Chest Compressions in the Delivery Room
Abstract
:1. Background
2. Current Recommendations
3. Mode of Action
4. Using Different Compression to Ventilation Ratios
5. Continuous Chest Compressions with Asynchronous Ventilations
6. Predicting Success of Chest Compressions
7. Optimal Depth
8. Oxygen Concentration During CPR
9. Chest Compressions and Sustained Inflation
10. Use of Animal Models
11. Future Directions
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations/Nomenclature
C:V ratio | Compression to ventilation ratio |
CC | Chest compression |
CCaV | Continuous chest compressions with asynchronous ventilations |
CPP | Coronary perfusion pressure |
CPR | Cardiopulmonary resuscitation |
DR | Delivery room |
PPV | Positive pressure ventilation |
ROSC | Return of spontaneous circulation |
SI | Sustained inflation |
References
- Aziz, K.; Chadwick, M.; Baker, M.; Andrews, W. Ante- and intra-partum factors that predict increased need for neonatal resuscitation. Resuscitation 2008, 79, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Perlman, J.M.; Wyllie, J.P.; Kattwinkel, J.; Wyckoff, M.H.; Aziz, K.; Guinsburg, R.; Kim, H.S.; Liley, H.G.; Mildenhall, L.; Simon, W.M. Part 7: Neonatal resuscitation: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Pediatrics 2015, 136, S204–S241. [Google Scholar] [CrossRef] [PubMed]
- Wyckoff, M.H.; Aziz, K.; Escobedo, M.B.; Kapadia, V.S.; Kattwinkel, J.; Perlman, J.M.; Simon, W.M.; Weiner, G.M.; Zaichkin, J.G. Part 13: Neonatal resuscitation 2015 American heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care (reprint). Pediatrics 2015, 136, S196–S218. [Google Scholar] [CrossRef] [PubMed]
- Barber, C.A.; Wyckoff, M.H. Use and efficacy of endotracheal versus intravenous epinephrine during neonatal cardiopulmonary resuscitation in the delivery room. Pediatrics 2006, 118, 1028–1034. [Google Scholar] [CrossRef] [PubMed]
- Harrington, D.J.; Redman, C.W.; Redman, C.W.; Moulden, M.; Greenwood, C.E.; Greenwood, C.E. The long-term outcome in surviving infants with Apgar zero at 10 min: A systematic review of the literature and hospital-based cohort. Am. J. Obstet. Gynecol. 2007, 196, e1–e5. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.S.; Shah, P.; Tai, K.F.Y. Chest compression and/or epinephrine at birth for preterm infants <32 weeks gestational age: Matched cohort study of neonatal outcomes. J. Perinatol. 2009, 29, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Soraisham, A.S.; Lodha, A.K.; Singhal, N.; Yang, J.; Lee, S.K.; Shah, P.S.; Aziz, K. Neonatal outcomes following extensive cardiopulmonary resuscitation in the delivery room for infants born at less than 33 weeks gestational age. Resuscitation 2014, 85, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Handley, S.C.; Handley, S.C.; Sun, Y.; Sun, Y.; Wyckoff, M.H.; Lee, H.C. Outcomes of extremely preterm infants after delivery room cardiopulmonary resuscitation in a population-based cohort. J. Perinatol. 2015, 35, 379–383. [Google Scholar] [CrossRef]
- Frontanes, A.; García-Fragoso, L.; García, I.; Rivera, J.; Valcárcel, M. Outcome of very-low-birth-weight infants who received epinephrine in the delivery room. Resuscitation 2011, 82, 427–430. [Google Scholar] [CrossRef]
- Wyckoff, M.H.; Perlman, J.M. Cardiopulmonary resuscitation in very low birth weight infants. Pediatrics 2000, 106, 618–620. [Google Scholar] [CrossRef]
