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Abstract: Background: Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelop-
mental disorder whose etiology is not known today, but everything indicates that it is multifactorial.
For example, genetic and epigenetic factors seem to be involved in the etiology of ASD. In recent
years, there has been an increase in studies on the implications of gut microbiota (GM) on the behavior
of children with ASD given that dysbiosis in GM may trigger the onset, development and progression
of ASD through the microbiota–gut–brain axis. At the same time, significant progress has occurred in
the development of artificial intelligence (AI). Methods: The aim of the present study was to perform
a systematic review of articles using AI to analyze GM in individuals with ASD. In line with the
PRISMA model, 12 articles using AI to analyze GM in ASD were selected. Results: Outcomes reveal
that the majority of relevant studies on this topic have been conducted in China (33.3%) and Italy
(25%), followed by the Netherlands (16.6%), Mexico (16.6%) and South Korea (8.3%). Conclusions:
The bacteria Bifidobacterium is the most relevant biomarker with regard to ASD. Although AI provides
a very promising approach to data analysis, caution is needed to avoid the over-interpretation of
preliminary findings. A first step must be taken to analyze GM in a representative general population
and ASD samples in order to obtain a GM standard according to age, sex and country. Thus, more
work is required to bridge the gap between AI in mental health research and clinical care in ASD.

Keywords: artificial intelligence; autism spectrum disorders; gut microbiota; machine learning

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is charac-
terized by difficulties in social communication and interaction skills and the presence of
restricted and repetitive patterns of behavior (RRBs) [1]. There has been an increase in the
prevalence of ASD around the world [2–5]. This increase in prevalence may be influenced
by different factors. One such factor is the validation of psychometric instruments, which
has allowed progress in the detection and diagnosis of ASD, with the average age of global
diagnosis being five years [6]. Furthermore, the recent development of cerebral organoids
provides a powerful tool for studying both normal human embryonic brain development
and, potentially, the origins of neurodevelopmental disorders, including ASD [7]. However,
a series of epigenetic factors must also be considered that could influence the development
of ASD [8]. In this sense, publications on gut microbiota (GM) and ASD have also seen a
steady rise in the number [9,10].

Studies suggest that a series of symptoms exist that are associated with a possible
dysbiosis in GM. Alterations to the gut microbiota–brain axis in ASD samples are often
suspected following the appearance of pain and gastrointestinal symptoms (e.g., abdominal
pain and constipation) [9,11,12]. Furthermore, sensory hyper-reactivity is highly related to
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selective or restrictive eating patterns (e.g., being a very picky eater [13,14]) and such types
of restricted behavior can contribute to an increase in gastrointestinal symptoms [15] and
poor intestinal functioning [9,11,12]. In fact, one meta-analysis concluded that individuals
with ASD have dysbiosis in the genus Bifidobacterium [9]. In addition, such bacteria are
beneficial for inhibiting the growth of pathogens and modulating the immune system and
they can be used as a probiotic [10,16].

The composition of GM is highly diverse and varies widely between populations as a
function of dietary, cultural and biological factors [17–19]. Analysis of GM is fundamentally
performed through pyrosequencing of the 16S rRNA bacterial gene (e.g., V2–V3 regions) in
fecal samples [13]. 16s rRNA sequencing is a culture-free method that is used to identify
and compare bacterial diversity. Application of this analytical technique must follow a
highly rigorous methodology in order to avoid sample contamination.

With regard to artificial intelligence (AI), it is important to, first, introduce a number of
concepts that will be employed throughout the text and must be explained to practitioners
of non-engineering-related fields (i.e., practitioners outside of computer science and similar
fields). Artificial intelligence is a broad term in computer science that was introduced
in the 1960s and relates to any capability of a computer to replicate human intelligence,
reasoning, decision-making or, even, perception and cognition [20,21]. It entails aspects
such as computer vision (CV) and pattern recognition (PR), amongst other aspects. Within
AI, a field exists that is dedicated to ‘learning’. For example, machine learning (ML) is
capable of discerning patterns that differ from other repeated patterns and, based on
similarities between said patterns, classify traits described by features or vectors of features
as pertaining to a class or ‘label’. For instance, merging the fields of CV and ML gives
rise to object recognition, which aims to discern different object types or ‘labels’ based on
features such as shape, texture and color. From this, an internal ‘model’ of the observed
reality is created, which provides an internal representation that mirrors a mathematical
function for distinguishing between the different types of patterns observed during the
‘training’ process [22–24].

Furthermore, artificial neural networks (ANNs) are a type of ML model inspired by
the synapsis process of neurons in the visual cortex of biological models, although they
are simplified mathematical versions and have, since their inception, varied substantially
from their biological counterparts [25]. By arranging neurons that perform very simple
mathematical operations (a product of ‘weight’ with the addition of a ‘bias’) in layers,
akin to their arrangement in the visual cortex, they are capable of learning increasingly
complex mathematical functions by combining outcomes produced at the level of previous
layers. As will be seen, several of the reviewed works use this type of neural network for
classification tasks as part of their analysis of gut microbiota composition. When ANNs
are involved, and specifically if using models with more than one hidden layer (a type of
layer that represents neither the input nor the output layer of neurons), a method termed
‘deep learning’ (DL) [26] comes into play. These types of methods have bloomed since the
mid-2010s and constitute most methodologies employed in the present day for a wide range
of applications. They are popular because of their good outcomes regarding computer
vision, mostly in part to the emergence of convolutional layers and convolutional neural
networks (CNNs) [27] but also in specialized models for natural language processing (NLP),
amongst other fields. However, a caveat associated with their use pertains to the amount
of data required for training such models, since the number of neurons (weights, biases)
that constitute a neural network amount to tens or even hundreds of millions. Adjustment
of the neuron’s internal representations during the decision-making process entails ‘seeing’
many potential scenarios during training and, therefore, makes the training process a
computationally expensive endeavor.

Recently, computer-based AI has facilitated analysis, detection and diagnosis in mental
health work. As AI techniques continue to be refined and improved, it will be possible to
help mental health practitioners redefine ASD more objectively than is currently possible
using the DSM-5, whilst also enabling earlier identification of ASD. Consequently, inter-
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ventions will be able to be put in place earlier and will be more personalized [28]. Thus,
the present study aims to conduct an updated systematic review of AI-generated findings
regarding GM in ASD.

2. Materials and Methods
2.1. Protocol and Registration

The PRISMA checklist was followed when designing this systematic review [29]. The
PRISMA approach ensures a systematic approach to research conducted in the field of ASD,
GM and AI by framing critical analysis of key parameters, such as diagnosis via AI or ML.

The protocol used for this systematic review was not registered in any registry for
systematic reviews or meta-analyses.

2.2. Eligibility Criteria

Eligibility criteria defining the scope of the present systematic review were agreed
upon at a meeting of all authors and were applied to all papers retrieved from the database
search. The following inclusion criteria were applied: (1) studies that examine diagnoses
of ASD and GM made using AI or ML; (2) articles published prior to 25 April 2024 and
(3) articles reporting comprehensive results and/or information. The following exclusion
criteria were applied: (1) unsystematic narrative reviews; (2) studies published in a lan-
guage other than English; (3) dissertations and conference proceedings; (4) books or book
chapters; (5) editorial material; (6) articles examining ASD diagnosed according to any
technique other than that already described as the main interest of the present study.

2.3. Information Sources

In order to minimize potential bias, literature searches were conducted in four different
comprehensive databases. Namely, the comprehensive databases Web of Science (n = 23),
Scopus (n = 41), PubMed (n = 22) and Science Database (n = 41) were searched. Works
published prior to 25 April 2024 were included in these searches.

2.4. Search

The following search terms with relevant Boolean operators (including wildcards)
were used: (gut* OR intestine* OR bowel* OR gastrointestinal*) AND (microbiota* OR
microflora* OR bacteria* OR microbiome* OR flora* OR bacterial* OR bacteria* OR microor-
ganism* OR feces* OR stool*) AND (‘Autism’ OR ‘ASD’ OR ‘autism spectrum disorder’)
AND (‘Artificial Intelligence’ OR ‘Machine Learning’). Furthermore, Web of Science was
searched according to ‘theme’, whilst Scopus was searched according to ‘title, abstract and
keywords’, PubMed according to ‘all fields’ and finally, Science according to ‘all fields
except full text (NOFT)’. No language restriction was applied to any of the searches.

