Cognitive Functioning in Patients with Pediatric-Onset Multiple Sclerosis, an Updated Review and Future Focus
Abstract
:1. Introduction
2. Cognitive and Psychosocial Outcomes
2.1. Cognitive Functioning Outcomes in POMS
2.2. Psychosocial and Functional Outcomes
3. Assessment of Cognitive Functioning in POMS
4. Disease Characteristics Associated with Cognitive and Psychosocial Outcomes
4.1. MS Treatment and Cognitive Functioning
4.2. Neuroimaging
5. Other Risk Factors of Cognitive Impairment
6. Cognitive Rehabilitation and Preventative Measures
7. Conclusions and Future Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chitnis, T.; Glanz, B.; Jaffin, S.; Healy, B. Demographics of Pediatric-Onset Multiple Sclerosis in an Ms Center Population from the Northeastern United States. Mult. Scler. 2009, 15, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Yeh, E.A.; Chitnis, T.; Krupp, L.; Ness, J.; Chabas, D.; Kuntz, N.; Waubant, E. Pediatric Multiple Sclerosis. Nat. Rev. Neurol. 2009, 5, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Chitnis, T.; Krupp, L.; Yeh, A.; Rubin, J.; Kuntz, N.; Strober, J.B.; Chabas, D.; Weinstock-Guttmann, B.; Ness, J.; Rodriguez, M.; et al. Pediatric Multiple Sclerosis. Neurol. Clin. 2011, 29, 481–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friese, M.A.; Schattling, B.; Fugger, L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol. 2014, 10, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Krupp, L.B.; Banwell, B.; Tenembaum, S. Consensus Definitions Proposed for Pediatric Multiple Sclerosis Related Disorders. Neurology 2007, 68, S7–S12. [Google Scholar] [CrossRef] [PubMed]
- Chitnis, T.; Tenembaum, S.; Banwell, B.; Krupp, L.; Pohl, D.; Rostasy, K.; Yeh, E.A.; Bykova, O.; Wassmer, E.; Tardieu, M.; et al. Consensus Statement: Evaluation of New and Existing Therapeutics for Pediatric Multiple Sclerosis. Mult. Scler. 2012, 18, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Polman, C.H.; Reingold, S.C.; Edan, G.; Filippi, M.; Hartung, H.P.; Kappos, L.; Lublin, F.D.; Metz, L.M.; McFarland, H.F.; O’Connor, P.W.; et al. Diagnostic Criteria for Multiple Sclerosis: 2005 Revisions to the Mcdonald Criteria. Ann. Neurol. 2005, 58, 840–846. [Google Scholar] [CrossRef]
- Polman, C.H.; Rudick, R.A. The Multiple Sclerosis Functional Composite: A Clinically Meaningful Measure of Disability. Neurology 2010, 74 (Suppl. 3), S8–S15. [Google Scholar] [CrossRef]
- Tardieu, M.; Banwell, B.; Wolinsky, J.S.; Pohl, D.; Krupp, L.B. Consensus Definitions for Pediatric Ms and Other Demyelinating Disorders in Childhood. Neurology 2016, 87, S8–S11. [Google Scholar] [CrossRef]
- Ketelslegers, I.A.; VanPelt, D.E.; Bryde, S.; Neuteboom, R.F.; Catsman-Berrevoets, C.E.; Hamann, D.; Hintzen, R.Q. Anti-MOG antibodies plead against MS diagnosis in an acquired demyelinating syndromes cohort. Mult. Scler. 2015, 21, 1513–1520. [Google Scholar] [CrossRef]
- Probstel, A.K.; Dormair, K.; Bittner, R.; Sperl, P. Antibodies to MOG are transient in childhood ADEM. Neurology 2011, 77, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Waubant, E.; Chabas, D. Pediatric Multiple Sclerosis. Curr. Treat. Opt. Neurol. 2009, 11, 203–210. [Google Scholar] [CrossRef]
- Gorman, M.P.; Healy, B.C.; Polgar-Turcsanyi, M.; Chitnis, T. Increased Relapse Rate in Pediatric-Onset Compared with Adult-Onset Multiple Sclerosis. Arch. Neurol 2009, 66, 54–59. [Google Scholar] [CrossRef]
- Simone, I.L.; Carrara, D.; Tortorella, C.; Liguori, M.; Lepore, V.; Pellegrini, F.; Bellacosa, A.; Ceccarelli, A.; Pavone, I.; Livrea, P. Course and Prognosis in Early-Onset Ms: Comparison with Adult-Onset Forms. Neurology 2002, 59, 1922–1928. [Google Scholar] [CrossRef] [PubMed]
- Renoux, C.; Vukusic, S.; Confavreux, C. The Natural History of Multiple Sclerosis with Childhood Onset. Clin. Neurol. Neurosurg. 2008, 110, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Baroncini, D.; Zaffaroni, M.; Moiola, L.; Lorefice, L.; Fenu, G.; Iaffaldano, P.; Simone, M.; Fanelli, F.; Patti, F.; D’Amico, E.; et al. Long-Term Follow-up of Pediatric Ms Patients Starting Treatment with Injectable First-Line Agents: A Multicentre, Italian, Retrospective, Observational Study. Mult. Scler. 2018. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, S.; Kennedy, J.; Tellier, R.; Stephens, D.; Banwell, B. Epstein-Barr Virus in Pediatric Multiple Sclerosis. JAMA 2004, 291, 1875–1879. [Google Scholar] [CrossRef]
