Management of Infectious Lymphadenitis in Children
Abstract
:1. Introduction
2. Pathophysiology
3. Clinical History
4. Physical Examination
5. Investigation
6. Acute Infectious Lymphadenitis
6.1. Acute Viral Lymphadenitis
6.2. Acute Bacterial Lymphadenitis
7. Subacute Infectious Lymphadenitis
7.1. Nontuberculous Mycobacteria Lymphadenitis
7.2. Cat Scratch Disease
7.3. Other Infectious Agents
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gosche, J.R.; Vick, L. Acute, subacute, and chronic cervical lymphadenitis in children. Semin. Pediatr. Surg. 2006, 15, 99–106. [Google Scholar] [CrossRef]
- Yaris, N.; Cakir, M.; Sözen, E.; Cobanoglu, U. Analysis of children with peripheral lymphadenopathy. Clin. Pediatr. 2006, 45, 544–549. [Google Scholar] [CrossRef]
- King, D.; Ramachandra, J.; Yeomanson, D. Lymphadenopathy in Children: Refer or Reassure? Arch. Dis. Child. Educ. Pract. Ed. 2014, 99, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Deosthali, A.; Donches, K.; DelVecchio, M.; Aronoff, S. Etiologies of Pediatric Cervical Lymphadenopathy: A Systematic Review of 2687 Subjects. Glob. Pediatr. Health 2019, 6, 2333794X19865440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstock, M.S.; Patel, N.A.; Smith, L.P. Pediatric Cervical Lymphadenopathy. Pediatr. Rev. 2018, 39, 433–443. [Google Scholar] [CrossRef]
- Rosenberg, T.L.; Nolder, A.R. Pediatric cervical lymphadenopathy. Otolaryngol. Clin. N. Am. 2014, 47, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Sahai, S. Lymphadenopathy. Pediatr. Rev. 2013, 34, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Gaddey, H.L.; Riegel, A.M. Unexplained Lymphadenopathy: Evaluation and Differential Diagnosis. Am. Fam. Physician 2016, 94, 896–903. [Google Scholar] [PubMed]
- Indolfi, P.; Perrotta, S.; Rossi, F.; Di Martino, M.; Pota, E.; Di Pinto, D.; Gualdiero, G.; Boccieri, E.; Indolfi, C.; Casale, F. Childhood Head and Neck Lymphadenopathy: A Report by a Single Institution (2003–2017). J. Pediatr. Hematol. Oncol. 2019, 41, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Grant, C.N.; Aldrink, J.; Lautz, T.B.; Tracy, E.T.; Rhee, D.S.; Baertschiger, R.M.; Dasgupta, R.; Ehrlich, P.F.; Rodeberg, D.A. Lymphadenopathy in children: A streamlined approach for the surgeon—A report from the APSA Cancer Committee. J. Pediatr. Surg. 2021, 56, 274–281. [Google Scholar] [CrossRef]
- Leung, A.K.; Robson, W.L. Childhood cervical lymphadenopathy. J. Pediatr. Health Care 2004, 18, 3–7. [Google Scholar] [CrossRef]
- Gowans, J.L.; Knight, E.J. The route of re-circulation of lymphocytes in the rat. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1964, 159, 257–282. [Google Scholar] [CrossRef]
- Mondino, A.; Khoruts, A.; Jenkins, M.K. The anatomy of T-cell activation and tolerance. Proc. Natl. Acad. Sci. USA 1996, 93, 2245–2252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchesi, V.T.; Gowans, J.L. The migration of lymphocytes through the endothelium of venules in lymph nodes: An electron microscope study. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1964, 159, 283–290. [Google Scholar] [CrossRef]
- Heath, W.R.; Carbone, F.R. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat. Immunol. 2009, 10, 1237–1244. [Google Scholar] [CrossRef]
- Teijeira, A.; Russo, E.; Halin, C. Taking the lymphatic route: Dendritic cell migration to draining lymph nodes. Semin. Immunopathol. 2014, 36, 261–274. [Google Scholar] [CrossRef]
- Darville, T.; Jacobs, R.F. Lymphadenopathy, Lymphadenitis, and Lymphangitis. In Pediatric Infectious Diseases: Principles and Practice; WB Saunders: Philadelphia, PA, USA, 2002; pp. 610–629. [Google Scholar]
- Neefjes, J.; Jongsma, M.L.; Paul, P.; Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 2011, 11, 823–836. [Google Scholar] [CrossRef]