2.5. Study Selection

Following the completion of database searches, a three-stage process was followed to
review all records in accordance with the previously established eligibility criteria. First,
titles were reviewed for eligibility, followed by abstracts and, finally, full texts. Articles
gathered from all four databases were screened using ‘EndNote 20’ software with the
aim of identifying duplicates and classifying papers according to inclusion/exclusion
criteria. The three authors formed a ‘review team’, which took steps to minimize bias
and possible random error at all stages of the review by independently verifying article
selection according to title, abstract and full text. All three authors are experts in the fields
of GM, AI and ASD.

2.6. Data Collection and Data Items

In order to ensure accuracy and impartiality at this step, data extraction was carried
out by the review team. Using a data extraction form developed specifically for the present
study, qualitative and quantitative data were extracted from the 12 articles included in this
systematic review. The data items included for data extraction are given in Table 1.
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Table 1. Characteristics of included studies.

Ref

Participant Characteristic
Country Data Source Study Type Main Finding ML/DL

Method Used
Model Predicting MicrobiomeExperimental

Group
Control
Group

[30] ASD (n = 249)

NT siblings
(n = 106)

NT control
(n = 101)

South Korea Original PCR, 16S rRNA
(V3–V4 regions)

Negative association between Bifidobacterium
longum and Childhood Autism Rating Scale
outcomes, as well as a negative association
between Streptococcus salivarus and Social

Responsiveness Scale (SRS) outcomes in ASD.

ML: XGB
regression of

high/low SRS/VABS
values

Prediction of
microbial age

Bacteroides vulgatus, Roseburia cecicola group,
Lachnospiraceae and Agathobaculum butyriproducience
showed significantly different abundances between
high and low SRS groups in the E1 model (p ≤ 0.01),

but not in the E2-SRS classification model.
Streptococcus salivarus significantly differed between
high and low SRS groups in model E2 (p ≤ 0.01), but

not in E1.

[31]

ASD (n = 48) (from
2 to 7 years old,

average 5,
average BMI = 17.4,

10 females and
38 males)

ASD (n = 77)

NT (n = 48)
(all at 48
months,

no allergies,
24 females

and 24 males,
average

BMI = 16.3).

NT (n = 50)

Mexico [32,33]
16S rRNA

(V3–V4 regions)
(V4 region)

See [32,33]

ML: SVM, RF
DL: ANNs

Classification ASD
v. HC

Lachnospira (primary predictor in the RF- and
ANN-based models, ranking second in the SVM)

Of the five main predictors in SVM and ANN models:
Bacteroides (p = 2.4 × 10−3), Escherichia–Shigella

(p = 2.39 × 10−2), Akkermansia (p = 2.51 × 10−2) and
Dialister (p = 3.67 × 10−2) are statistically different.

SVM [32]: Bacteroides, Lachnospira, Blautia,
Lachnoclostridium and Subdoligranulum

ANN [32]: Lachnospira, Bacteroides, Lachnoclostridium,
Blautia and Subdoligranulum

RF [32]: Lachnospira, Escherichia–Shigella, Bacteroides,
Blautia and Roseburia

ANN performed better than SVM on training and
validation partitions, with 97.01% for training and

82.21% for validation.
SVM [33]: Ruminococcus torques, Anaerobutyricum

Dorea, Subdoligranulum and Bacteroides
ANN [33]: Anaerobutyricum, Bacteroides, Ruminococcus

torques, Dorea and Subdoligranulum
RF [33]: Anaerobutyricum, Faecalibacterium, Clostridium

sensu stricto, Ruminococcus torques and Agathobacter

[34] ASD (n = 111) NT (n = 143) Mexico [35] 16S rRNA
(V4 region) See [35]

ML: RF, SVM, kNN,
NB

DL: ANNs
Classification ASD

v. HC

Main predictor: Prevotella_2.
Other significant predictors: Ruminiclostridium_6 and

the Alloprevotella.
The ANN model demonstrates a 6% increase in

sensitivity compared to kNN and RF models

[36]
ASD (n = 60)
ASD (n = 77)
ASD (n = 48)

Siblings
(n = 57)

HC (n = 50)
HC (n = 48)

The
Netherlands

Original

[32,33]

16S rRNA
(V3–V4 regions)

(V4 region)
See [32,33]

ML: REFS
Feature selection

through REFS

ASVs: 26 ASVs for differential abundances.
↓Actinobacteria phylum, Bifidobacterium and Collinsella

in ASD
↑Bacteroidota phylum, Prevotellaceae

and Parabacteroides in ASD
↑bacterial taxa in ASD phenotype: Clostridia, Sarcina

and Parabacteroides
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Table 1. Cont.

Ref

Participant Characteristic
Country Data Source Study Type Main Finding ML/DL

Method Used
Model Predicting MicrobiomeExperimental

Group
Control
Group

[37] ASD (n = 540) HC (n = 419) Italy [35,38–42] 16S rRNA
(Different regions) See cited articles

ML: RF, SVM, GB
Classification ASD

v. HC

Main bacterial generates for all three algorithms:
Alloprevotella, Sutterella, Haemophilus, Faecalibacterium

and an unclassified Clostridia ‘UCG 014’.
RF and the GBM algorithms: [Eubacterium]
siraeum_group, Tyzzerella, Negativibacillus,

Muribaculaceae, Gastranaerophilales, Megamonas and
Rombustia.

GBM and SVM algorithms: Bacteroides and
Subdoligranulum identified as important.

↓Alloprevotella genus in ASD sample (abundance in
ASD samples = 0.34 ± 0.20, abundance in HC

samples = 0.12 ± 0.14).
↑Parasutterella (ASD samples = 0.57 ± 0.16, HC

samples = 0.38 ± 0.17), Haemophilus (ASD
samples = 0.57 ± 0.19, HC samples = 0.33 ± 0.17),
Faecalibacterium (ASD samples = 0.86 ± 0.14, HC

samples = 0.70 ± 0.21) and
Clostridiales UCG 14 (ASD samples = 0.60 ± 0.21, HC

samples = 0.34 ± 0.17) in ASD.

[43]
ASD (n = 60)
ASD (n = 77)
ASD (n = 48)

HC (n = 57)
HC (n = 50)
HC (n = 48)

The
Netherlands [32,33,44]

16S rRNA
(V3–V4 regions)

(V4 region)
See cited articles

ML: REFS
Feature selection:

biomarker
identification

Better performance in AUC and MCC compared to
K-Best and 10-time random selection methods.
↓Bifidobacterium, Enterobacteriaceae, Lachnospira,

Lachnospiraceae and Clostridium in ASD

[45] ASD (n = 41) NT (n = 35) Italy Original
PCR

16S rRNA
(V3–V4 regions)

Bifidobacterium was negatively correlated with
indole and skatole

Positive correlations between Carnobacteriaceae,
Actinobacillus, Pepetostreptococcaceae, pentanoic
acid, 2.6-dimethyl-pyrazine, nonadecane and

3-methyl-butanoic acid.

ML: PCA, PLS-DA
Feature selection:

biomarker
identification

Hist Gradient Boosting Classifier was the best
performing model with 89% accuracy.

VOCs associated with ASDs: methyl isobutyl ketone,
benzeneacetaldehyde, phenyl ethyl alcohol, ethanol,
butanoic acid, octadecane, acetic acid, skatole and

tetradecanal (myristyl aldehyde)

Positive correlations with OTUs-VOCs couples:
-Bifidobacteriaceae/2-dodecanol

-Serratia/benzyl alcohol
-Roseburia/1-butanol

-Firmicutes/butanoic acid
-Pasteurellaceae/3-methyl 1-butanol.



Children 2024, 11, 931 6 of 16

Table 1. Cont.