- Banwell, B.; Bar-Or, A.; Arnold, D.L.; Sadovnick, D.; Narayanan, S.; McGowan, M.; O’Mahony, J.; Magalhaes, S.; Hanwell, H.; Vieth, R.; et al. Clinical, Environmental, and Genetic Determinants of Multiple Sclerosis in Children with Acute Demyelination: A Prospective National Cohort Study. Lancet Neurol. 2011, 10, 436–445. [Google Scholar] [CrossRef]
- Mar, S.; Liang, S.; Waltz, M.; Casoer, T.C.; Goyal, M.; Greenberg, B.; Weinstock-Guttman, B.; Rodriquez, M.; Aaen, G.; Belman, A.; et al. Network of Pediatric MS Centers. Several household chemical exposures are associated with pediatric-onset multiple sclerosis. Ann. Clin. Transl. Neurol. 2018, 5, 1513–1521. [Google Scholar] [CrossRef]
- Graves, J.S.; Chitnis, T.; Weinstock-Guttman, B.; Rubin, J.; Zelikovitch, A.S.; Nourbakhsh, B.; Simmons, T.; Waltz, M.; Casper, T.C.; Waubant, E.; et al. Maternal and perinatal exposures are associated with risk for pediatric onset multiple sclerosis. Pediatrics 2017, 139, e20162838. [Google Scholar] [CrossRef]
- Rao, S.M.; GLeo, J.; Bernardin, L.; Unverzagt, F. Cognitive Dysfunction in Multiple Sclerosis. I. Frequency, Patterns, and Prediction. Neurology 1991, 41, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, L.; Geesken, J.M.; Holly, M.; Hayward, M.; Blumhardt, L.D. Working Memory Impairment in Early Multiple Sclerosis. Evidence from an Event-Related Potential Study of Patients with Clinically Isolated Myelopathy. Brain 1997, 120, 2039–2058. [Google Scholar] [CrossRef] [PubMed]
- Piras, M.R.; Magnano, I.; Canu, E.D.; Paulus, K.S.; Satta, W.M.; Soddu, A.; Conti, M.; Achene, A.; Solinas, G.; Aiello, I. Longitudinal Study of Cognitive Dysfunction in Multiple Sclerosis: Neuropsychological, Neuroradiological, and Neurophysiological Findings. J. Neurol. Neurosurg. Psychiatry 2003, 74, 878–885. [Google Scholar] [CrossRef]
- Julian, L.; Serafin, D.; Charvet, L.; Ackerson, J.; Benedict, R.; Braaten, E.; Brown, T.; O’Donnell, E.; Parrish, J.; Preston, T.; et al. Cognitive Impairment Occurs in Children and Adolescents with Multiple Sclerosis: Results from a United States Network. J. Child. Neurol. 2013, 28, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Chalah, M.A.; Ayache, S.S. Deficits in social cognition: An unveiled signature of multiple sclerosis. J. Int. Neuropsychol. Soc. 2017, 23, 266–286. [Google Scholar] [CrossRef]
- Liguori, M.; Nuzziello, N.; Simone, M.; Amoroso, N.; Viterbo, R.G.; Tangaro, S.; Consiglio, A.; Giordano, P.; Bellotti, R.; Trojano, M. Association between miRNAs expression and cognitive performances of pediatric multiple sclerosis patients: A pilot study. Brain Behav. 2019, e01199. [Google Scholar] [CrossRef] [PubMed]
- Banwell, B.L.; Anderson, P.E. The Cognitive Burden of Multiple Sclerosis in Children. Neurology 2005, 64, 891–894. [Google Scholar] [CrossRef] [PubMed]
- MacAllister, W.S.; ABelman, L.; Milazzo, M.; Weisbrot, D.M.; Christodoulou, C.; Scherl, W.F.; Preston, T.E.; Cianciulli, C.; Krupp, L.B. Cognitive Functioning in Children and Adolescents with Multiple Sclerosis. Neurology 2005, 64, 1422–1425. [Google Scholar] [CrossRef]
- MacAllister, W.S.; Christodoulou, C.; Milazzo, M.; Krupp, L.B. Longitudinal Neuropsychological Assessment in Pediatric Multiple Sclerosis. Dev. Neuropsychol. 2007, 32, 625–644. [Google Scholar] [CrossRef]
- Smerbeck, A.M.; Parrish, J.; Serafin, D.; Yeh, E.A.; Weinstock-Guttman, B.; Hoogs, M.; Krupp, L.B.; Benedict, R.H. Visual-Cognitive Processing Deficits in Pediatric Multiple Sclerosis. Mult. Scler. 2011, 17, 449–456. [Google Scholar] [CrossRef]
- Till, C.; Ghassemi, R.; Aubert-Broche, B.; Kerbrat, A.; Collins, D.L.; Narayanan, S.; Arnold, D.L.; Desrocher, M.; Sled, J.G.; Banwell, B.L. Mri Correlates of Cognitive Impairment in Childhood-Onset Multiple Sclerosis. Neuropsychology 2011, 25, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.P.; Goretti, B.; Ghezzi, A.; Lori, S.; Zipoli, V.; Portaccio, E.; Moiola, L.; Falautano, M.; de Caro, M.F.; Lopez, M.; et al. Cognitive and Psychosocial Features of Childhood and Juvenile Ms. Neurology 2008, 70, 1891–1897. [Google Scholar] [CrossRef] [PubMed]
- Goretti, B.; Portaccio, E.; Ghezzi, A.; Lori, S.; Moiola, L.; Falautano, M.; Viterbo, R.; Patti, F.; Vecchio, R.; Pozzilli, C.; et al. Fatigue and Its Relationship with Cognitive Functioning and Depression in Paediatric Multiple Sclerosis. Mult. Scler. J. 2012, 8, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.P.; Goretti, B.; Ghezzi, A.; Lori, S.; Zipoli, V.; Moiola, L.; Falautano, M.; de Caro, M.F.; Viterbo, R.; Patti, F.; et al. Cognitive and Psychosocial Features in Childhood and Juvenile Ms: Two-Year Follow-Up. Neurology 2010, 75, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.P.; Goretti, B.; Ghezzi, A.; Hakiki, B.; Niccolai, C.; Lori, S.; Moiola, L.; Falautano, M.; Viterbo, R.G.; Patti, F.; et al. Neuropsychological Features in Childhood and Juvenile Multiple Sclerosis: Five-Year Follow-Up. Neurology 2014, 83, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