- Unanue, E.R.; Turk, V.; Neefjes, J. Variations in MHC Class II Antigen Processing and Presentation in Health and Disease. Annu. Rev. Immunol. 2016, 34, 265–297. [Google Scholar] [CrossRef]
- Blum, J.S.; Wearsch, P.A.; Cresswell, P. Pathways of antigen processing. Annu. Rev. Immunol. 2013, 31, 443–473. [Google Scholar] [CrossRef] [Green Version]
- Roche, P.A.; Furuta, K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 2015, 15, 203–216. [Google Scholar] [CrossRef]
- Chesney, P. Cervical lymphadenitis and neck infections. In Principles and Practice of Pediatric Infectious Diseases, 2nd ed.; Long, S., Pickering, L., Prober, C., Eds.; Churchill Livingstone: Philadelphia, PA, USA, 2003; Chapter 23; pp. 165–176. [Google Scholar]
- Friedmann, A.M. Evaluation and management of lymphadenopathy in children. Pediatr. Rev. 2008, 29, 53–60. [Google Scholar] [CrossRef]
- Nield, L.S.; Kamat, D. Lymphadenopathy in children: When and how to evaluate. Clin. Pediatr. 2004, 43, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Oguz, A.; Karadeniz, C.; Temel, E.A.; Citak, E.C.; Okur, F.V. Evaluation of peripheral lymphadenopathy in children. Pediatr. Hematol. Oncol. 2006, 23, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Niedzielska, G.; Kotowski, M.; Niedzielski, A.; Dybiec, E.; Wieczorek, P. Cervical lymphadenopathy in children—Incidence and diagnostic management. Int. J. Pediatr. Otorhinolaryngol. 2007, 71, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Sensini, M.; Peradotto, F.; Scolfaro, C.; Di Rosa, G.; Tavormina, P. Pediatric neck masses: How clinical and radiological features can drive diagnosis. Eur. J. Pediatr. 2019, 178, 463–471. [Google Scholar] [CrossRef]
- Prudent, E.; La Scola, B.; Drancourt, M.; Angelakis, E.; Raoult, D. Molecular strategy for the diagnosis of infectious lymphadenitis. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1179–1186. [Google Scholar] [CrossRef]
- Locke, R.; Comfort, R.; Kubba, H. When does an enlarged cervical lymph node in a child need excision? A systematic review. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 393–401. [Google Scholar] [CrossRef]
- Twist, C.J.; Link, M.P. Assessment of lymphadenopathy in children. Pediatr. Clin. N. Am. 2002, 49, 1009–1025. [Google Scholar] [CrossRef]
- Melenotte, C.; Edouard, S.; Lepidi, H.; Raoult, D. Diagnostic des adénites infectieuses [Diagnosis of infectious lymphadenitis]. Rev. Med. Interne 2015, 36, 668–676. [Google Scholar] [CrossRef]
- Peters, T.R.; Edwards, K.M. Cervical lymphadenopathy and adenitis. Pediatr. Rev. 2000, 21, 399–405. [Google Scholar] [CrossRef]
- Kelly, C.S.; Kelly, R.E., Jr. Lymphadenopathy in children. Pediatr. Clin. N. Am. 1998, 45, 875–888. [Google Scholar] [CrossRef]
- Zimmermann, P.; Tebruegge, M.; Curtis, N.; Ritz, N. The management of non-tuberculous cervicofacial lymphadenitis in children: A systematic review and meta-analysis. J. Infect. 2015, 71, 9–18. [Google Scholar] [CrossRef]
- Cengiz, A.B.; Kara, A.; Kanra, G.; Seçmeer, G.; Ceyhan, M.; Ozen, M. Acute neck infections in children. Turk. J. Pediatr. 2004, 46, 153–158. [Google Scholar]
- Martínez-Aguilar, G.; Hammerman, W.A.; Mason, E.O., Jr.; Kaplan, S.L. Clindamycin treatment of invasive infections caused by community-acquired, methicillin-resistant and methicillin-susceptible Staphylococcus aureus in children. Pediatr. Infect. Dis. J. 2003, 22, 593–598. [Google Scholar] [CrossRef]
- Mongkolrattanothai, K.; Daum, R.S. Impact of community-associated, methicillin-resistant Staphylococcus aureus on management of the skin and soft tissue infections in children. Curr. Infect. Dis. Rep. 2005, 7, 381–389. [Google Scholar] [CrossRef]