Ref

Participant Characteristic
Country Data Source Study Type Main Finding ML/DL

Method Used
Model Predicting MicrobiomeExperimental

Group
Control
Group

[46] ASD (n = 41) NT (n = 35) Italy Original
PCR

16S rRNA
(V3–V4 regions)

30 ASD with GI symptoms: 93% with a high
level of severity

Phylum level:
↓Actinobacteria, Cyanobacteria and TM7 in ASD

↑Proteobacteria and Bacteroidetes in ASD
(Bacteroidetes was observed in the ASD without

GI symptoms group)

Family level:
↓Coriobacteriaceae,

Bifidobacteriaceae, Actynomicetaceae and
(Tissierellaceae) in ASD.

↑Alcaligenaceae, Lactobacillaceae,
Prevotellaceaeae and Bacteroidaceae in ASD.

↑Bacteroidaceae and
Lactobacillaceae ASD without GI symptoms.

Genus level:
↑Bacteroides and Klebsiella

in ASD. Klebsiella and Lactobacillus were higher
in ASD without GI symptoms.

↓Bifidobacterium and Actinomyces in ASD.

ASD-related microbial
biomarkers (p-value < 0.05):
-Bacteroidetes/Proteobacteria.
-Bacteroidaceae/Rikenellaceae/

Lactobacillaceae/Prevotellaceae/Pasteurellaceae/
Alcaligenaceae.

-Bacteroides/Lactobacillus/Prevotella/
Klebsiella/Roseburia/Haemophilus/Sutterella.

ML: LR, SGD, RF, ET,
GB, XGB, etc.

DL: MLP
Classification ASD

v. HC

Contextually, model classification analysis based on
ML identified both KOs and ko pathways able to
classify 73% of patients with ASD versus CTRLs

(p-value < 0.05).
Specific selected OTUs for ASD

and CTRLs revealed the main bacteria:
↓Bacteroides, Lactobacillus, Prevotella, Staphylococcus and

Sutturella in ASD
↓Ruminococcus, Blautia, Coprococcus, Bifodobacterium and

Streptococcus in ASD.
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Table 1. Cont.

Ref

Participant Characteristic
Country Data Source Study Type Main Finding ML/DL

Method Used
Model Predicting MicrobiomeExperimental

Group
Control
Group

[47] ASD (n = 43) TD (n = 31) China [48,49]

IgA detection via
ELISA [49]

StoolGen fecal DNA
extraction kit

(CWBiotech Co., Beijing,
China) and NanoDrop

2000 (Thermo Scientific,
Foster City, CA, USA).

A total of 5µg (or more)
of DNA was required

for library construction
using the TruSeq DNA
sample preparation kit
(Illumina, San Diego,

CA, USA) [48].

VFGM genes related to ASD: cpsH, cpsJ and
cpsO genes related to high levels of

Streptococcus agalactiae 2603 V/R in the gut of
ASD children with/without GI symptoms

ML: RF
Classification ASD

v. HC

The main genes involved according to machine
learning via the random forest method were mtrE, kfiC,

pvdM and hasA.

[50] ASD (n = 73) TD (n = 71) China [48,51]

Illumina NovaSeq 6000
Illumina HiSeq 4000,

Illumina Inc. San Diego,
CA, USA

See cited articles
ML: RF

Classification ASD
v. HC

Predicted performance was evaluated according to
AUROC.

In the China cohort, a high AUROC value of 0.984 and
97% accuracy were achieved with only one round of a

100-iteration run.

The Moscow cohort produced a poor average AUROC
outcome of 0.81 and only 67% accuracy following six

rounds of the 100-iteration run.

Overall, average values for AUROC and accuracy were
0.86 and 80%, respectively, with an average feature set

of 67 species.

Eubacterium_sp_CAG_248 and Prevotella copri were the
most likely biomarkers involved in ASD.

[52] ASD (n = 169) NT (n = 128) China [39,42,53–55]
PCR

16S rRNA
(Different regions)

See cited articles

ML: LDA (LEfSe)+
RF, kSVM + RBF, DT

DL: MLP
Feature selection +

Classification

Dominant major genera: ↓Prevotella, ↓Ruminococcus
and Roseburia as potential biomarkers of ASD.

Prevotella, Roseburia, Ruminococcus, Megasphaera and
Catenibacterium as potential biomarkers in ASD

patients. However, only Prevotella significantly differed
between the two groups.
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Table 1. Cont.

Ref

Participant Characteristic
Country Data Source Study Type Main Finding ML/DL

Method Used
Model Predicting MicrobiomeExperimental

Group
Control
Group

[56] ASD (n = 569) HC (n = 450) China [32,33,35,38,40,
41,46,57–61]

PCR
16S rRNA

(V3–V4, V4, V4–V5
regions)

Illumina MiSeq

See cited articles

ML: RF
Classification of ASD
v. HC (after feature

selection)

AUC of the training set and verification set was 0.688
and 0.706.

Dominant genera of the ASD group included
Lachnospiracea_incertae_sedis, Clostridium_XVIII,

Eubacterium, Anaerostipes, Clostridium_sensu_stricto,
Coprococcus, Dorea and Faecalibacterium.

Subgroup analysis followed different sequencing
platforms to examine dominant genera in ASD.
Dominant genera in the ASD group included
Eubacterium, Bifidobacterium, Blautia, Dialister,

Coprococcus and Lachnospiracea_
incertae_sedis.

Note: ASD = autism spectrum disorder; NT = neurotypical; HC = healthy control; GS = gastrointestinal symptoms; w = with; w/o = without; AUC = area under the curve; AUROC = area
under the receiver operating characteristic curve; VFGM = virulence factor-related gut microbiota; MCC = the Matthews correlation coefficient = MCC; ASVs = amplicon sequence
variants; ML = machine learning; REFS = recursive ensemble feature selection; PCA = principal component analysis; PLS-DA = partial least squares-discriminant analysis; LDA = linear
discriminant analysis; LEfSe = LDA effect size; SVM = support vector machines = SVM; RF = random forest classifier; kNN = k-nearest neighbor classifier; NB = naïve Bayes
classifier; LR = logistic regression; SGD = Stochastic gradient descent classifier; ET = extra trees classifier; DT = decision trees classifier; GB = gradient boosting; XGB = extreme GB;
kSVM + RBF = kernelized SVMs (RBF kernel); ANNs = artificial neural networks; MLP = multi-layer perceptron; DL = deep learning. Feature selection: REFS = recursive ensemble
feature selection; PCA = principal component analysis; PLS-DA = partial least squares-discriminant analysis; LDA = linear discriminant analysis; LEfSe = LDA effect size. ML = machine
learning: SVM = support vector machines; RF = random forest classifier; kNN = k-nearest neighbor classifier; NB = naïve Bayes classifier; LR = logistic regression; SGD = stochastic
gradient descent classifier; ET = extra trees classifier; DT = decision trees classifier; GB = gradient boosting; XGB = extreme GB; kSVM + RBF = kernelized SVMs (RBF kernel). DL = deep
learning: although very basic DL methodologies, the following have been identified: ANNs = artificial neural networks; MLP = multi-layer perceptron.
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3. Results
3.1. Study Selection

As can be seen in Figure 1, 127 articles corresponding to the study aim or research
question were selected. Following the elimination of duplicates using EndNote 20 software,
the number of included studies was reduced to 88. A total of 34 articles were eliminated
following the application of eligibility criteria. Despite five articles being deemed doubtful
for final inclusion, 16 articles were included in the initial screening by the review team.
After discussion between all authors, this number was reduced to 12 articles. Of the
doubtful papers that were ultimately excluded, the paper of Shi et al. [62] was discarded
due to its unsuitable format (letter to the editor), whilst of Liu et al. [63] was excluded for
not focusing on ASD and being an unsuitable format (a proposal).
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3.2. Individual Study Characteristics and Outcomes

The 12 included articles are summarized in Table 1 according to reference, participant
characteristics, country, data source, study type, main findings, ML/DL method used and
model used to predict microbiome.