- Shah, P.S. Extensive cardiopulmonary resuscitation for VLBW and ELBW infants: A systematic review and meta-analyses. J. Perinatol. 2009, 29, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Solevåg, A.; Cheung, P.-Y.; O’Reilly, M.; Schmölzer, G.M. A review of approaches to optimise chest compressions in the resuscitation of asphyxiated newborns. Arch. Dis. Child. Fetal Neonatal 2016, 101, F272–F276. [Google Scholar] [CrossRef] [PubMed]
- Solevåg, A.; Schmölzer, G.M. Optimal chest compression rate and compression to ventilation ratio in delivery room resuscitation: Evidence from newborn piglets and neonatal manikins. Front. Pediatr. 2017, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Solevåg, A.; Cheung, P.-Y.; Schmölzer, G.M. Chest compressions and ventilation in delivery room resuscitation. NeoReviews 2014, 15, e396–e402. [Google Scholar] [CrossRef]
- Wyckoff, M.H.; Berg, R.A. Optimizing chest compressions during delivery-room resuscitation. Semin. Fetal Neonatal Med. 2008, 13, 410–415. [Google Scholar] [CrossRef]
- Halperin, H.H.; Tsitlik, J.; Guerci, A.D.; Mellits, E.D.; Levin, H.R.; Shi, A.Y.; Chandra, N.; Weisfeldt, M.L. Determinants of blood flow to vital organs during cardiopulmonary resuscitation in dogs. Circulation 1986, 73, 539–550. [Google Scholar] [CrossRef]
- Rudikoff, M.; Maughan, W.L.; Effron, M.; Fresson, J.; Weisfeldt, M.L. Mechanisms of blood flow during cardiopulmonary resuscitation. Circulation 1980, 61, 345–352. [Google Scholar] [CrossRef]
- Higano, S.T.; Oh, J.K.; Ewy, G.A.; Seward, J.B. The mechanism of blood flow during closed chest cardiac massage in humans: Transesophageal echocardiographic observations. Mayo. Clin. Proc. 1990, 65, 1432–1440. [Google Scholar] [CrossRef]
- Berg, R.A.; Sanders, A.B.; Kern, K.B.; Hilwig, R.W.; Heidenreich, J.W.; Porter, M.E.; Ewy, G.A. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation 2001, 104, 2465–2470. [Google Scholar] [CrossRef]
- Kern, K.B.; Hilwig, R.W.; Berg, R.A.; Sanders, A.B.; Ewy, G.A. Importance of continuous chest compressions during cardiopulmonary resuscitation: Improved outcome during a simulated single lay-rescuer scenario. Circulation 2002, 105, 645–649. [Google Scholar] [CrossRef]
- Chandra, N.; Weisfeldt, M.L.; Tsitlik, J.; Vaghaiwalla, F.; Snyder, L.D.; Hoffecker, M.; Rudikoff, M.T. Augmentation of carotid flow during cardiopulmonary resuscitation by ventilation at high airway pressure simultaneous with chest compression. Am. J. Cardiol. 1981, 48, 1053–1063. [Google Scholar] [CrossRef]
- Chandra, N.; Beyar, R.; Halperin, H.H.; Tsitlik, J.; Wurmb, E.; Rayburn, B.; Guerci, A.D.; Weisfeldt, M.L. Vital organ perfusion during assisted circulation by manipulation of intrathoracic pressure. Circulation 1991, 84, 279–286. [Google Scholar] [CrossRef]
- Koehler, R.C.; Tsitlik, J.; Chandra, N.; Guerci, A.D.; Rogers, M.C.; Weisfeldt, M.L. Augmentation of cerebral perfusion by simultaneous chest compression and lung inflation with abdominal binding after cardiac arrest in dogs. Circulation 1983, 67, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Berg, R.A.; Hilwig, R.W.; Kern, K.B.; Ewy, G.A. “Bystander” chest compressions and assisted ventilation independently improve outcome from piglet asphyxial pulseless “Cardiac Arrest”. Circulation 2000, 101, 1743–1748. [Google Scholar] [CrossRef] [PubMed]