- Purcell, K.; Fergie, J. Epidemic of community-acquired methicillin-resistant Staphylococcus aureus infections: A 14-year study at Driscoll Children’s Hospital. Arch. Pediatr. Adolesc. Med. 2005, 159, 980–985. [Google Scholar] [CrossRef] [Green Version]
- Creech, C.B., 2nd; Kernodle, D.S.; Alsentzer, A.; Wilson, C.; Edwards, K.M. Increasing rates of nasal carriage of methicillin-resistant Staphylococcus aureus in healthy children. Pediatr. Infect. Dis. J. 2005, 24, 617–621. [Google Scholar] [CrossRef]
- Anwar, M.S.; Jaffery, G.; Rehman Bhatti, K.U.; Tayyib, M.; Bokhari, S.R. Staphylococcus aureus and MRSA nasal carriage in general population. J. Coll. Physicians Surg. Pak. 2004, 14, 661–664. [Google Scholar]
- Tebruegge, M.; Curtis, N. Mycobacterium species, nontuberculosis. In Principles and Practice of Pediatric Infectious Diseases; Long, S.S., Pickering, L., Prober, C.G., Eds.; Elsevier: New York, NY, USA, 2012; Volume 4, p. 786e92. [Google Scholar]
- Chiappini, E.; Camaioni, A.; Benazzo, M.; Biondi, A.; Bottero, S.; De Masi, S.; Di Mauro, G.; Doria, M.; Esposito, S.; Felisati, G.; et al. Italian Guideline Panel For Management of Cervical Lymphadenopathy in Children. Development of an algorithm for the management of cervical lymphadenopathy in children: Consensus of the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Society of Pediatric Infectious Diseases and the Italian Society of Pediatric Otorhinolaryngology. Expert Rev. Anti-Infect. Ther. 2015, 13, 1557–1567. [Google Scholar] [CrossRef] [PubMed]
- Aliano, D.; Thomson, R. The Epidemiology of Extrapulmonary Non-tuberculous Mycobacterial Infection in a Pediatric Population. Pediatr. Infect. Dis. J. 2020, 39, 671–677. [Google Scholar] [CrossRef] [PubMed]
- van Ingen, J. Diagnosis of nontuberculous mycobacterial infections. Semin. Respir. Crit. Care Med. 2013, 34, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Blyth, C.C.; Best, E.J.; Jones, C.A.; Nourse, C.; Goldwater, P.N.; Daley, A.J.; Burgner, D.; Henry, G.; Palasanthiran, P. Nontuberculous mycobacterial infection in children: A prospective national study. Pediatr. Infect. Dis. J. 2009, 28, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Haverkamp, M.H.; Arend, S.M.; Lindeboom, J.A.; Hartwig, N.G.; van Dissel, J.T. Nontuberculous mycobacterial infection in children: A 2-year prospective surveillance study in the Netherlands. Clin. Infect. Dis. 2004, 39, 450–456. [Google Scholar] [CrossRef] [Green Version]
- Reuss, A.M.; Wiese-Posselt, M.; Weissmann, B.; Siedler, A.; Zuschneid, I.; An der Heiden, M.; Claus, H.; von Kries, R.; Haas, W.H. Incidence rate of nontuberculous mycobacterial disease in immunocompetent children: A prospective nationwide surveillance study in Germany. Pediatr. Infect. Dis. J. 2009, 28, 642–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeharia, A.; Eidlitz-Markus, T.; Haimi-Cohen, Y.; Samra, Z.; Kaufman, L.; Amir, J. Management of nontuberculous mycobacteria-induced cervical lymphadenitis with observation alone. Pediatr. Infect. Dis. J. 2008, 27, 920–922. [Google Scholar] [CrossRef] [PubMed]
- Willemse, S.H.; Oomens, M.A.E.M.; De Lange, J.; Karssemakers, L.H.E. Diagnosing nontuberculous mycobacterial cervicofacial lymphadenitis in children: A systematic review. Int. J. Pediatr. Otorhinolaryngol. 2018, 112, 48–54. [Google Scholar] [CrossRef]
- Wolinsky, E. Mycobacterial lymphadenitis in children: A prospective study of 105 nontuberculous cases with long-term follow-up. Clin. Infect. Dis. 1995, 20, 954–963. [Google Scholar] [CrossRef]
- Maltezou, H.C.; Spyridis, P.; Kafetzis, D.A. Nontuberculous mycobacterial lymphadenitis in children. Pediatr. Infect. Dis. J. 1999, 18, 968–970. [Google Scholar] [CrossRef]
- Margileth, A.M.; Chandra, R.; Altman, R.P. Chronic lymphadenopathy due to mycobacterial infection. Clinical features, diagnosis, histopathology, and management. Am. J. Dis. Child. 1984, 138, 917–922. [Google Scholar] [CrossRef]