- Charvet, L.E.; O’Donnell, E.H.; Belman, A.L.; Chitnis, T.; Ness, J.M.; Parrish, J.; Patterson, M.; Rodriguez, M.; Waubant, E.; Weinstock-Guttman, B.; et al. Longitudinal Evaluation of Cognitive Functioning in Pediatric Multiple Sclerosis: Report from the Us Pediatric Multiple Sclerosis Network. Mult. Scler. 2014, 20, 1502–1510. [Google Scholar] [CrossRef] [PubMed]
- Till, C.; Racine, N.; Araujo, D.; Narayanan, S.; Collins, D.L.; Aubert-Broche, B.; Arnold, D.L.; Banwell, B. Changes in Cognitive Performance over a 1-Year Period in Children and Adolescents with Multiple Sclerosis. Neuropsychology 2013, 27, 210–219. [Google Scholar] [CrossRef]
- Amato, M.P.; Ponziani, G.; Pracucci, G.; Bracco, L.; Siracusa, G.; Amaducci, L. Cognitive Impairment in Early-Onset Multiple Sclerosis. Pattern, Predictors, and Impact on Everyday Life in a 4-Year Follow-Up. Arch. Neurol. 1995, 52, 168–172. [Google Scholar] [CrossRef]
- Benedict, R.H.; Drake, A.S.; Irwin, L.N.; Frndak, S.E.; Kunker, K.A.; Khan, A.L.; Kordovski, V.M.; Motl, R.W.; Weinstock-Guttman, B. Benchmarks of Meaningful Impairment on the Msfc and Bicams. Mult. Scler. 2016, 22, 1874–1882. [Google Scholar] [CrossRef]
- Turner, A.P.; KAlschuler, N.; Hughes, A.J.; Beier, M.; Haselkorn, J.K.; Sloan, A.P.; Ehde, D.M. Mental Health Comorbidity in Ms: Depression, Anxiety, and Bipolar Disorder. Curr. Neurol. Neurosci. Rep. 2016, 16, 106. [Google Scholar] [CrossRef]
- Van Ettinger-Veenstra, H. Cumulative Evidence for Ms as a Neural Network Disconnection Syndrome Consistent with Cognitive Impairment Mechanisms and the Confounding Role of Fatigue and Depression-Outlook from the Fourth Nordic Ms Symposium. Acta Neurol. Scand. 2016, 134 (Suppl. 200), 4–7. [Google Scholar] [CrossRef]
- Mowry, E.; Julian, L.; Chabas, D.; Im-Wang, S.; Strober, J.; Katz, P.; Waubant, E. Health-Related Qulaity of Life Is Reduced in Children with Early Multiple Sclerosis. Mult. Scler. 2008, 14 (Suppl. 1), S147. [Google Scholar]
- MacAllister, W.S.; Christodoulou, C.; Troxell, R.; Milazzo, M.; Block, P.; Preston, T.E.; Bender, H.A.; Belman, A.; Krupp, L.B. Fatigue and Quality of Life in Pediatric Multiple Sclerosis. Mult. Scler. 2009, 15, 1502–1508. [Google Scholar] [CrossRef] [PubMed]
- Krysko, K.M.; O’Connor, P. Quality of Life, Cognition and Mood in Adults with Pediatric Multiple Sclerosis. Can J. Neurol. Sci. 2016, 43, 368–374. [Google Scholar] [CrossRef]
- Nourbakhsh, B.; Julian, L.; Waubant, E. Fatigue and Depression Predict Quality of Life in Patients with Early Multiple Sclerosis: A Longitudinal Study. Eur. J. Neurol. 2016, 23, 1482–1486. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.P.; Krupp, L.B.; Charvet, L.E.; Penner, I.; Till, C. Pediatric Multiple Sclerosis: Cognition and Mood. Neurology 2016, 87, S82–S87. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.P.; Zipoli, V.; Portaccio, E. Cognitive Changes in Multiple Sclerosis. Expert Rev. Neurother 2008, 8, 1585–1596. [Google Scholar] [CrossRef] [PubMed]
- Parrish, J.B.; Weinstock-Guttman, B.; Smerbeck, A.; Benedict, R.H.; Yeh, E.A. Fatigue and Depression in Children with Demyelinating Disorders. J. Child. Neurol. 2013, 28, 713–718. [Google Scholar] [CrossRef]
- Zafar, A.B.; Ness, J.; Dowdy, S.; Avis, K.; Bashir, K. Examining Sleep, Fatigue, and Daytime Sleepiness in Pediatric Multiple Sclerosis Patients. Mult. Scler. 2012, 18, 481–488. [Google Scholar] [CrossRef]
- Holland, A.A.; Graves, D.; Greenberg, B.M.; Harder, L.L. [Formula: See Text]Fatigue, Emotional Functioning, and Executive Dysfunction in Pediatric Multiple Sclerosis. Child. Neuropsychol. 2014, 20, 71–85. [Google Scholar] [CrossRef]
- Charvet, L.; Cersosimo, B.; Schwarz, C.; Belman, A.; Krupp, L.B. Behavioral Symptoms in Pediatric Multiple Sclerosis: Relation to Fatigue and Cognitive Impairment. J. Child. Neurol. 2016, 31, 1062–1067. [Google Scholar] [CrossRef] [PubMed]
- Nourbakhsh, B.; Azevedo, C.; Nunan-Saah, J.; Maghzi, A.H.; Spain, R.; Pelletier, D.; Waubant, E. Longitudinal Associations between Brain Structural Changes and Fatigue in Early Ms. Mult. Scler. Relat. Disord. 2016, 5, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Nunan-Saah, J.; Paulraj, S.R.; Waubant, E.; Krupp, L.B.; Gomez, R.G. Neuropsychological Correlates of Multiple Sclerosis across the Lifespan. Mult. Scler. 2015, 21, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