- Solevåg, A.; Dannevig, I.; Wyckoff, M.H.; Saugstad, O.D.; Nakstad, B. Extended series of cardiac compressions during CPR in a swine model of perinatal asphyxia. Resuscitation 2010, 81, 1571–1576. [Google Scholar] [CrossRef] [PubMed]
- Solevåg, A.; Dannevig, I.; Wyckoff, M.H.; Saugstad, O.D.; Nakstad, B. Return of spontaneous circulation with a compression: Ventilation ratio of 15:2 versus 3:1 in newborn pigs with cardiac arrest due to asphyxia. Arch. Dis. Child. Fetal Neonatal 2011, 96, F417–F421. [Google Scholar] [CrossRef]
- Pasquin, M.P.; Cheung, P.-Y.; Patel, S.; Lu, M.; Lee, T.-F.; Wagner, M.; O’Reilly, M.; Schmölzer, G.M. Comparison of different compression to ventilation ratios (2:1, 3:1, and 4:1) during cardiopulmonary resuscitation in a porcine model of neonatal asphyxia. Neonatology 2018, 114, 37–45. [Google Scholar] [CrossRef]
- Traub, E.; Dick, W.; Lotz, P.; Lindner, K.H.; Engels, K. Investigations on neonatal cardiopulmonary reanimation using an animal model. J. Perinat. Med. 1983, 11, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Li, E.S.-S.; Cheung, P.-Y.; Pichler, G.; Aziz, K.; Schmölzer, G.M. Respiratory function and near infrared spectroscopy recording during cardiopulmonary resuscitation in an extremely preterm newborn. Neonatology 2014, 105, 200–204. [Google Scholar] [CrossRef]
- Hemway, R.J.; Christman, C.; Perlman, J.M. The 3:1 is superior to a 15:2 ratio in a newborn manikin model in terms of quality of chest compressions and number of ventilations. Arch. Dis. Child. Fetal Neonatal 2013, 98, F42–F45. [Google Scholar] [CrossRef]
- Srikantan, S.K.; Berg, R.A.; Cox, T.; Tice, L. Effect of one-rescuer compression/ventilation ratios on cardiopulmonary resuscitation in infant, pediatric, and adult manikins. Pediatr. Crit. Care Med. 2005, 6, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Whyte, S.D.; Sinha, A.K.; Wyllie, J.P. Neonatal resuscitation—A practical assessment. Resuscitation 1999, 40, 21–25. [Google Scholar] [CrossRef]
- Solevåg, A.; Madland, J.M.; Gjærum, E.; Nakstad, B. Minute ventilation at different compression to ventilation ratios, different ventilation rates, and continuous chest compressions with asynchronous ventilation in a newborn manikin. Scand. J. Trauma Resusc. Emerg. Med. 2012, 20, 73. [Google Scholar] [CrossRef] [Green Version]
- Schmölzer, G.M.; O’Reilly, M.; LaBossiere, J.; Lee, T.-F.; Cowan, S.; Nicoll, J.; Bigam, D.L.; Cheung, P.Y. 3:1 compression to ventilation ratio versus continuous chest compression with asynchronous ventilation in a porcine model of neonatal resuscitation. Resuscitation 2014, 85, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Solevåg, A.; Schmölzer, G.M.; O’Reilly, M.; Lu, M.; Lee, T.-F.; Hornberger, L.K.; Nakstad, B.; Cheung, P.Y. Myocardial perfusion and oxidative stress after 21% vs. 100% oxygen ventilation and uninterrupted chest compressions in severely asphyxiated piglets. Resuscitation 2016, 106, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Manley, B.J.; Dawson, J.A.; Kamlin, C.O.F.; Donath, S.; Morley, C.J.; Davis, P.G. Clinical assessment of extremely premature infants in the delivery room is a poor predictor of survival. Pediatrics 2010, 125, e559–e564. [Google Scholar] [CrossRef] [PubMed]