- Hatzenbuehler, L.A.; Starke, J.R. Common presentations of nontuberculous mycobacterial infections. Pediatr. Infect. Dis. J. 2014, 33, 89–91. [Google Scholar] [CrossRef]
- Van Coppenraet, E.S.B.; Lindeboom, J.A.; Prins, J.M.; Peeters, M.F.; Claas, E.C.; Kuijper, E.J. Real-time PCR assay using fine-needle aspirates and tissue biopsy specimens for rapid diagnosis of mycobacterial lymphadenitis in children. J. Clin. Microbiol. 2004, 42, 2644–2650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tebruegge, M.; Pantazidou, A.; MacGregor, D.; Gonis, G.; Leslie, D.; Sedda, L.; Ritz, N.; Connell, T.; Curtis, N. Nontuberculous Mycobacterial Disease in Children—Epidemiology, Diagnosis & Management at a Tertiary Center. PLoS ONE 2016, 11, e0147513. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, P.; Curtis, N.; Tebruegge, M. Nontuberculous mycobacterial disease in childhood—Update on diagnostic approaches and treatment. J. Infect. 2017, 74 (Suppl. 1), S136–S142. [Google Scholar] [CrossRef]
- Tebruegge, M.; Ritz, N.; Curtis, N.; Shingadia, D. Diagnostic Tests for Childhood Tuberculosis: Past Imperfect, Present Tense and Future Perfect? Pediatr. Infect. Dis. J. 2015, 34, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Lindeboom, J.A.; Kuijper, E.J.; Prins, J.M.; van Coppenraet, E.S.B.; Lindeboom, R. Tuberculin skin testing is useful in the screening for nontuberculous mycobacterial cervicofacial lymphadenitis in children. Clin. Infect. Dis. 2006, 43, 1547–1551. [Google Scholar] [CrossRef]
- Kobashi, Y.; Mouri, K.; Yagi, S.; Obase, Y.; Miyashita, N.; Okimoto, N.; Matsushima, T.; Kageoka, T.; Oka, M. Clinical evaluation of the QuantiFERON-TB Gold test in patients with non-tuberculous mycobacterial disease. Int. J. Tuberc. Lung Dis. 2009, 13, 1422–1426. [Google Scholar] [PubMed]
- Augustynowicz-Kopeć, E.; Siemion-Szcześniak, I.; Zabost, A.; Wyrostkiewicz, D.; Filipczak, D.; Oniszh, K.; Gawryluk, D.; Radzikowska, E.; Korzybski, D.; Szturmowicz, M. Interferon Gamma Release Assays in Patients with Respiratory Isolates of Non-Tuberculous Mycobacteria—A Preliminary Study. Pol. J. Microbiol. 2019, 68, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Planas, A.; Baquero-Artigao, F.; Santiago, B.; Fortuny, C.; Méndez-Echevarría, A.; Del Rosal, T.; Bustillo-Alonso, M.; Gale, I.; Guerrero, C.; Blázquez-Gamero, D.; et al. Interferon-Gamma Release Assays Differentiate between Mycobacterium avium Complex and Tuberculous Lymphadenitis in Children. J. Pediatr. 2021, 236, 211–218.e2. [Google Scholar] [CrossRef]
- Detjen, A.K.; Keil, T.; Roll, S.; Hauer, B.; Mauch, H.; Wahn, U.; Magdorf, K. Interferon-gamma release assays improve the diagnosis of tuberculosis and nontuberculous mycobacterial disease in children in a country with a low incidence of tuberculosis. Clin. Infect. Dis. 2007, 45, 322–328. [Google Scholar] [CrossRef]
- Kontturi, A.; Tuuminen, T.; Karttunen, R.; Salo, E. Elispot Igra with Purified Protein Derivative Stimulation for Diagnosing Nontuberculous Mycobacterial Cervical Lympadenitis. Pediatr. Infect. Dis. J. 2016, 35, 349–351. [Google Scholar] [CrossRef]
- Staufner, C.; Sommerburg, O.; Holland-Cunz, S. Algorithm for early diagnosis in nontuberculous mycobacterial lymphadenitis. Acta Paediatr. 2012, 101, e382–e385. [Google Scholar] [CrossRef] [PubMed]
- Scott, C.A.; Atkinson, S.H.; Sodha, A.; Tate, C.; Sadiq, J.; Lakhoo, K.; Pollard, A.J. Management of lymphadenitis due to non-tuberculous mycobacterial infection in children. Pediatr. Surg. Int. 2012, 28, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Lindeboom, J.A.; Kuijper, E.J.; van Coppenraet, E.S.B.; Lindeboom, R.; Prins, J.M. Surgical excision versus antibiotic treatment for nontuberculous mycobacterial cervicofacial lymphadenitis in children: A multicenter, randomized, controlled trial. Clin. Infect. Dis. 2007, 44, 1057–1064. [Google Scholar] [CrossRef] [Green Version]