The 12 included articles were published between 2020 and 2024 in five different
countries (four [33.3%] in China, three [25.0%] in Italy, two [16.6%] in the Netherlands,
two [16.6%] in Mexico and one [8.3%] in South Korea). Included articles were published
in 10 different journals with 2 (16.6%) appearing in Biomedicines, 2 (16.6%) in Frontiers in
Microbiology and 1 (8.3%) each in Psychiatry Research, Neural Computing and Applications,
Scientific Reports, BMC Bioinformatics, Computational and Structural Biotechnology Journal,
Microorganisms, Microbial Pathogenesis and Microbiology Spectrum.

Three (25%) articles gathered their own data to perform study analyses [30,45,46],
whilst one (8.3%) article compared data they collected with data from two publicly available
studies [36], one (8.3%) article exclusively used data from a publicly available study [34],
three (8.3%) articles used data from two publicly available studies [31,47,50], one (8.3%)
article used data from three publicly available studies [43], one (8.3%) article used data from
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five publicly available studies [52], one (8.3%) article used data from six publicly available
studies [37] and one (8.3%) article used data from ten publicly available studies [56].

Some of the bacteria found to be implicated in ASD found by studies included in the
present systematic review include Bacteroides [30,31,36,46], Bifidobacterium [36,43,46,56],
Prevotella [36,46,50,52], Faecalibacterium [37,56], Ruminococcus [31,46,52] and
Clostridium [31,36,37,43]. Outcomes indicate low levels of abundance pertaining to the
bacteria Bifidobacterium, Bacteroides, Prevotella, Ruminococcus, Lachnospira and Clostridium.
These findings suggest that these bacteria may be biomarkers of ASD.

3.3. Risk of Bias

The Methods Guide for Comparative Effectiveness Reviews was used to evaluate
the risk of bias for each included article in the present systematic review [64]. This risk
assessment method has also been used by the authors in other publications [13,65,66].

The strength of publications is expressed in terms of risk of bias: low (10–12);
M = medium (6–9); H = high (1–5).

Five articles included in the present systematic review exhibited a low risk of bias,
according to their risk of bias score, whilst seven studies exhibited a moderate risk of bias.
Thus, a moderate risk of bias was found in 41.6% of included studies. In general, the
greatest bias emerged in relation to sample size, identification of the sample and controlling
for comorbidity factors such as intellectual disability, severity of ASD and diet. Overall and
individual item scores for included articles are presented in Table 2.

Table 2. Quality assessment outcomes for included studies.

Item [31] [34] [36] [37] [43] [45] [46] [47] [50] [52] [56] [30]

1. Clear stated aim 2 2 2 2 2 2 2 2 1 2 2 2

2. Appropriate study size 1 2 2 2 2 1 1 1 2 2 2 2

3. Identified and assessed 1 1 2 2 1 1 2 1 1 1 2 2

4. Blinding of participants and personnel 1 1 2 1 1 1 2 1 1 1 2 2

5. Other bias (controls for dietary intake, reports
on comorbidity and ASD severity) 1 1 1 1 1 1 2 1 1 1 1 2

6. AI or ML in GM 2 2 2 2 2 2 2 1 1 2 2 2

TOTAL 8 9 11 10 9 8 11 8 6 9 11 12

Risk of bias 4 3 1 2 3 4 1 4 6 3 1 0
Risk of bias classification M M L L M M L M M M L L

Note: AI = artificial intelligence; ML = machine learning; GM = gut microbiota; 0 = not reported; 1 = not adequately
assessed; 2 = adequately assessed; L = low (10–12); M = medium (6–9); H = high (1–5).

Most studies examine samples from countries other than the original source of the
publication. Data registries on GM come mainly from studies in China, Italy, the USA and
Russia. Only four studies include an original sample [30,36,45,46], with such samples being
highly limited and not representative of the ASD population [43,45,46].

3.4. Limitations

As previously discussed, the present systematic review was, by definition, limited
by the databases used, the search terms chosen and the inclusion/exclusion criteria estab-
lished [67].
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4. Discussion

Present findings point to a relationship between low levels of abundance in the bacte-
ria Bifidobacterium, Bacteroides, Prevotella, Ruminococcus, Lachnospira and Clostridium in ASD.
This coincides with a previous meta-analysis study that found a dysbiosis or alteration of Bi-
fidobacterium in ASD [9]. Thus, there outcomes produced using classic human methodology
appear to coincide with those produced using ML. Bifidobacterium is possibly the bacterial
biomarker most clearly implicated in the neurodevelopment of ASD. Bifidobacterium is
one of the bacteria that appears most in studies with [30,36,43,45,46,56] and without AI
in autism [9]. This is one of the first bacteria to colonize the intestine of neonates and is,
therefore, highly important in neurodevelopment. Furthermore, it is associated with low
levels of anxiety and gastrointestinal symptoms [10].

It can be observed that most of the machine learning and artificial intelligence (ML/AI)
methodologies presented in the reviewed literature were employed for either (1) feature
selection, i.e., to reduce the dimensionality of data and extract the most discriminative
characteristics of data and, subsequently, use this subset of features for prediction, or as a
support for the training of machine learning models; or (2) classification of ASD vs. HC
(healthy controls), oftentimes also referred to as ‘logistic regression’, to be able to discern
two types of gut bacteria profiles and, resultantly, determine the presence or absence of
ASD-related dysbiosis in a new unseen sample.

One included study stands out [30] for performing regression for the prediction of
microbial age instead of classification, whilst also notably employing extreme gradient
boosting (XGB) to regress high/low SRS/VABS values.

However, a larger body of analyzed research uses very similar approaches, i.e., uses
machine learning techniques, for sample classification as either ASD or HC participants.
The techniques used vary but mostly correspond to ‘classical’ machine learning techniques,
such as support vector machines (SVMs), whether the vanilla version [31,34,37] or kernel-
ized with RBF (radial basis function kernel) [52], random forests (RF), k-nearest neighbors
(k-NN) [34], gradient boosting (GB) [37,46], stochastic gradient descent (SGD) classifier [46],
extra trees (ET) [46] and decision trees (DT) [52]. Random forest classifiers (RF) were
the most commonly used method in the literature analyzed, as they tend to outperform
other methods, and the complexity of training required is not very high. RF classifiers are
employed in a number of included articles [31,34,37,46,47,50,56].

Another body of work focuses on the selection of features, with the two main aims
of this being either direct biomarker discovery [36,43,45] or as a preliminary step towards
simplifying model training within a machine learning classifier model [52,56] similar to
those presented in the previous paragraph. For this, included studies present several
methods, namely, principal component analysis (PCA), a classical method [45], recursive
ensemble feature selection (REFS) [36,43], partial least squares discriminant analysis (PLS-
DA) [45] and linear discriminant analysis (LDA) with effect size estimation (LEfSe) [52].

Finally, neural network-based models are seldom used in the studies analyzed. In-
deed, only four following studies used classical models such as artificial neural networks
(ANNs) [31,34] or multi-layer perceptron models (MLPs) [46,52]. From the descriptions
available, it was not possible to determine whether ‘deep’ models were employed in these
cases, although it seems implausible due to the nature of the methods used, which seem to
refer to the prepackaged implementations available in off-the-shelf machine learning and
data mining software libraries, or statistical analysis tools such as MATLAB, R, SPSS, Weka,
Scikit-Learn, etc.