- Goretti, B.; Ghezzi, A.; Portaccio, E.; Lori, S.; Zipoli, V.; Razzolini, L.; Moiola, L.; Falautano, M.; de Caro, M.F.; Viterbo, R.; et al. Psychosocial Issue in Children and Adolescents with Multiple Sclerosis. Neurol. Sci. 2010, 31, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Weisbrot, D.; Charvet, L.; Serafin, D.; Milazzo, M.; Preston, T.; Cleary, R.; Moadel, T.; Seibert, M.; Belman, A.; Krupp, L. Psychiatric Diagnoses and Cognitive Impairment in Pediatric Multiple Sclerosis. Mult. Scler. 2014, 20, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, C.B.; Kavak, K.S.; Dwyer, M.G.; Bushra, A.; Nadeem, M.; Cookfair, D.L.; Ramanathan, M.; Benedict, R.H.; Zivadinov, R.; Goodman, A.; et al. Fatigue at Enrollment Predicts Edss Worsening in the New York State Multiple Sclerosis Consortium. Mult. Scler. 2018. [Google Scholar] [CrossRef] [PubMed]
- Greeke, E.E.; Chua, A.S.; Healy, B.C.; Rintell, D.J.; Chitnis, T.; Glanz, B.I. Depression and Fatigue in Patients with Multiple Sclerosis. J. Neurol. Sci. 2017, 380, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Boeschoten, R.E.; ABraamse, M.J.; Beekman, A.T.F.; Cuijpers, P.; van Oppen, P.; Dekker, J.; Uitdehaag, B.M.J. Prevalence of Depression and Anxiety in Multiple Sclerosis: A Systematic Review and Meta-Analysis. J. Neurol. Sci. 2017, 372, 331–341. [Google Scholar] [CrossRef]
- Fischer, J.S.; RPriore, L.; Jacobs, L.D.; Cookfair, D.L.; Rudick, R.A.; Herndon, R.M.; Richert, J.R.; Salazar, A.M.; Goodkin, D.E.; Granger, C.V.; et al. Neuropsychological Effects of Interferon Beta-1a in Relapsing Multiple Sclerosis. Multiple Sclerosis Collaborative Research Group. Ann. Neurol. 2000, 48, 885–892. [Google Scholar] [CrossRef]
- Charvet, L.; Cleary, R.; Vazquez, K.; Belman, A.; Krupp, L. Social cognition in pediatric-onset multiple sclerosis (MS). Mult. Scler. J. 2014, 20, 1478–1484. [Google Scholar] [CrossRef] [Green Version]
- Julian, L.J.; Trojano, M.; Amato, A.A.; Krupp, L.B. Cognitive Dysfunction in Pediatric Onset Multiple Sclerosis. In Demyelinating Disorders of the Central Nervous Systerm in Childhood; Chabas, D., Waubant, E., Eds.; Cabreidge University Press: Cabridge, UK, 2011; pp. 134–143. [Google Scholar]
- Smerbeck, A.; Parrish, J.B.; Yeh, E.A.; Hoogs, M.; Krupp, L.; Weinstock-Guttman, B.; Benedict, R.H.B. Regression-Based Pediatric Norms for the Brief Visuospatial Memory Test-Revised and the Symbol Digit Modalitis Test. Clin. Neuropsychol. 2012, 25, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Smerbeck, A.M.; Parrish, J.; Yeh, E.A.; Weinstock-Guttman, B.; Hoogs, M.; Serafin, D.; Krupp, L.; Benedict, R.H. Regression-Based Norms Improve the Sensitivity of the National Ms Society Consensus Neuropsychological Battery for Pediatric Multiple Sclerosis (Nbpms). Clin. Neuropsychol. 2012, 26, 985–1002. [Google Scholar] [CrossRef] [PubMed]
- Portaccio, E.; Goretti, B.; Lori, S.; Zipoli, V.; Centorrino, S.; Ghezzi, A.; Patti, F.; Bianchi, V.; Comi, G.; Trojano, M.; et al. The Brief Neuropsychological Battery for Children: A Screening Tool for Cognitive Impairment in Childhood and Juvenile Multiple Sclerosis. Mult. Scler. 2009, 15, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Chitnis, T.; Tardieu, M.; Amato, M.P.; Banwell, B.; Bar-Or, A.; Ghezzi, A.; Kornberg, A.; Krupp, L.B.; Pohl, D.; Rostasy, K.; et al. International Pediatric Ms Study Group Clinical Trials Summit: Meeting Report. Neurology 2013, 80, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Charvet, L.E.; Beekman, R.; Amadiume, N.; Belman, A.L.; Krupp, L.B. The Symbol Digit Modalities Test Is an Effective Cognitive Screen in Pediatric Onset Multiple Sclerosis (Ms). J. Neurol. Sci. 2014, 341, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Sonder, J.M.; Burggraaff, J.; Knol, D.L.; Polman, C.H.; Uitdehaag, B.M. Comparing Long-Term Results of Pasat and Sdmt Scores in Relation to Neuropsychological Testing in Multiple Sclerosis. Mult. Scler. 2014, 20, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Bigi, S.; Marrie, R.A.; Till, C.; Yeh, E.A.; Akbar, N.; Feinstein, A.; Banwell, B.L. The Computer-Based Symbol Digit Modalities Test: Establishing Age-Expected Performance in Healthy Controls and Evaluation of Pediatric Ms Patients. Neurol. Sci. 2017, 38, 635–642. [Google Scholar] [CrossRef]
- Charvet, L.E.; Shaw, M.; Frontario, A.; Langdon, D.; Krupp, L.B. Cognitive Impairment in Pediatric-Onset Multiple Sclerosis Is Detected by the Brief International Cognitive Assessment for Multiple Sclerosis and Computerized Cognitive Testing. Mult. Scler. 2018, 24, 512–519. [Google Scholar] [CrossRef]