- Lindeboom, J.A.; Lindeboom, R.; van Coppenraet, E.S.B.; Kuijper, E.J.; Tuk, J.; Prins, J.M. Esthetic outcome of surgical excision versus antibiotic therapy for nontuberculous mycobacterial cervicofacial lymphadenitis in children. Pediatr. Infect. Dis. J. 2009, 28, 1028–1030. [Google Scholar] [CrossRef]
- Lindeboom, J.A. Conservative wait-and-see therapy versus antibiotic treatment for nontuberculous mycobacterial cervicofacial lymphadenitis in children. Clin. Infect. Dis. 2011, 52, 180–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindeboom, J.A. Surgical treatment for nontuberculous mycobacterial (NTM) cervicofacial lymphadenitis in children. J. Oral Maxillofac. Surg. 2012, 70, 345–348. [Google Scholar] [CrossRef]
- Luong, A.; McClay, J.E.; Jafri, H.S.; Brown, O. Antibiotic therapy for nontuberculous mycobacterial cervicofacial lymphadenitis. Laryngoscope 2005, 115, 1746–1751. [Google Scholar] [CrossRef] [Green Version]
- Zangwill, K.M.; Hamilton, D.H.; Perkins, B.A.; Regnery, R.L.; Plikaytis, B.D.; Hadler, J.L.; Cartter, M.L.; Wenger, J.D. Cat scratch disease in Connecticut. Epidemiology, risk factors, and evaluation of a new diagnostic test. N. Engl. J. Med. 1993, 329, 8–13. [Google Scholar] [CrossRef]
- La Scola, B.; Liang, Z.; Zeaiter, Z.; Houpikian, P.; Grimont, P.A.; Raoult, D. Genotypic characteristics of two serotypes of Bartonella henselae. J. Clin. Microbiol. 2002, 40, 2002–2008. [Google Scholar] [CrossRef] [Green Version]
- Windsor, J.J. Cat-scratch disease: Epidemiology, aetiology and treatment. Br. J. Biomed. Sci. 2001, 58, 101–110. [Google Scholar] [PubMed]
- Reynolds, M.G.; Holman, R.C.; Curns, A.T.; O’Reilly, M.; McQuiston, J.H.; Steiner, C.A. Epidemiology of cat-scratch disease hospitalizations among children in the United States. Pediatr. Infect. Dis. J. 2005, 24, 700–704. [Google Scholar] [CrossRef] [PubMed]
- Dehio, C. Molecular and cellular basis of bartonella pathogenesis. Annu. Rev. Microbiol. 2004, 58, 365–390. [Google Scholar] [CrossRef] [PubMed]
- Chomel, B.B.; Boulouis, H.J.; Maruyama, S.; Breitschwerdt, E.B. Bartonella spp. in pets and effect on human health. Emerg. Infect. Dis. 2006, 12, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Ridder-Schröter, R.; Marx, A.; Beer, M.; Tappe, D.; Kreth, H.W.; Girschick, H.J. Abscess-forming lymphadenopathy and osteomyelitis in children with Bartonella henselae infection. J. Med. Microbiol. 2008, 57 Pt 4, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Lindeboom, J.A. Pediatric cervicofacial lymphadenitis caused by Bartonella henselae. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 120, 469–473. [Google Scholar] [CrossRef]
- Sodini, C.; Zani, E.M.; Pecora, F.; Conte, C.; Patianna, V.D.; Prezioso, G.; Principi, N.; Esposito, S. A Case of Atypical Bartonellosis in a 4-Year-Old Immunocompetent Child. Microorganisms 2021, 9, 950. [Google Scholar] [CrossRef]
- Margileth, A.M. Recent Advances in Diagnosis and Treatment of Cat Scratch Disease. Curr. Infect. Dis. Rep. 2000, 2, 141–146. [Google Scholar] [CrossRef]
- Bergmans, A.M.C.; Peeters, M.F.; Schellekens, J.F.P.; Vos, M.C.; Sabbe, L.J.M.; Ossewaarde, J.M.; Verbakel, H.; Hooft, H.J.; Schouls, L.M. Pitfalls and fallacies of cat scratch disease serology: Evaluation of Bartonella henselae-based indirect fluorescence assay and enzyme-linked immunoassay. J. Clin. Microbiol. 1997, 35, 1931–1937. [Google Scholar] [CrossRef] [Green Version]
- Batts, S.; Demers, D.M. Spectrum and treatment of cat-scratch disease. Pediatr. Infect. Dis. J. 2004, 23, 1161–1162. [Google Scholar]