This leads to the first limitation inherent to included studies, which emerged as a lack
of more advanced methods, although it was also the case that some deeper models would
have encountered problems when dealing with low-dimensional data for which there are
also too few samples. Data-driven learning, which is employed for deep neural network
training, is ‘data-hungry’ in this sense and can lead to overfitting fairly easily. It would be
interesting, however, to see more research conducted on this issue.
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When using relatively small datasets, one of the most common techniques in ML/AI
model training is to use techniques such as cross-validation (CV) or n-fold CV, which split
data into one large and one small subset with the former being used for the main analysis
and the latter (‘fold’) being used to determine model accuracy. Following the initial analysis,
the second subset is then shifted, the system retrained, and average outcomes are calculated
from the two resulting models. This has traditionally yielded good results; however, it
does not provide additional information from other potentially existing broader datasets.
For instance, it is now common in ML model training to perform transfer learning (TL)
and, specifically, use fine-tuning processes during training. Within this training approach,
the ML model is first trained on a larger domain (wider problem, e.g., general image
classification) and then harnessed to address a restricted-domain problem (e.g., melanoma
image classification). A similar approach, namely, domain adaptation (DA), could have
been conducted here. When using DA, the aim is to learn from source data distribution,
applying the model to different (yet related) target data distributions. This enriches the
model, as it handles more data overall. In contrast, when using CV techniques, a very
limited set of data is used; therefore, model overfitting becomes a common issue. In ASD
GM studies, DA could be used to learn from pooled data from datasets originating from
small-to-medium studies and applied to an unseen set of data from another small(er) study.
Finally, it would also be interesting to introduce continual learning (CL) approaches, in
which models are trained on ‘shifting’ datasets, i.e., data distributions that change over
time, as more data are incorporated into the model, e.g., from growing corpora of collected
ASD and HC GM-related data.

A second limitation of the studies included in the present review is that the majority
are based on very small samples of 50 to 70 participants, which is far too low to support
the conclusions drawn by the authors of these original studies. The risk of bias in each
individual study must also be considered, not only because of the sample size, which is
not very representative of the ASD population but also because of the poor representation
of countries and cultures. Furthermore, it can be observed that the bacterial profiles
used in the presented studies come from very specific populations and do not consider
cultural differences in dietary intake, which is a key factor in the GM profiles of the general
population in any given geographical area. It would be of interest for future work to
conduct pooled analyses of these populations, whilst also completing the geographical
profiles with additional data from less observed countries and regions. This could then
be used to train a larger model, or even a deeper neural model, as the risk of bias and
overfitting would be diminished. A more global examination of GM is necessary as a
function of evolutionary periods within both neurotypical populations and those with ASD.
In addition, ASD severity must be considered, alongside the existence of gastrointestinal
symptoms. A huge challenge to research is posed by the standardization of global GM,
which should also correspond to a preliminary step in the development of AI. At this time,
more basic research is needed to analyze the diversity of GM in the general population.

In summary, the following strengths and weaknesses are seen in studies of AI in
the study of GM in ASD: (1) acceptable samples for validation studies of psychometric
instruments, which tend to imply few variables or factors with 250–500 individuals with
ASD. However, variability in GM is greater because each family of bacteria acts as a higher
dimension or factor that, in turn, includes thousands of genera and species of bacteria. Thus,
samples should comprise at least 1000 individuals with ASD representing the three levels
of autism severity according to the DSM-5. (2) ASD study samples should be representative
of the rural and urban areas in the countries, in which the research is conducted and
avoid extremes with regard to socioeconomic resources given that socioeconomic context
influences diet [12,68] and autism severity [69]. (3) Additionally, GM studies should be
performed with individuals with ASD who have comorbidities. (4) Due to the small
study samples, correlations according to age and sex have not been performed with GM
individuals with ASD. Future studies should consider these factors. (5) The use of AI should
have a rigorous prior methodological basis based on sample size, age and evolutionary
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period. In this way, predictions about biomarkers could be more adjusted to the reality of
GM in autism. In conclusion, more global and rigorous analyses regarding AI would be
possible if all these methodological factors were considered. In any case, the incorporation
of AI is an important advance that saves time and cuts economic costs in ASD research.

5. Conclusions

Current methods for the prediction of ASD in children based on GM data are still
hampered by bias due to the small sample sizes used by relevant research. This limits the
viability of such methods for use in a clinical setting, as they are still in need of further
in-depth research. Further data are required to be able to construct large predictive models
that can be generalized to global populations and consider diverse cultural and ethnic
backgrounds. Generally speaking, larger samples are needed, comprising thousands of data
points or more, in order to avoid the bias observed in the methods employed in the present
review. Future studies should consider and strive to control for environmental factors such
as diet and country of origin, as well as analytical factors such as sequencing platform and
hypervariable region when comparing GM in patients with ASD with neurotypical patients.
Finally, further research is required on this topic in order to facilitate early diagnosis and
provide tools for a better prognosis of ASD in children and teenagers.

Author Contributions: Conceptualization, A.E.M.-G. and P.C.-P.; methodology, P.A.-M.; formal
analysis, P.A.-M. and A.E.M.-G.; investigation, A.E.M.-G.; data curation, P.A.-M.; writing—original
draft preparation, A.E.M.-G., P.C.-P. and P.A.-M.; writing—review and editing, A.E.M.-G. and P.A.-M.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Ethical review and approval were waived for this study due
to the fact that it presents a systematic review.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. APA (American Psychiatric Association). Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition Text Revision, DSM-5-TR;

American Psychiatric Association: Washington, DC, USA, 2022.
2. Maenner, M.J.; Shaw, K.A.; Baio, J.; Washington, A.; Patrick, M.; DiRienzo, M.; Christensen, D.L.; Wiggins, L.D.; Pettygrove, S.;

Andrews, J.G.; et al. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental
Disabilities Monitoring Network, 11 Sites, United States, 2016. MMWR Surveill. Summ. 2020, 69, 1–12. [CrossRef] [PubMed]

3. Myers, S.M.; Voigt, R.G.; Colligan, R.C.; Weaver, A.L.; Storlie, C.B.; Stoeckel, R.E.; Port, J.D.; Katusic, S.K. Autism Spectrum
Disorder: Incidence and Time Trends Over Two Decades in a Population-Based Birth Cohort. J. Autism Dev. Disord. 2019, 49,
1455–1474. [CrossRef] [PubMed]

4. Russell, G.; Stapley, S.; Newlove-Delgado, T.; Salmon, A.; White, R.; Warren, F.; Pearson, A.; Ford, T. Time trends in autism
diagnosis over 20 years: A UK population-based cohort study. J. Child Psychol. Psychiatry 2022, 63, 674–682. [CrossRef] [PubMed]

5. Qiu, S.; Lu, Y.; Li, Y.; Shi, J.; Cui, H.; Gu, Y.; Li, Y.; Zhong, W.; Zhu, X.; Liu, Y.; et al. Prevalence of autism spectrum disorder in
Asia: A systematic review and meta-analysis. Psychiatry Res. 2020, 284, 112679. [CrossRef] [PubMed]

6. van ’t Hof, M.; Tisseur, C.; van Berckelear-Onnes, I.; van Nieuwenhuyzen, A.; Daniels, A.M.; Deen, M.; Hoek, H.W.; Ester, W.A.
Age at autism spectrum disorder diagnosis: A systematic review and meta-analysis from 2012 to 2019. Autism 2021, 25, 862–873.
[CrossRef] [PubMed]

7. Chan, W.K.; Griffiths, R.; Price, D.J.; Mason, J.O. Cerebral organoids as tools to identify the developmental roots of autism. Mol.
Autism 2020, 11, 58. [CrossRef] [PubMed]

8. LaSalle, J.M. Epigenomic signatures reveal mechanistic clues and predictive markers for autism spectrum disorder. Mol. Psychiatry
2023, 28, 1890–1901. [CrossRef] [PubMed]

9. Andreo-Martínez, P.; Rubio-Aparicio, M.; Sánchez-Meca, J.; Veas, A.; Martínez-González, A.E. A Meta-analysis of Gut Microbiota
in Children with Autism. J. Autism Dev. Disord. 2022, 52, 1374–1387. [CrossRef]

10. Martínez-González, A.E.; Andreo-Martínez, P. Implications of Gut Microbiota and Gastrointestinal Symptoms in Autism. In
Advances in Health and Disease; Duncan, L.T., Ed.; NOVA Science Publishers: New York, NY, USA, 2020; Volume 29, pp. 16–21.