- Bartlett, E.; Shaw, M.; Schwarz, C.; Feinberg, C.; DeLorenzo, C.; Krupp, L.B.; Charvet, L.E. Brief Computer-Based Information Processing Measures Are Linked to White Matter Integrity in Pediatric-Onset Multiple Sclerosis. J. Neuroimaging 2019, 29, 140–150. [Google Scholar] [CrossRef]
- Ghezzi, A.; Amato, M.P.; Makhani, N.; Shreiner TGartner, J.; Tenembaum, S. Pediatric multiple sclerosis: Conventional first-line treatment and general management. Neurology 2016, 87, S97–S102. [Google Scholar] [CrossRef]
- Barak, Y.; Achiron, A. Effect of Interferon-Beta-1b on Cognitive Functions in Multiple Sclerosis. Eur. Neurol. 2002, 47, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Kappos, L.; Freedman, M.S.; Polman, C.H.; Edan, G.; Hartung, H.P.; Miller, D.H.; Montalban, X.; Barkhof, F.; Radu, E.W.; Metzig, C.; et al. Long-Term Effect of Early Treatment with Interferon Beta-1b after a First Clinical Event Suggestive of Multiple Sclerosis: 5-Year Active Treatment Extension of the Phase 3 Benefit Trial. Lancet Neurol. 2009, 8, 987–997. [Google Scholar] [CrossRef]
- Mori, F.; Kusayanagi, H.; Buttari, F.; Centini, B.; Monteleone, F.; Nicoletti, C.G.; Bernardi, G.; di Cantogno, E.V.; Marciani, M.G.; Centonze, D. Early Treatment with High-Dose Interferon Beta-1a Reverses Cognitive and Cortical Plasticity De Fi Cits in Multiple Sclerosis. Funct. Neurol. 2012, 27, 163–168. [Google Scholar]
- Weinstein, A.; Schwid, S.R.; Schiffer, R.B.; McDermott, M.P.; Giang, D.W.; Goodman, A.D. Neuropsychologic Status in Multiple Sclerosis after Treatment with Glatiramer. Arch. Neurol. 1999, 56, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Laffaldano, P.; Ruggieri, M.; Viterbo, R.G.; Mastrapasqua, M.; Troja, M. The Improvement of Cognitive Function Is Associated with a Decrease of Plasma Osteopontin Levels in Natalizumab Treated Relapsing Multiple Sclerosis. Brain Behav. Immun. 2014, 35, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Patti, F.; Amato, M.P.; Trojano, M.; Bastianello, S.; Tola, M.R.; Picconi, O.; Cilia, S.; Cottone, S.; Centonze, D.; Gasperini, C.; et al. Quality of Life, Depression and Fatigue in Mildly Disabled Patients with Relapsing-Remitting Multiple Sclerosis Receiving Subcutaneous Interferon Beta-1a: 3-Year Results from the Cogimus (Cognitive Impairment in Multiple Sclerosis) Study. Mult. Scler. 2011, 17, 991–1001. [Google Scholar] [CrossRef]
- Mesaros, S.; Rocca, M.A.; Sormani, M.P.; Charil, A.; Comi, G.; Filippi, M. Clinical and Conventional Mri Predictors of Disability and Brain Atrophy Accumulation in Rrms. A Large Scale, Short-Term Follow-up Study. J. Neurol. 2008, 255, 1378–1383. [Google Scholar] [CrossRef]
- Mesaros, S.; Rocca, M.A.; Absinta, M.; Ghezzi, A.; Milani, N.; Moiola, L.; Veggiotti, P.; Comi, G.; Filippi, M. Evidence of Thalamic Gray Matter Loss in Pediatric Multiple Sclerosis. Neurology 2008, 70, 1107–1112. [Google Scholar] [CrossRef]
- Benedict, R.H.; Zivadinov, R. Risk Factors for and Management of Cognitive Dysfunction in Multiple Sclerosis. Nat. Rev. Neurol. 2011, 7, 332–342. [Google Scholar] [CrossRef]
- Zivadinov, R.; Havrdova, E.; Bergsland, N.; Tyblova, M.; Hagemeier, J.; Seidl, Z.; Dwyer, M.G.; Vaneckova, M.; Krasensky, J.; Carl, E.; et al. Thalamic Atrophy Is Associated with Development of Clinically Definite Multiple Sclerosis. Radiology 2013, 268, 831–841. [Google Scholar] [CrossRef]
- Kerbrat, A.; Aubert-Broche, B.; Fonov, V.; Narayanan, S.; Sled, J.G.; Arnold, D.A.; Banwell, B.; Collins, D.L. Reduced Head and Brain Size for Age and Disproportionately Smaller Thalami in Child-Onset Ms. Neurology 2012, 78, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Weier, K.; Till, C.; Fonov, V.; Yeh, E.A.; Arnold, D.L.; Banwell, B.; Collins, D.L. Contribution of the Cerebellum to Cognitive Performance in Children and Adolescents with Multiple Sclerosis. Mult. Scler. 2016, 22, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Aubert-Broche, B.; Fonov, V.; Narayanan, S.; Arnold, D.L.; Araujo, D.; Fetco, D.; Till, C.; Sled, J.G.; Banwell, B.; Collins, D.L.; et al. Onset of Multiple Sclerosis before Adulthood Leads to Failure of Age-Expected Brain Growth. Neurology 2014, 83, 2140–2146. [Google Scholar] [CrossRef]