- Wang, C.W.; Chang, W.C.; Chao, T.K.; Liu, C.C.; Huang, G.S. Computed tomography and magnetic resonance imaging of cat-scratch disease: A report of two cases. Clin. Imaging 2009, 33, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.R.; Seeger, L.L.; Yao, L.; Panosian, C.B.; Johnson, B.L., Jr.; Eckardt, J.J. Uncomplicated cat-scratch disease: Findings at CT, MR imaging, and radiography. Radiology 1995, 195, 837–839. [Google Scholar] [CrossRef]
- Garnier, C.; Martin-Blondel, G.; Debuisson, C.; Dubois, D.; Debard, A.; Cuzin, L.; Massip, P.; Delobel, P.; Marchou, B. Intra-nodal injection of gentamicin for the treatment of suppurated cat scratch disease’s lymphadenitis. Infection 2016, 44, 23–27. [Google Scholar] [CrossRef]
- Stevens, D.L.; Bisno, A.L.; Chambers, H.F.; Everett, E.D.; Dellinger, P.; Goldstein, E.J.C.; Gorbach, S.L.; Hirschmann, J.V.; Kaplan, E.L.; Montoya, J.G.; et al. Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clin. Infect. Dis. 2005, 41, 1373–1406. [Google Scholar] [CrossRef]
- Margileth, A.M. Antibiotic therapy for cat-scratch disease: Clinical study of therapeutic outcome in 268 patients and a review of the literature. Pediatr. Infect. Dis. J. 1992, 11, 474–478. [Google Scholar] [CrossRef]
- Bass, J.W.; Freitas, B.C.; Freitas, A.D.; Sisler, C.L.; Chan, D.S.; Vincent, J.M.; Person, D.A.; Claybaugh, J.R.; Wittler, R.R.; Weisse, M.E.; et al. Prospective randomized double blind placebo-controlled evaluation of azithromycin for treatment of cat-scratch disease. Pediatr. Infect. Dis. J. 1998, 17, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Shorbatli, L.A.; Koranyi, K.I.; Nahata, M.C. Effectiveness of antibiotic therapy in pediatric patients with cat scratch disease. Int. J. Clin. Pharm. 2018, 40, 1458–1461. [Google Scholar] [CrossRef] [PubMed]
Disease | Agent | Animal | Inoculation |
---|---|---|---|
Cat scratch disease | Bartonella henselae | Cat | Skin scratch |
Toxoplasmosis | Toxoplasma gondii | Cat | Ingestion of material contaminated with cat stools |
Tularemia | Francisella tularensis | Rodents and insects | Tick bite or skin/mucosa exposure to infected animal |
Brucellosis | Brucella spp. | Sheep, goat, pigs, cattle | Ingestion of unpasteurized milk or contact with animal fluids |
Histoplasmosis | Histoplasma capsulatum | Birds and bats | Inhalation |
Trypanosomiasis | Trypanosoma brucei | Tsetse fly | Bite by tsetse fly |
Lymph Node Group | Drainage |
---|---|
Occipital | Posterior scalp |
Posterior auricular | Temporal and parietal scalp |
Preauricular | Anterior and temporal scalp, anterior ear canal, conjunctiva |
Parotid | Midface, middle ear, parotid gland |
Jugulodigastric | Tonsillar |
Submandibular | Cheek, nose, lips, tongue, gums, buccal mucosa |
Submental | Lower lip, floor of mouth, anterior tongue |
Superficial cervical | Lower ear and parotid, lower larynx, lower ear canal |
Deep cervical | Occipital scalp and posterior neck, ear, tongue, trachea, nasopharynx, thyroid, palate, nose, esophagus, paranasal sinuses |
Supraclavicular | Right side: mediastinum, lungs Left side: abdomen |
Deltopectoral | Arms |
Axillary | Arm, breast, thorax, neck |
Epitrochlear | Medial side of arm below elbow |
Inguinal | Lower extremity, genitalia, buttock, abdominal wall below umbilicus |
Popliteal | Lower leg |
Authors (Year) | Type of Study | Study Population | Age Median Months (Range) | Therapy | Results |
---|---|---|---|---|---|
Haverkamp MH (2004) [46] | Prospective study | 61 children with NTM infections (92% with lymphadenitis) | 31 (6–151) | Treatment modality: 7 (12%) wait and see 24 (39%) medication only 17 (28%) complete surgical excision 13 (21%) medication and surgery | Resolution was achieved in 39% of patients with chemotherapy alone Children with positive culture results did not differ in disease characteristics from those without positive culture results |