https://doi.org/10.15585/mmwr.ss6904a1
https://www.ncbi.nlm.nih.gov/pubmed/32214087
https://doi.org/10.1007/s10803-018-3834-0
https://www.ncbi.nlm.nih.gov/pubmed/30519787
https://doi.org/10.1111/jcpp.13505
https://www.ncbi.nlm.nih.gov/pubmed/34414570
https://doi.org/10.1016/j.psychres.2019.112679
https://www.ncbi.nlm.nih.gov/pubmed/31735373
https://doi.org/10.1177/1362361320971107
https://www.ncbi.nlm.nih.gov/pubmed/33213190
https://doi.org/10.1186/s13229-020-00360-3
https://www.ncbi.nlm.nih.gov/pubmed/32660622
https://doi.org/10.1038/s41380-022-01917-9
https://www.ncbi.nlm.nih.gov/pubmed/36650278
https://doi.org/10.1007/s10803-021-05002-y


Children 2024, 11, 931 14 of 16

11. Andreo-Martínez, P.; García-Martínez, N.; Sánchez-Samper, E.P.; Quesada-Medina, J.; MacFabe, D. Metabolites of the gut
microbiota involved in the autism spectrum disorder. Rev. Dis. Clin. Neuro. 2018, 5, 39–48. [CrossRef]

12. Andreo-Martínez, P.; García-Martínez, N.; Sánchez-Samper, E.P.; Martínez-González, A.E. An approach to gut microbiota profile
in children with autism spectrum disorder. Environ. Microbiol. Rep. 2019, 12, 115–135. [CrossRef]

13. Martínez-González, A.E.; Andreo-Martínez, P. The Role of Gut Microbiota in Gastrointestinal Symptoms of Children with ASD.
Medicina 2019, 55, 408. [CrossRef] [PubMed]

14. Berding, K.; Donovan, S.M. Diet Can Impact Microbiota Composition in Children With Autism Spectrum Disorder. Front. Neurosci.
2018, 12, 515. [CrossRef]

15. Martínez-González, A.E.; Cervin, M.; Pérez-Sánchez, S. Assessing gastrointestinal symptoms in people with autism: Applying a
new measure based on the Rome IV criteria. Dig. Liver Dis. 2024, in press. [CrossRef]

16. Martínez-González, A.E.; Andreo-Martínez, P. Prebiotics, probiotics and fecal microbiota transplantation in autism: A systematic
review. Rev. Psiquiatr. Salud Ment. 2020, 13, 150–164. [CrossRef] [PubMed]

17. Lindström, E.S.; Langenheder, S. Local and regional factors influencing bacterial community assembly. Environ. Microbiol. Rep.
2012, 4, 1–9. [CrossRef] [PubMed]

18. Suzuki, T.A.; Worobey, M. Geographical variation of human gut microbial composition. Biol. Lett. 2014, 10, 20131037. [CrossRef]
[PubMed]

19. Gupta, V.K.; Paul, S.; Dutta, C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and
Diversity. Front. Microbiol. 2017, 8, 1162. [CrossRef] [PubMed]

20. Minsky, M. Steps toward Artificial Intelligence. Proc. IRE 1961, 49, 8–30. [CrossRef]
21. Feigenbaum, E. Artificial intelligence research. IEEE Trans. Inf. Theory 1963, 9, 248–253. [CrossRef]
22. Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial intelligence for decision making in the era of Big Data—Evolution, challenges

and research agenda. Int. J. Inf. Manag. 2019, 48, 63–71. [CrossRef]
23. Stahl, D.; Pickles, A.; Elsabbagh, M.; Johnson, M.H.; The, B.T. Novel Machine Learning Methods for ERP Analysis: A Validation

From Research on Infants at Risk for Autism. Dev. Neuropsychol. 2012, 37, 274–298. [CrossRef] [PubMed]
24. Maenner, M.J.; Yeargin-Allsopp, M.; Van Naarden Braun, K.; Christensen, D.L.; Schieve, L.A. Development of a Machine Learning

Algorithm for the Surveillance of Autism Spectrum Disorder. PLoS ONE 2016, 11, e0168224. [CrossRef] [PubMed]
25. Rosenblatt, F. Principles of neurodynamics. perceptrons and the theory of brain mechanisms. Am. J. Psychol. 1963, 76, 705.
26. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
27. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. Neural Inf. Process.

Syst. 2012, 25, 84–90. [CrossRef]
28. Graham, S.; Depp, C.; Lee, E.E.; Nebeker, C.; Tu, X.; Kim, H.C.; Jeste, D.V. Artificial Intelligence for Mental Health and Mental

Illnesses: An Overview. Curr. Psychiatry Rep. 2019, 21, 116. [CrossRef] [PubMed]
29. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;

Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71.
[CrossRef] [PubMed]

30. Jung, Y.; Lee, T.; Oh, H.S.; Hyun, Y.; Song, S.; Chun, J.; Kim, H.W. Gut microbial and clinical characteristics of individuals with
autism spectrum disorder differ depending on the ecological structure of the gut microbiome. Psychiatry Res. 2024, 335, 115775.
[CrossRef] [PubMed]

31. Olaguez-Gonzalez, J.M.; Chairez, I.; Breton-Deval, L.; Alfaro-Ponce, M. Machine Learning Algorithms Applied to Predict Autism
Spectrum Disorder Based on Gut Microbiome Composition. Biomedicines 2023, 11, 2633. [CrossRef]

32. Zou, R.; Xu, F.; Wang, Y.; Duan, M.; Guo, M.; Zhang, Q.; Zhao, H.; Zheng, H. Changes in the Gut Microbiota of Children with
Autism Spectrum Disorder. Autism Res. 2020, 13, 1614–1625. [CrossRef]

33. Ding, X.; Xu, Y.; Zhang, X.; Zhang, L.; Duan, G.; Song, C.; Li, Z.; Yang, Y.; Wang, Y.; Wang, X.; et al. Gut microbiota changes in
patients with autism spectrum disorders. J. Psychiatr. Res. 2020, 129, 149–159. [CrossRef] [PubMed]

34. Olaguez-Gonzalez, J.M.; Schaeffer, S.E.; Breton-Deval, L.; Alfaro-Ponce, M.; Chairez, I. Assessment of machine learning strategies
for simplified detection of autism spectrum disorder based on the gut microbiome composition. Neural Comput. Appl. 2024, 36,
8163–8180. [CrossRef]

35. Dan, Z.; Mao, X.; Liu, Q.; Guo, M.; Zhuang, Y.; Liu, Z.; Chen, K.; Chen, J.; Xu, R.; Tang, J.; et al. Altered gut microbial profile
is associated with abnormal metabolism activity of Autism Spectrum Disorder. Gut Microbes 2020, 11, 1246–1267. [CrossRef]
[PubMed]

36. Peralta-Marzal, L.N.; Rojas-Velazquez, D.; Rigters, D.; Prince, N.; Garssen, J.; Kraneveld, A.D.; Perez-Pardo, P.; Lopez-Rincon, A.
A robust microbiome signature for autism spectrum disorder across different studies using machine learning. Sci. Rep. (Nat. Publ.
Group) 2024, 14, 814. [CrossRef]

37. Pietrucci, D.; Teofani, A.; Milanesi, M.; Fosso, B.; Putignani, L.; Messina, F.; Pesole, G.; Desideri, A.; Chillemi, G. Machine Learning
Data Analysis Highlights the Role of Parasutterella and Alloprevotella in Autism Spectrum Disorders. Biomedicines 2022, 10, 2028.
[CrossRef]