- Chalak, L.F.; Barber, C.A.; Hynan, L.; Garcia, D.; Christie, L.; Wyckoff, M.H. End-tidal CO2 detection of an audible heart rate during neonatal cardiopulmonary resuscitation after asystole in asphyxiated piglets. Pediatr. Res. 2011, 69, 401–405. [Google Scholar] [CrossRef]
- Chandrasekharan, P.; Vali, P.; Rawat, M.; Mathew, B.; Gugino, S.F.; Koenigsknecht, C.; Helman, J.; Nair, J.; Berkelhamer, S.; Lakshminrusimha, S. Continuous capnography monitoring during resuscitation in a transitional large mammalian model of asphyxial cardiac arrest. Pediatr. Res. 2017, 81, 898–904. [Google Scholar] [CrossRef] [Green Version]
- Li, E.S.-S.; Cheung, P.-Y.; O’Reilly, M.; LaBossiere, J.; Lee, T.-F.; Cowan, S.; Bigam, D.L.; Schmölzer, G.M. Exhaled CO2 parameters as a tool to assess ventilation-perfusion mismatching during neonatal resuscitation in a swine model of neonatal asphyxia. PLoS ONE 2016, 11, e0146524. [Google Scholar] [CrossRef]
- Vali, P.; Chandrasekharan, P.; Rawat, M.; Gugino, S.F.; Koenigsknecht, C.; Helman, J.; Mathew, B.; Berkelhamer, S.; Nair, J.; Wyckoff, M.; et al. Hemodynamics and gas exchange during chest compressions in neonatal resuscitation. PLoS ONE 2017, 12, e0176478. [Google Scholar] [CrossRef]
- Wagner, M.; Cheung, P.-Y.; Li, E.S.-S.; Lee, T.-F.; Lu, M.; Olischar, M.; O’Reilly, M.; Schmölzer, G.M. Effects of epinephrine on hemodynamic changes during cardiopulmonary resuscitation in a neonatal piglet model. Pediatr. Res. 2018, 83, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.; Nadkarni, V.; Pollock, A.; Babbs, C.; Nishisaki, A.; Braga, M.; Berg, R.A.; Ades, A. Evaluation of the neonatal resuscitation program’s recommended chest compression depth using computerized tomography imaging. Resuscitation 2010, 81, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.-Y.; Li, E.S.-S.; Aziz, K.; O’Reilly, M.; Fu, B.; Zheng, B. Quantifying force application to a newborn manikin during simulated cardiopulmonary resuscitation. J. Mater. Fetal Neonatal Med. 2016, 29, 1770–1772. [Google Scholar]
- Li, E.S.-S.; Cheung, P.-Y.; O’Reilly, M.; Aziz, K.; Schmölzer, G.M. Rescuer fatigue during simulated neonatal cardiopulmonary resuscitation. J. Perinatol. 2015, 35, 142–145. [Google Scholar] [CrossRef]
- Obladen, M. History of neonatal resuscitation—Part 2: Oxygen and other drugs. Neonatology 2009, 95, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Spector, L.G.; Klebanoff, M.A.; Feusner, J.H.; Georgieff, M.K.; Ross, J.A. Childhood cancer following neonatal oxygen supplementation. J. Pediatr. 2005, 147, 27–31. [Google Scholar] [CrossRef]
- Vento, M.; Saugstad, O.D. Oxygen supplementation in the delivery room: Updated information. J. Pediatr. 2011, 158, e5–e7. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.; Schulze, A.; O’Donnell, C.P.F.; Davis, P.G. Air versus oxygen for resuscitation of infants at birth. Cochrane Database Syst. Rev. 2005, 2, CD002273. [Google Scholar] [CrossRef]
- Davis, P.G.; Tan, A.; O’Donnell, C.P.F.; Schulze, A. Resuscitation of newborn infants with 100% oxygen or air: A systematic review and meta-analysis. Lancet 2004, 364, 1329–1333. [Google Scholar] [CrossRef]
- Naumburg, E.; Bellocco, R.; Cnattingius, S.; Jonzon, A.; Ekbom, A. Supplementary oxygen and risk of childhood lymphatic leukaemia. Acta Paediatr. 2002, 91, 1328–1333. [Google Scholar] [CrossRef]