Luong A et al. (2005) [70] | Retrospective study | 55 children with diagnosis of NTM lymphadenitis | 21.6 (15–192) | Treatment modality: 30 (54.5%) antibiotics alone (group 1) 15 (27.2%) antibiotics followed by surgical excision (group 2) 5 (9%) surgical excision followed by antibiotics (group 3) 5 (9%) surgical excision alone (group 4) | Resolution occurred in 30/45 (67%) patients who were initially treated with medical therapy Time of response in group 1 patients: 13/15 (87%) children who started on a regimen with clarithromycin alone responded by 2 months of treatment, and resolution occurred in 15/15 (100%) by 6 months Resolution by 6 months occurred in 14/15 (93.3%) children who received clarithromycin + other antibiotics/other antibiotics Time of response in group 2 patients: 6/15 (40%) patients who initially received antibiotics followed by surgical excision responded well to 2 months of treatment 3/10 (30%) children who underwent surgical excision initially (groups 3 and 4) required additional treatment for recurrence |
Lindeboom AJ (2007) [66] | RCT | 100 children with diagnosis of NTM lymphadenitis | 45.5 (9–168) | 50 had surgical excision 50 were treated with clarithromycin (15 mg/kg bid) + rifabutin (5 mg/kg qd) both for a period of at least 12 weeks | Surgical excision more effective than antibiotic therapy (96% vs. 66%, IC for the difference 16–44%) Complication of surgery: 14 of 50 patients (28%). Postoperative weakness of the marginal branch of the facial nerve was observed in 7 patients (14%; in 1 patient, it was permanent) 39 (78%) of 50 patients allocated to antibiotic therapy reported adverse effects |
Zeharia A (2008) [48] | Observational study | 92 children with NTM lymphadenitis (positive culture) | 18 (8–13) | Observation alone Follow-up for at least 2 years | Total resolution achieved within: 3–6 months: 65 (71%) patients 9 months: 25 (27%) patients 12 months: 2 (2%) patients There were no recurrences |
Lindeboom AJ (2009) [67] | RCT | 100 children with diagnosis of NTM lymphadenitis | 45.5 (9–168) | 50 had surgical excision 50 were treated with clarithromycin (15 mg/kg bid) + rifabutin (5 mg/kg qd) both for a period of at least 12 weeks | Successful surgery group (surgical wound healed completely at the 3- and 6-month evaluation): 48 of 50 (96%) Successful antibiotic group: 33 of 50 (66%) Median OSAS scores of the surgical group (30.6 points) vs. the antibiotics group (42.2 points, Mann–Whitney U test, Z = 2.78, p = 0.005) |
Lindeboom AJ (2011) [68] | RCT | 50 children with microbiologically proven NTM lymphadenitis | 35 (14–114) | 25 received clarithromycin (15 mg/kg bid) + rifabutin (5 mg/kg qd) for 12 weeks 25 received no antibiotic therapy (wait-and-see) | No difference in the time to resolution (median time: 36 weeks clarithromycin + rifabutin antibiotic treatment. vs. 40 weeks wait-and-see policy) |
Lindeboom AJ (2012) [69] | RCT | 50 children with microbiologically proven NTM lymphadenitis | 36 (14–120) | 25 treated with surgical excision 25 treated with surgical curettage | The mean time to healing of the wound for the excision group was 3.6 ± 1.2 weeks vs. 11.4 ± 5.1 weeks for the curettage group (p < 0.05) Postoperative transient marginal mandibular nerve weakness of the facial nerve was seen in 4 patients in the excision group. No facial nerve problems were observed in the curettage group |