38. Averina, O.V.; Kovtun, A.S.; Polyakova, S.I.; Savilova, A.M.; Rebrikov, D.V.; Danilenko, V.N. The bacterial neurometabolic
signature of the gut microbiota of young children with autism spectrum disorders. J. Med. Microbiol. 2020, 69, 558–571. [CrossRef]

https://doi.org/10.14198/DCN.2018.5.2.05
https://doi.org/10.1111/1758-2229.12810
https://doi.org/10.3390/medicina55080408
https://www.ncbi.nlm.nih.gov/pubmed/31357482
https://doi.org/10.3389/fnins.2018.00515
https://doi.org/10.1016/j.dld.2024.05.019
https://doi.org/10.1016/j.rpsm.2020.06.002
https://www.ncbi.nlm.nih.gov/pubmed/32684346
https://doi.org/10.1111/j.1758-2229.2011.00257.x
https://www.ncbi.nlm.nih.gov/pubmed/23757223
https://doi.org/10.1098/rsbl.2013.1037
https://www.ncbi.nlm.nih.gov/pubmed/24522631
https://doi.org/10.3389/fmicb.2017.01162
https://www.ncbi.nlm.nih.gov/pubmed/28690602
https://doi.org/10.1109/JRPROC.1961.287775
https://doi.org/10.1109/TIT.1963.1057864
https://doi.org/10.1016/j.ijinfomgt.2019.01.021
https://doi.org/10.1080/87565641.2011.650808
https://www.ncbi.nlm.nih.gov/pubmed/22545662
https://doi.org/10.1371/journal.pone.0168224
https://www.ncbi.nlm.nih.gov/pubmed/28002438
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1145/3065386
https://doi.org/10.1007/s11920-019-1094-0
https://www.ncbi.nlm.nih.gov/pubmed/31701320
https://doi.org/10.1136/bmj.n71
https://www.ncbi.nlm.nih.gov/pubmed/33782057
https://doi.org/10.1016/j.psychres.2024.115775
https://www.ncbi.nlm.nih.gov/pubmed/38503005
https://doi.org/10.3390/biomedicines11102633
https://doi.org/10.1002/aur.2358
https://doi.org/10.1016/j.jpsychires.2020.06.032
https://www.ncbi.nlm.nih.gov/pubmed/32912596
https://doi.org/10.1007/s00521-024-09458-8
https://doi.org/10.1080/19490976.2020.1747329
https://www.ncbi.nlm.nih.gov/pubmed/32312186
https://doi.org/10.1038/s41598-023-50601-7
https://doi.org/10.3390/biomedicines10082028
https://doi.org/10.1099/jmm.0.001178


Children 2024, 11, 931 15 of 16

39. Pulikkan, J.; Maji, A.; Dhakan, D.B.; Saxena, R.; Mohan, B.; Anto, M.M.; Agarwal, N.; Grace, T.; Sharma, V.K. Gut Microbial
Dysbiosis in Indian Children with Autism Spectrum Disorders. Microb. Ecol. 2018, 76, 1102–1114. [CrossRef] [PubMed]

40. Zurita, M.F.; Cárdenas, P.A.; Sandoval, M.E.; Peña, M.C.; Fornasini, M.; Flores, N.; Monaco, M.H.; Berding, K.; Donovan, S.M.;
Kuntz, T.; et al. Analysis of gut microbiome, nutrition and immune status in autism spectrum disorder: A case-control study in
Ecuador. Gut Microbes 2019, 11, 453–464. [CrossRef]

41. Coretti, L.; Paparo, L.; Riccio, M.P.; Amato, F.; Cuomo, M.; Natale, A.; Borrelli, L.; Corrado, G.; Comegna, M.; Buommino, E.; et al.
Gut Microbiota Features in Young Children With Autism Spectrum Disorders. Front. Microbiol. 2018, 9, 3146. [CrossRef]

42. Son, J.S.; Zheng, L.J.; Rowehl, L.M.; Tian, X.; Zhang, Y.; Zhu, W.; Litcher-Kelly, L.; Gadow, K.D.; Gathungu, G.; Robertson, C.E.;
et al. Comparison of Fecal Microbiota in Children with Autism Spectrum Disorders and Neurotypical Siblings in the Simons
Simplex Collection. PLoS ONE 2015, 10, e0137725. [CrossRef]

43. Rojas-Velazquez, D.; Kidwai, S.; Kraneveld, A.D.; Tonda, A.; Oberski, D.; Garssen, J.; Lopez-Rincon, A. Methodology for
biomarker discovery with reproducibility in microbiome data using machine learning. BMC Bioinform. 2024, 25, 26. [CrossRef]
[PubMed]

44. David, M.M.; Tataru, C.; Daniels, J.; Schwartz, J.; Keating, J.; Hampton-Marcell, J.; Gottel, N.; Gilbert, J.A.; Wall, D.P. Children
with Autism and Their Typically Developing Siblings Differ in Amplicon Sequence Variants and Predicted Functions of Stool-
Associated Microbes. mSystems 2021, 6, e00193-20. [CrossRef] [PubMed]

45. Vernocchi, P.; Marangelo, C.; Guerrera, S.; Del Chierico, F.; Guarrasi, V.; Gardini, S.; Conte, F.; Paci, P.; Ianiro, G.; Gasbarrini, A.;
et al. Gut microbiota functional profiling in autism spectrum disorders: Bacterial VOCs and related metabolic pathways acting as
disease biomarkers and predictors. Front. Microbiol. 2023, 14, 1287350. [CrossRef] [PubMed]

46. Vernocchi, P.; Ristori, M.V.; Guerrera, S.; Guarrasi, V.; Conte, F.; Russo, A.; Lupi, E.; Albitar-Nehme, S.; Gardini, S.; Paci, P.; et al.
Gut Microbiota Ecology and Inferred Functions in Children With ASD Compared to Neurotypical Subjects. Front. Microbiol. 2022,
13, 871086. [CrossRef] [PubMed]

47. Wang, M.B.; Doenyas, C.; Wan, J.; Zeng, S.J.; Cai, C.Q.; Zhou, J.X.; Liu, Y.Q.; Yin, Z.Q.; Zhou, W.H. Virulence factor-related gut
microbiota genes and immunoglobulin A levels as novel markers for machine learning-based classification of autism spectrum
disorder. Comp. Struct. Biotechnol. J. 2021, 19, 545–554. [CrossRef] [PubMed]

48. Wang, M.; Wan, J.; Rong, H.; He, F.; Wang, H.; Zhou, J.; Cai, C.; Wang, Y.; Xu, R.; Yin, Z.; et al. Alterations in Gut Glutamate
Metabolism Associated with Changes in Gut Microbiota Composition in Children with Autism Spectrum Disorder. mSystems
2019, 4, e00321-18. [CrossRef] [PubMed]

49. Zhou, J.; He, F.; Yang, F.; Yang, Z.; Xie, Y.; Zhou, S.; Liang, J.; Xu, R.; Wang, Y.; Guo, H.; et al. Increased stool immunoglobulin A
level in children with autism spectrum disorders. Res. Dev. Disabil. 2018, 82, 90–94. [CrossRef] [PubMed]

50. Wang, W.J.; Fu, P.C. Gut Microbiota Analysis and In Silico Biomarker Detection of Children with Autism Spectrum Disorder
across Cohorts. Microorganisms 2023, 11, 19. [CrossRef]

51. Kovtun, A.S.; Averina, O.V.; Alekseeva, M.G.; Danilenko, V.N. Antibiotic Resistance Genes in the Gut Microbiota of Children with
Autistic Spectrum Disorder as Possible Predictors of the Disease. Microb. Drug Resist. 2020, 26, 1307–1320. [CrossRef]

52. Wu, T.; Wang, H.C.; Lu, W.W.; Zhai, Q.X.; Zhang, Q.X.; Yuan, W.W.; Gu, Z.N.; Zhao, J.X.; Zhang, H.; Chen, W. Potential of gut
microbiome for detection of autism spectrum disorder. Microb. Pathog. 2020, 149, 10. [CrossRef]

53. Strati, F.; Cavalieri, D.; Albanese, D.; De Felice, C.; Donati, C.; Hayek, J.; Jousson, O.; Leoncini, S.; Renzi, D.; Calabro, A.; et al.
New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 2017, 5, 24. [CrossRef] [PubMed]

54. Kang, D.W.; Park, J.G.; Ilhan, Z.E.; Wallstrom, G.; Labaer, J.; Adams, J.B.; Krajmalnik-Brown, R. Reduced incidence of Prevotella
and other fermenters in intestinal microflora of autistic children. PLoS ONE 2013, 8, e68322. [CrossRef] [PubMed]

55. Liu, J.; Liu, X.; Xiong, X.-Q.; Yang, T.; Cui, T.; Hou, N.-L.; Lai, X.; Liu, S.; Guo, M.; Liang, X.-H.; et al. Effect of vitamin A
supplementation on gut microbiota in children with autism spectrum disorders—A pilot study. BMC Microbiol. 2017, 17, 204.
[CrossRef] [PubMed]

