diseases such as meningitis, bloodstream infections, and
respiratory infections [63,64]. Acinetobacter, one of the major drug-resistance-associated
mortality pathogens, is associated with high morbidity and mortality rates, and preterm
and VLBW infants are highly susceptible to infection [65,66].

In this study, Klebsiella was identified as a potential biomarker bacteria genus in
preterm infants. The random forest analysis also indicated that Klebsiella could be a potential
biomarker for diagnosing preterm infants. Klebsiella is a common intestinal microorganism
during neonatal development [67]. It can act on macrophages to thereby evade the host
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immune system and to persist, potentially causing opportunistic infections [68]. Because
of their gestational age and low body weight, premature infants do not yet possess fully
developed or matured systems such as digestion and absorption and immune systems.
Preterm infants are more prone to a series of infections, such as neonatal sepsis and
necrotizing enterocolitis (NEC), because of their small gestational age, low body weight,
and incomplete development of various systems, such as the digestive, absorption, and
immune systems. Relevant studies have shown that Klebsiella is associated with bacterial
infections and the occurrence of NEC in neonates [69,70], and elevated Klebsiella abundance
is also associated with neonatal cerebral white-matter damage 40. However, further research
is needed to elucidate the specific mechanisms underlying these associations and their
relevance to the health of preterm infants.

In this study, a significant decrease in the abundance of the intestinal probiotic Bifi-
dobacterium was observed in ELBW preterm infants. Bifidobacterium are beneficial bacteria
in the human gut with pro-inflammatory, anti-inflammatory, anti-viral, and immunomodu-
latory functions [71–73]. Studies have found that a higher abundance of Bifidobacterium in
early infancy is associated with a better immune response to vaccination and potentially
enhanced immune memory [74]. A low abundance of Bifidobacterium may lead to the
development of allergies, eczema, and asthma [75]. A study of gut microbial compositions
and functions in very-preterm infants given probiotics found that Bifidobacterium can be
used to predict microbial maturation and that Bifidobacterium is an important factor in
accelerating gut microbial maturation 35. It showed that probiotic supplementation can
promote the maturity of gut microbiota in premature infants, thus reducing differences
between microbiota. In addition, related studies found that probiotic supplementation in
preterm infants can reduce mortality and improve NEC and feeding intolerance, among
other benefits [76]. Evidently, changes in intestinal probiotics may affect the health of
preterm infants.

Using machine learning methods, we demonstrated the value of the gut microbiota
composition in diagnosing extremely-low-birth-weight preterm infants. We assessed the
clinical value of gut microbiota in ELBW preterm infants by a machine learning method,
and found that the AUC values of the intestinal bacteria Klebsiella_ASV_2, Enterococ-
cus_ASV_38, and Klebsiella_ASV_11 were 0.836. The AUC values for Klebsiella_ASV_2,
Enterococcus_ASV_38, Klebsiella_ASV_11, Acinetobacter_ASV_51, and Acinetobacter_ASV_46
were found to be 0.793. The results show that the diagnosis of ELBW preterm infants based
on gut bacteria is reliable, to some extent. With machine-learning analysis methods, gut
bacteria may play a significant role in ELBW preterm infants, and their ROC values can
predict diagnostic outcomes.

This study demonstrated a certain level of innovation: CST analysis is commonly used
in the structural analysis of genital tract microbiota. In this study, we identified five major
CSTs through an analysis of community types in low-birth-weight preterm infants, and
CST was related to the clinical phenotype of premature infants. Furthermore, machine
learning methods were employed to evaluate the potential of using bacteria composition in
diagnosing preterm infants with ELBW. As for limitations, the 16S rRNA gene sequencing
method used lacks the ability to analyze the functional composition of the gut microbiota.
The study also lacked an independent validation cohort to verify the potential of using the
bacteria composition in diagnosing preterm infants with ELBW. The next step will be to
further investigate the functional aspects of the gut microbiota and conduct larger-scale
validation studies.

5. Conclusions

The intestinal bacteria of premature infants are characterized by a community state
type primarily driven by harmful bacteria such as Enterococcus, Klebsiella, and Acinetobacter.
ELBW preterm infants exhibit an increase in the abundance of potentially harmful bacteria
in the gut and a decrease in beneficial bacteria. These potentially harmful bacteria may be
potential biomarkers for ELBW premature infants.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/children11070770/s1. Figure S1. Analysis of clinical phenotype
diversity and network interaction visualization for preterm infants with low birth weight. (A) NMDS
analyzes of differences in clinical phenotypes among the three groups of preterm infants; (B) A
network interaction map of gut bacteria based on the clinical phenotypes of the infants.
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