- Fields, R.D. White Matter in Learning, Cognition and Psychiatric Disorders. Trends Neurosci. 2008, 31, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Till, C.; Deotto, A.; Tipu, V.; Sled, J.G.; Bethune, A.; Narayanan, S.; Arnold, D.L.; Banwell, B.L. White Matter Integrity and Math Performance in Pediatric Multiple Sclerosis: A Diffusion Tensor Imaging Study. Neuroreport 2011, 22, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Rocca, M.A.; Morelli, M.E.; Amato, M.P.; Moiola, L.; Ghezzi, A.; Veggiotti, P.; Capra, R.; Pagani, E.; Portaccio, E.; Fiorino, A.; et al. Regional Hippocampal Involvement and Cognitive Impairment in Pediatric Multiple Sclerosis. Mult. Scler. 2016, 22, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Green, R.; Adler, A.; Banwell, B.L.; Fabri, T.L.; Yeh, E.A.; Collins, D.L.; Sled, J.G.; Narayanan, S.; Till, C. Involvement of the Amygdala in Memory and Psychosocial Functioning in Pediatric-Onset Multiple Sclerosis. Dev. Neuropsychol. 2018, 43, 524–534. [Google Scholar] [CrossRef]
- Rocca, M.A.; Absinta, M.; Amato, M.P.; Moiola, L.; Ghezzi, A.; Veggiotti, P.; Capra, R.; Portaccio, E.; Fiorino, A.; Pippolo, L.; et al. Posterior Brain Damage and Cognitive Impairment in Pediatric Multiple Sclerosis. Neurology 2014, 82, 1314–1321. [Google Scholar] [CrossRef]
- Rocca, M.A.; Sonkin, M.; Copetti, M.; Pagani, E.; Arnold, D.L.; Narayanan, S.; Sled, J.G.; Banwell, B.; Filippi, M. Diffusion Tensor Magnetic Resonance Imaging in Very Early Onset Pediatric Multiple Sclerosis. Mult. Scler. 2016, 22, 620–627. [Google Scholar] [CrossRef]
- Giorgio, A.; Zhang, J.; Stromillo, M.L.; Rossi, F.; Battaglini, M.; Nichelli, L.; Mortilla, M.; Portaccio, E.; Hakiki, B.; Amato, M.P.; et al. Pronounced Structural and Functional Damage in Early Adult Pediatric-Onset Multiple Sclerosis with No or Minimal Clinical Disability. Front Neurol. 2017, 8, 608. [Google Scholar] [CrossRef]
- De Meo, E.; Moiola, L.; Ghezzi, A.; Veggiotti, P.; Capra, R.; Amato, M.P.; Pagani, E.; Fiorino, A.; Pippolo, L.; Pera, M.C.; et al. Mri Substrates of Sustained Attention System and Cognitive Impairment in Pediatric Ms Patients. Neurology 2017, 89, 1265–1273. [Google Scholar] [CrossRef]
- Rocca, M.A.; Absinta, M.; Ghezzi, A.; Moiola, L.; Comi, G.; Filippi, M. Is a Preserved Functinoal Reserve a Mechanism Limited Clinical Impairment in Pediatric Ms Patients? Hum. Brain Mapp. 2007, 30, 7. [Google Scholar]
- Tomasi, D.; NVolkow, D. Association between Functional Connectivity Hubs and Brain Networks. Cereb. Cortex 2011, 21, 2003–2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocca, M.A.; Valsasina, P.; Absinta, M.; Moiola, L.; Ghezzi, A.; Veggiotti, P.; Amato, M.P.; Horsfield, M.A.; Falini, A.; Comi, G.; et al. Intranetwork and Internetwork Functional Connectivity Abnormalities in Pediatric Multiple Sclerosis. Hum. Brain. Mapp. 2014, 35, 4180–4192. [Google Scholar] [CrossRef] [PubMed]
- Akbar, N.; Banwell, B.; Sled, J.G.; Binns, M.A.; Doesburg, S.M.; Rypma, B.; Lysenko, M.; Till, C. Brain Activation Patterns and Cognitive Processing Speed in Patients with Pediatric-Onset Multiple Sclerosis. J. Clin. Exp. Neuropsychol. 2016, 38, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Akbar, N.; Till, C.; Sled, J.G.; Binns, M.A.; Doesburg, S.M.; Aubert-Broche, B.; Collins, D.L.; Araujo, D.; Narayanan, S.; Arnold, D.L.; et al. Altered Resting-State Functional Connectivity in Cognitively Preserved Pediatric-Onset Ms Patients and Relationship to Structural Damage and Cognitive Performance. Mult. Scler. 2016, 22, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Julian, L.J. Cognitive Functioning in Multiple Sclerosis. Neurol. Clin. 2011, no.2, 507–525. [Google Scholar] [CrossRef]
- Langdon, D.W. Cognition in multiple sclerosis. Curr. Opin. Neurol. 2011, 24, 244–249. [Google Scholar] [CrossRef]
- Liu, Z.; TZhang, T.; Yu, J.; Liu, Y.L.; Qi, S.F.; Zhao, J.J.; Liu, D.W.; Tian, Q.B. Excess Body Weight During Childhood and Adolescence Is Associated with the Risk of Multiple Sclerosis: A Meta-Analysis. Neuroepidemiology 2016, 47, 103–108. [Google Scholar] [CrossRef]
- Gianfrancesco, M.A.; Acuna, B.; Shen, L.; Briggs, F.B.; Quach, H.; Bellesis, K.H.; Bernstein, A.; Hedstrom, A.K.; Kockum, I.; Alfredsson, L.; et al. Obesity During Childhood and Adolescence Increases Susceptibility to Multiple Sclerosis after Accounting for Established Genetic and Environmental Risk Factors. Obes. Res. Clin. Prac.t 2014, 8, e435–e447. [Google Scholar] [CrossRef]
- Hedstrom, A.K.; Olsson, T.; Alfredsson, L. Body Mass Index During Adolescence, Rather Than Childhood, Is Critical in Determining Ms Risk. Mult. Scler. 2016, 22, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Munger, K.L.; Bentzen, J.; Laursen, B.; Stenager, E.; Koch-Henriksen, N.; Sorensen, T.I.; Baker, J.L. Childhood Body Mass Index and Multiple Sclerosis Risk: A Long-Term Cohort Study. Mult. Scler. 2013, 19, 1323–1329. [Google Scholar] [CrossRef]