- Vento, M.; Asensi, M.; Sastre, J.; Lloret, A.; García-Sala, F.; Miñana, J.B.; Viña, J. Hyperoxemia caused by resuscitation with pure oxygen may alter intracellular redox status by increasing oxidized glutathione in asphyxiated newly born infants. Semin. Perinatol. 2002, 26, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Vento, M.; Asensi, M.; Sastre, J.; Lloret, A.; García-Sala, F.; Viña, J. Oxidative stress in asphyxiated term infants resuscitated with 100% oxygen. J. Pediatr. 2003, 142, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Hidalgo, C.; Cheung, P.-Y.; Solevåg, A.; Vento, M.; O’Reilly, M.; Saugstad, O.D.; Schmolzer, G. A review of oxygen use during chest compressions in newborns. Front. Pediatr. 2018, 6, 1–7. [Google Scholar] [CrossRef]
- Schmölzer, G.M.; O’Reilly, M.; LaBossiere, J.; Lee, T.-F.; Cowan, S.; Qin, S.; Bigam, D.L.; Cheung, P.Y. Cardiopulmonary resuscitation with chest compressions during sustained inflations: A new technique of neonatal resuscitation that improves recovery and survival in a neonatal porcine model. Circulation 2013, 128, 2495–2503. [Google Scholar] [CrossRef] [PubMed]
- Li, E.S.-S.; Cheung, P.-Y.; O’Reilly, M.; Schmölzer, G.M. Change in tidal volume during cardiopulmonary resuscitation in newborn piglets. Arch. Dis. Child. Fetal Neonatal 2015, 100, F530–F533. [Google Scholar] [CrossRef] [PubMed]
- Solevåg, A.; Lee, T.-F.; Lu, M.; Schmölzer, G.M.; Cheung, P.-Y. Tidal volume delivery during continuous chest compressions and sustained inflation. Arch. Dis. Child. Fetal Neonatal 2017, 102, F85–F87. [Google Scholar] [CrossRef]
- Tsui, B.C.H.; Horne, S.; Tsui, J.; Corry, G.N. Generation of tidal volume via gentle chest pressure in children over one year old. Resuscitation 2015, 92, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Li, E.S.-S.; Görens, I.; Cheung, P.-Y.; Lee, T.-F.; Lu, M.; O’Reilly, M.; Schmölzer, G.M. Chest compressions during sustained inflations improve recovery when compared to a 3:1 compression: Ventilation ratio during cardiopulmonary resuscitation in a neonatal porcine model of asphyxia. Neonatology 2017, 112, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Li, E.S.-S.; Cheung, P.-Y.; Lee, T.-F.; Lu, M.; O’Reilly, M.; Schmölzer, G.M. Return of spontaneous circulation is not affected by different chest compression rates superimposed with sustained inflations during cardiopulmonary resuscitation in newborn piglets. PLoS ONE 2016, 11, e0157249. [Google Scholar] [CrossRef] [PubMed]
- Mustofa, J.; Cheung, P.-Y.; Patel, S.; Lee, T.-F.; Lu, M.; Pasquin, M.P.; O’Reilly, M.; Schmölzer, G.M. Effects of different durations of sustained inflation during cardiopulmonary resuscitation on return of spontaneous circulation and hemodynamic recovery in severely asphyxiated piglets. Resuscitation 2018, 129, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Vali, P.; Chandrasekharan, P.; Rawat, M.; Gugino, S.F.; Koenigsknecht, C.; Helman, J.; Mathew, B.; Berkelhamer, S.; Nair, J.; Lakshminrusimha, S. Continuous chest compressions during sustained inflations in a perinatal asphyxial cardiac arrest lamb model. Pediatr. Crit. Care Med. 2017, 18, e370–e377. [Google Scholar] [CrossRef] [PubMed]