56. Xu, Y.S.; Wang, Y.H.; Xu, J.S.; Song, Y.; Liu, B.Q.; Xiong, Z.F. Leveraging Existing 16SrRNA Microbial Data to Define a Composite
Biomarker for Autism Spectrum Disorder. Microbiol. Spectr. 2022, 10, 12. [CrossRef] [PubMed]

57. Chiappori, F.; Cupaioli, F.A.; Consiglio, A.; Di Nanni, N.; Mosca, E.; Licciulli, V.F.; Mezzelani, A. Analysis of Faecal Microbiota
and Small ncRNAs in Autism: Detection of miRNAs and piRNAs with Possible Implications in Host-Gut Microbiota Cross-Talk.
Nutrients 2022, 14, 1340. [CrossRef] [PubMed]

58. Chen, Z.; Shi, K.; Liu, X.; Dai, Y.; Liu, Y.; Zhang, L.; Du, X.; Zhu, T.; Yu, J.; Fang, S.; et al. Gut microbial profile is associated with
the severity of social impairment and IQ performance in children with autism spectrum disorder. Front. Psychiatry 2021, 12,
789864. [CrossRef] [PubMed]

59. Ha, S.; Oh, D.; Lee, S.; Park, J.; Ahn, J.; Choi, S.; Cheon, K.A. Altered Gut Microbiota in Korean Children with Autism Spectrum
Disorders. Nutrients 2021, 13, 3300. [CrossRef]

60. Huang, M.; Liu, K.; Wei, Z.; Feng, Z.; Chen, J.; Yang, J.; Zhong, Q.; Wan, G.; Kong, X.J. Serum Oxytocin Level Correlates With Gut
Microbiome Dysbiosis in Children With Autism Spectrum Disorder. Front. Neurosci. 2021, 15, 721884. [CrossRef] [PubMed]

61. Zhao, R.H.; Zheng, P.Y.; Liu, S.M.; Tang, Y.C.; Li, E.Y.; Sun, Z.Y.; Jiang, M.M. Correlation between gut microbiota and behavior
symptoms in children with autism spectrum disorder. Zhongguo Dang Dai Er Ke Za Zhi 2019, 21, 663–669. [CrossRef]

https://doi.org/10.1007/s00248-018-1176-2
https://www.ncbi.nlm.nih.gov/pubmed/29564487
https://doi.org/10.1080/19490976.2019.1662260
https://doi.org/10.3389/fmicb.2018.03146
https://doi.org/10.1371/journal.pone.0137725
https://doi.org/10.1186/s12859-024-05639-3
https://www.ncbi.nlm.nih.gov/pubmed/38225565
https://doi.org/10.1128/mSystems.00193-20
https://www.ncbi.nlm.nih.gov/pubmed/33824194
https://doi.org/10.3389/fmicb.2023.1287350
https://www.ncbi.nlm.nih.gov/pubmed/38192296
https://doi.org/10.3389/fmicb.2022.871086
https://www.ncbi.nlm.nih.gov/pubmed/35756062
https://doi.org/10.1016/j.csbj.2020.12.012
https://www.ncbi.nlm.nih.gov/pubmed/33510860
https://doi.org/10.1128/mSystems.00321-18
https://www.ncbi.nlm.nih.gov/pubmed/30701194
https://doi.org/10.1016/j.ridd.2017.10.009
https://www.ncbi.nlm.nih.gov/pubmed/29102384
https://doi.org/10.3390/microorganisms11020291
https://doi.org/10.1089/mdr.2019.0325
https://doi.org/10.1016/j.micpath.2020.104568
https://doi.org/10.1186/s40168-017-0242-1
https://www.ncbi.nlm.nih.gov/pubmed/28222761
https://doi.org/10.1371/journal.pone.0068322
https://www.ncbi.nlm.nih.gov/pubmed/23844187
https://doi.org/10.1186/s12866-017-1096-1
https://www.ncbi.nlm.nih.gov/pubmed/28938872
https://doi.org/10.1128/spectrum.00331-22
https://www.ncbi.nlm.nih.gov/pubmed/35762814
https://doi.org/10.3390/nu14071340
https://www.ncbi.nlm.nih.gov/pubmed/35405953
https://doi.org/10.3389/fpsyt.2021.789864
https://www.ncbi.nlm.nih.gov/pubmed/34975585
https://doi.org/10.3390/nu13103300
https://doi.org/10.3389/fnins.2021.721884
https://www.ncbi.nlm.nih.gov/pubmed/34658767
https://doi.org/10.7499/j.issn.1008-8830.2019.07.009


Children 2024, 11, 931 16 of 16

62. Shi, K.; Zhang, L.; Yu, J.; Chen, Z.; Lai, S.; Zhao, X.; Li, W.G.; Luo, Q.; Lin, W.; Feng, J.; et al. A 12-genus bacterial signature
identifies a group of severe autistic children with differential sensory behavior and brain structures. Clin. Transl. Med. 2021,
11, e314. [CrossRef]

63. Liu, T.; Pan, X.; Wang, X.; Feenstra, K.A.; Heringa, J.; Huang, Z. Predicting the relationships between gut microbiota and mental
disorders with knowledge graphs. Health Inf. Sci. Syst. 2021, 9, 3. [CrossRef] [PubMed]

64. Viswanathan, M.; Patnode, C.D.; Berkman, N.D.; Bass, E.B.; Chang, S.; Hartling, L.; Murad, M.H.; Treadwell, J.R.; Kane, R.L.
Assessing the risk of bias in systematic reviews of health care interventions. In Methods Guide for Effectiveness and Comparative
Effectiveness Reviews [Internet]; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2017.

65. Andreo-Martínez, P.; Ortiz-Martínez, V.M.; Salar-García, M.J.; Veiga-del-Baño, J.M.; Chica, A.; Quesada-Medina, J. Waste animal
fats as feedstock for biodiesel production using non-catalytic supercritical alcohol transesterification: A perspective by the
PRISMA methodology. Energy Sustain. Dev. 2022, 69, 150–163. [CrossRef]

66. Guillamón, E.; Andreo-Martínez, P.; Mut-Salud, N.; Fonollá, J.; Baños, A. Beneficial Effects of Organosulfur Compounds from
Allium cepa on Gut Health: A Systematic Review. Foods 2021, 10, 1680. [CrossRef] [PubMed]

67. Ortiz-Martínez, V.M.; Andreo-Martínez, P.; García-Martínez, N.; Pérez de los Ríos, A.; Hernández-Fernández, F.J.; Quesada-
Medina, J. Approach to biodiesel production from microalgae under supercritical conditions by the PRISMA method. Fuel Process.
Technol. 2019, 191, 211–222. [CrossRef]

68. Castro, K.; Faccioli, L.S.; Baronio, D.; Gottfried, C.; Perry, I.S.; dos Santos Riesgo, R. Effect of a ketogenic diet on autism spectrum
disorder: A systematic review. Res. Autism. Spectr. Disord. 2015, 20, 31–38. [CrossRef]

69. Martínez-González, A.E.; Piqueras, J.A. Differences in the severity of Autistic Spectrum Disorder symptoms according to the
educational context. Eur. J. Educ. Psychol. 2019, 12, 153–164. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/ctm2.314
https://doi.org/10.1007/s13755-020-00128-2
https://www.ncbi.nlm.nih.gov/pubmed/33262885
https://doi.org/10.1016/j.esd.2022.06.004
https://doi.org/10.3390/foods10081680
https://www.ncbi.nlm.nih.gov/pubmed/34441457
https://doi.org/10.1016/j.fuproc.2019.03.031
https://doi.org/10.1016/j.rasd.2015.08.005
https://doi.org/10.30552/ejep.v12i2.280

	Introduction 
	Materials and Methods 
	Protocol and Registration 
	Eligibility Criteria 
	Information Sources 
	Search 
	Study Selection 
	Data Collection and Data Items 

	Results 
	Study Selection 
	Individual Study Characteristics and Outcomes 
	Risk of Bias 
	Limitations 

	Discussion 
	Conclusions 
	References