- Langer-Gould, A.; Brara, S.M.; Beaber, B.E.; Koebnick, C. Childhood Obesity and Risk of Pediatric Multiple Sclerosis and Clinically Isolated Syndrome. Neurology 2013, 80, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.B.; Mattson, M.P. The Neuropathology of Obesity: Insights from Human Disease. Acta Neuropathol. 2014, 127, 3–28. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Matheson, B.E.; Kaye, W.H.; Boutelle, K.N. Neurocognitive Correlates of Obesity and Obesity-Related Behaviors in Children and Adolescents. Int. J. Obes. (Lond) 2014, 38, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Reinert, K.R.S.; Po’e, E.K.; Barkin, S.L. The Relationship between Executive Functino and Obesity in Children and Adolescents: A Systematic Review. J. Obes. 2013, 2013, 11. [Google Scholar] [CrossRef] [PubMed]
- Pearce, A.L.; Leonhardt, C.A.; Vaidya, C.J. Executive and Reward-Related Function in Pediatric Obesity: A Meta-Analysis. Child. Obes. 2018, 14, 265–279. [Google Scholar] [CrossRef]
- Bozkurt, H.; Ozer, S.; Yilmaz, R.; Sonmezgoz, E.; Kazanci, O.; Erbas, O.; Demir, O. Assessment of Neurocognitive Functions in Children and Adolescents with Obesity. Appl. Neuropsychol. Child. 2017, 6, 262–268. [Google Scholar] [CrossRef]
- Maayan, L.; Hoogendoorn, C.; Sweat, V.; Convit, A. Disinhibited Eating in Obese Adolescents Is Associated with Orbitofrontal Volume Reductions and Executive Dysfunction. Obes. (Silver Spring) 2011, 19, 1382–1387. [Google Scholar] [CrossRef]
- Bruce, A.S.; Holsen, L.M.; Chambers, R.J.; Martin, L.E.; Brooks, W.M.; Zarcone, J.R.; Butler, M.G.; Savage, C.R. Obese Children Show Hyperactivation to Food Pictures in Brain Networks Linked to Motivation, Reward and Cognitive Control. Int. J. Obes. (Lond) 2010, 34, 1494–1500. [Google Scholar] [CrossRef]
- Davids, S.; Lauffer, H.; Thoms, K.; Jagdhuhn, M.; Hirschfeld, H.; Domin, M.; Hamm, A.; Lotze, M. Increased Dorsolateral Prefrontal Cortex Activation in Obese Children During Observation of Food Stimuli. Int. J. Obes. (Lond) 2010, 34, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Bucks, R.S.; Olaithe, M.; Eastwood, P. Neurocognitive Function in Obstructive Sleep Apnea: A Meta-Review. Respirology 2013, 18, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.C.; Pack, A.I. Obstructive Sleep Apnea and Cognitive Impairment: Addressing the Blood-Brain Barrier. Sleep Med. Rev. 2014, 18, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Ross, K.A.; Schwebel, D.C.; Rinker, J., 2nd; Ness, J.; Ackerson, J. Neurocognitive Sequelae in African American and Caucasian Children with Multiple Sclerosis. Neurology 2010, 75, 2097–2102. [Google Scholar] [CrossRef]
- Boster, A.L.; Endress, C.F.; Hreha, S.A.; Caon, C.; Perumal, J.S.; Khan, O.A. Pediatric-Onset Multiple Sclerosis in African-American Black and European-Origin White Patients. Pediatr. Neurol. 2009, 40, 31–33. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, S.J.; Bates, T.C. Enduring Links from Childhood Mathematics and Reading Achievement to Adult Socioeconomic Status. Psychol. Sci. 2013, 24, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Bates, T.C.; Lewis, G.J.; Weiss, A. Childhood Socioeconomic Status Amplifies Genetic Effects on Adult Intelligence. Psychol. Sci. 2013, 24, 2111–2116. [Google Scholar] [CrossRef] [Green Version]
- Lavery, A.M.; Waubant, E.; Casper, T.C.; Roalstad, S.; Candee, M.; Rose, J.; Belman, A.; Weinstock-Guttman, B.; Aaen, G.; Tillema, J.M.; et al. Urban Air Quality and Associations with Pediatric Multiple Sclerosis. Ann. Clin. Transl. Neurol. 2018, 5, 1146–1153. [Google Scholar] [CrossRef]
- Lavery, A.M.; Collins, B.N.; Waldman, A.T.; Hart, C.N.; Bar-Or, A.; Marrie, R.A.; Arnold, D.; O’Mahony, J.; Banwell, B. Network Canadian Pediatric Demyelinating Disease. The Contribution of Secondhand Tobacco Smoke Exposure to Pediatric Multiple Sclerosis Risk. Mult. Scler. 2018. [Google Scholar] [CrossRef]
- Petrin, J.; Flander, M.; Doss, P.M.I.A.; Yeah, E.A. A Scoping review of modifiable risk factors in pediatric onset multiple sclerosis: Building for the future. Children 2018, 5, 146. [Google Scholar] [CrossRef]
- Sumowski, J.F.; Chiaravalloti, N.; DeLuca, J. Cognitive Researve Protects against Cognitive Dysfunction in Multiple Sclerosis. J. Clin. Exp. Neuropsychol. 2009, 31, 913–926. [Google Scholar] [CrossRef] [PubMed]