- Schmölzer, G.M.; O’Reilly, M.; Fray, C.; van Os, S.; Cheung, P.-Y. Chest compression during sustained inflation versus 3:1 chest compression:ventilation ratio during neonatal cardiopulmonary resuscitation: A randomised feasibility trial. Arch. Dis. Child. Fetal Neonatal 2018, 103, F455–F460. [Google Scholar] [CrossRef] [PubMed]
- Foglia, E.E.; Owen, L.S.; Thio, M.; Ratcliffe, S.J.; Lista, G.; te Pas, A.; Hummler, H.; Nadkarni, V.; Ades, A.; Posencheg, M.; et al. Sustained aeration of infant lungs (SAIL) trial: Study protocol for a randomized controlled trial. Trials 2015, 16, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Solevåg, A.L.; Cheung, P.Y.; Lie, H.; O’Reilly, M.; Aziz, K.; Nakstad, B.; Schmölzer, G.M. Chest compressions in newborn animal models: A review. Resuscitation 2015, 96, 151–155. [Google Scholar] [CrossRef]
- Hooper, S.B.; te Pas, A.B.; Polglase, G.R.; Wyckoff, M.H. Animal models in neonatal resuscitation research: What can they teach us? Semin. Fetal Neonatal Med. 2018, 23, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Varvarousi, G.; Johnson, E.O.; Goulas, S.; Agrogiannis, G.; Valsamakis, N.; Perrea, D.; Stefanadis, C.; Papadimitriou, L.; Xanthos, T. Combination pharmacotherapy improves neurological outcome after asphyxial cardiac arrest. Resuscitation 2012, 83, 527–532. [Google Scholar] [CrossRef]
- Sobotka, K.; Hooper, S.B.; Allison, B.J.; Davis, P.G.; Morley, C.J.; Moss, T.J.M. An initial sustained inflation improves the respiratory and cardiovascular transition at birth in preterm lambs. Pediatr. Res. 2011, 70, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Sobotka, K.S.; Morley, C.; Ong, T.; Polglase, G.R.; Aridas, J.D.; Miller, S.L.; Schmölzer, G.M.; Klingenberg, C.; Moss, T.J.; Jenkin, G.; et al. Circulatory responses to asphyxia differ if the asphyxia occurs in utero or ex utero in near-term lambs. PLoS ONE 2014, 9, e112264. [Google Scholar] [CrossRef] [PubMed]
- Sobotka, K.; Polglase, G.R.; Schmölzer, G.M.; Davis, P.G.; Klingenberg, C.; Hooper, S.B. Effects of chest compressions on cardiovascular and cerebral hemodynamics in asphyxiated near-term lambs. Pediatr. Res. 2015, 78, 395–400. [Google Scholar] [CrossRef]
- Dargaville, P.A.; Lavizzari, A.; Padoin, P.; Black, D.; Zonneveld, E.; Perkins, E.; Sourial, M.; Rajapaksa, A.E.; Davis, P.G.; Hooper, S.B.; et al. An authentic animal model of the very preterm infant on nasal continuous positive airway pressure. Intensive Care Med. Exp. 2015, 3, 1–12. [Google Scholar] [CrossRef]
- Klingenberg, C.; Sobotka, K.S.; Ong, T.; Allison, B.J.; Schmölzer, G.M.; Moss, T.J.; Polglase, G.R.; Dawson, J.A.; Davis, P.G.; Hooper, S.B. Effect of sustained inflation duration; resuscitation of near-term asphyxiated lambs. Arch. Dis. Child. Fetal Neonatal 2013, 98, F222–F227. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Hidalgo, C.; Schmölzer, G.M. Chest Compressions in the Delivery Room. Children 2019, 6, 4. https://doi.org/10.3390/children6010004
Garcia-Hidalgo C, Schmölzer GM. Chest Compressions in the Delivery Room. Children. 2019; 6(1):4. https://doi.org/10.3390/children6010004
Chicago/Turabian StyleGarcia-Hidalgo, Catalina, and Georg M. Schmölzer. 2019. "Chest Compressions in the Delivery Room" Children 6, no. 1: 4. https://doi.org/10.3390/children6010004
APA StyleGarcia-Hidalgo, C., & Schmölzer, G. M. (2019). Chest Compressions in the Delivery Room. Children, 6(1), 4. https://doi.org/10.3390/children6010004