- Benedict, R.H.B.; SMorrow, A.; Weinstock-Guttman, B.; Cookfair, D.; Schretlen, D.J. Cognitive Reserve Moderates Decline in Information Processing Speed in Multiple Sclerosis Patients. J. Int. Neuropsychol. Soc. 2010, 16, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Pasto, L.; Portaccio, E.; Goretti, B.; Ghezzi, A.; Lori, S.; Hakiki, B.; Giannini, M.; Righini, I.; Razzolini, L.; Niccolai, C.; et al. The Cognitive Reserve Theory in the Setting of Pediatric-Onset Multiple Sclerosis. Mult. Scler. 2016, 22, 1741–1749. [Google Scholar] [CrossRef] [PubMed]
- Portaccio, E.; Goretti, B.; Zipoli, V.; Hakiki, B.; Giannini, M.; Pasto, L.; Razzolini, L.; Amato, M.P. Cognitive Rehabilitation in Children and Adolescents with Multiple Sclerosis. Neurol. Sci. 2010, 31, S275–S278. [Google Scholar] [CrossRef] [PubMed]
- Sastre-Garriga, J.; Alonso, J.; Renom, M.; Arevalo, M.J.; Gonzalez, I.; Galan, I.; Montalban, X.; Rovira, A. A Functional Magnetic Resonance Proof of Concept Pilot Trial of Cognitive Rehabilitation in Multiple Sclerosis. Mult. Scler. 2011, 17, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Chiaravalloti, N.D.; Moore, N.B.; Nikelshpur, O.M.; Deluca, J. An Rct to Treat Learning Impairment in Multiple Sclerosis: The Memrehab Trial. Neurology 2013, 81, 2066–2072. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.; Goretti, B.; Viterbo, R.; Portaccio, E.; Niccolai, C.; Hakiki, B.; Iaffaldano, P.; Troja, M. Computer-Assisted Rehabilitation of Attention in Patients with Multiple Sclerosis: Results of a Randomized, Double-Blind Trial. Mult. Scler. 2014, 20, 91–98. [Google Scholar] [CrossRef]
- Simone, M.; Viterbo, R.G.; Margari, L.; Iaffalda, P. Computer-Assisted Rehabilitation of Attention in Pediatric Multiple Sclerosis and Adhd Patients: A Pilot Trial. BMC Neurol. 2018, 18, 82. [Google Scholar] [CrossRef]
- Hubacher, M.; DeLuca, J.; Weber, P.; Steinlin, M.; Kappos, L.; Opwis, K.; Penner, I.K. Cognitive Rehabilitation of Working Memory in Juvenile Multiple Sclerosis-Effects on Cognitive Functioning, Functional Mri and Network Related Connectivity. Restor. Neurol. Neurosci. 2015, 33, 713–725. [Google Scholar] [CrossRef]
- Kaldoja, M.L.; Saard, M.; Lange, K.; Raud, T.; Teeveer, O.K.; Kolk, A. Neuropsychological Benefits of Computer-Assisted Cognitive Rehabilitation (Using Foramenrehab Program) in Children with Mild Traumatic Brain Injury or Partial Epilepsy: A Pilot Study. J. Pediatr. Rehabil. Med. 2015, 8, 271–283. [Google Scholar] [CrossRef]
- Shin, M.S.; Jeon, H.; Kim, M.; Hwang, T.; Oh, S.J.; Hwangbo, M.; Kim, K.J. Effects of Smart-Tablet-Based Neurofeedback Training on Cognitive Function in Children with Attention Problems. J. Child. Neurol. 2016, 31, 750–760. [Google Scholar] [CrossRef] [PubMed]
- Harel, Y.; Appleboim, N.; Lavie, M.; Achiron, A. Single Dose of Methylphenidate Improves Cognitive Performance in Multiple Sclerosis Patients with Impaired Attention Process. J. Neurol. Sci. 2009, 276, 38–40. [Google Scholar] [CrossRef]
- Morrow, S.A.; Smerbeck, A.; Patrick, K.; Cookfair, D.; Weinstock-Guttman, B.; Benedict, R.H. Lisdexamfetamine Dimesylate Improves Processing Speed and Memory in Cognitively Impaired Ms Patients: A Phase Ii Study. J. Neurol. 2013, 260, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Sandroff, B.M.; Motl, R.W.; Scudder, M.R.; DeLuca, J. Systematic, Evidence-Based Review of Exercise, Physical Activity, and Physical Fitness Effects on Cognition in Persons with Multiple Sclerosis. Neuropsychol. Rev. 2016, 26, 271–294. [Google Scholar] [CrossRef] [PubMed]
- Kalron, A.; Achiron, A.; Menascu, S. Gait Variability, Not Walking Speed, Is Related to Cognition in Adolescents with Multiple Sclerosis. J. Child. Neurol. 2019, 34, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Heesen, C.; Kopke, S.; Kasper, J.; Poettgen, J.; Tallner, A.; Mohr, D.C.; Gold, S.M. Behavioral Interventions in Multiple Sclerosis: A Biopsychosocial Perspective. Expert Rev. Neurother. 2012, 12, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parrish, J.B.; Fields, E. Cognitive Functioning in Patients with Pediatric-Onset Multiple Sclerosis, an Updated Review and Future Focus. Children 2019, 6, 21. https://doi.org/10.3390/children6020021
Parrish JB, Fields E. Cognitive Functioning in Patients with Pediatric-Onset Multiple Sclerosis, an Updated Review and Future Focus. Children. 2019; 6(2):21. https://doi.org/10.3390/children6020021
Chicago/Turabian StyleParrish, Joy B., and Emily Fields. 2019. "Cognitive Functioning in Patients with Pediatric-Onset Multiple Sclerosis, an Updated Review and Future Focus" Children 6, no. 2: 21. https://doi.org/10.3390/children6020021
APA StyleParrish, J. B., & Fields, E. (2019). Cognitive Functioning in Patients with Pediatric-Onset Multiple Sclerosis, an Updated Review and Future Focus. Children, 6(2), 21. https://doi.org/10.3390/children6020021