Zimmermann P (2015) [46] | Systematic review | 1951 children with NTM lymphadenitis from 60 publications | 40.8 | Treatment modality: 1077 (55%) complete excision 15 (<1%) incomplete excision 121 (6%) curettage 246 (13%) incision and drainage 32 (2%) fine-needle aspiration 87 (5%) other surgery 171 (9%) anti-mycobacterial antibiotics 157 (8%) no intervention | Adjusted mean cure rate: 98% (95% CI 97.0 e 99.5%) for complete excision 73.1% (95% CI 49.6–88.3%) for anti-mycobacterial antibiotics 70.4% (95% CI 49.6–88.3%) for ‘no intervention’ Compared to ‘no intervention’, only complete excision was significantly associated with cure (OR 33.1; p < 0.001) Complete excision was associated with a 10% risk of facial nerve palsy (2% permanent) |
Tebruegge M (2016) [57] | Retrospective study | 107 children with NTM lymphadenitis | 31.2 (25.2–45.6) | Treatment modality: 104 (97.2%) complete excision 2 (1.9%) diagnostic biopsies 1 (0.9%) partial excision 14 (13%) course of antimycobacterial treatment post-operatively (for 2–6 months) with: clarithromycin alone (42.9%); clarithromycin + rifampicin (57.1%) | Symptomatic cure at 6 months: 107/107 (100%) Recurrence: 19/107 (17.8%) 28.5% of patients who received anti-mycobacterial drugs vs. 16,1% of patients who did not receive anti-mycobacterial treatment, p = 0.2687 ≥2 recurrences in 0/8 cases (0%) treated with clarithromycin and rifampicin versus 7/99 cases (7.1%) without anti-mycobacterial treatment or clarithromycin only; OR 0.73; p = 0.6053 Facial palsy as complication of surgery: 8/104 (7.5%) |
Authors (Year) | Type of Study | Study Population | Age Median Months (Range) | Therapy | Results |
---|---|---|---|---|---|
Margileth (1992) [87] | Retrospective study | 268 patients with moderate–severe CSD | 240 (6–864) | Group 1 (66 patients): no antibiotic Group 2 (113 patients): antibiotic no effective Group 3 (89 patients): antibiotic effective | 4/18 different antimicrobials had demonstrable efficacy Antibiotic effectiveness: Rifampin: 13/15 (87%) Ciprofloxacin: 27/32 (84%) Gentamicin: 11/15 (73%) Trimethoprim and sulfamethoxazole: 26/45 (58%) Penicillins, cephalosporins, tetracycline, and erythromycin had minimal or no clinical efficacy |
Bass (1998) [88] | RCT | 29 children with cat scratch lymphadenopathy | 210 (12–670) | 15 received oral azithromycin:
| 30 days after initiation of therapy assessment, significative reduction (≥80%) in affected lymph node volume: 7/14 azithromycin group vs. 1/15 placebo group (p = 0.026) |
Garnier (2016) [85] | Retrospective study | 51 patients with suppurated CSD’s lymphadenitis treated with oral azithromycin | Mean age 26.3 years 17/51 (33%) < 15 years | Group 1: 26 (51%) oral azithromycin without intranodal injection of gentamicin Group 2: 25 (49%) received intranodal injection of gentamicin | Combined treatment was related to a higher probability of cure without complication vs. treatment with oral azithromycin only (64% versus 31%, p = 0.01) Complication: Group 1: 18/26 (69%), of whom 5 required surgery Group 2: 9/25 (36%), of whom 4 required surgery |
Lindeboom (2015) [58] | Prospective study | 53 children with cervical lymphadenitis caused by B. henselae | 59 (16–148) | The patients were not treated with antibiotics 11/51 (21%): repeated aspiration of pus was performed 40/51 (79%): wait-and-see-policy | Mean resolution time: 5 ± 3.1 months in intervention group vs. 8.2 ± 3.8 months in wait-and-see group (p = 0.01) |
Shorbatli (2018) [89] | Retro-spective study | 175 children with CSD lymphadenitis | Mean age 7.4 years | Group 1: 102/175 were treated with oral azithromycin (10 mg/kg/die with maximum of 500 mg orally for day 1 and 5 mg/kg with maximum of 250 mg once daily on days 2–5 as a suspension) Group 2: 18/175 were treated with oral TMP/SMX (trimethoprim component 8–20 mg/kg orally divided twice daily for 7–14 days as a suspension) Group 3: 10/175 received no antibiotic therapy Group 4: 45/175 received single or combined therapy with clindamycin, amoxicillin/clavulanate, doxycycline, cephalexin, ciprofloxacin, erythromycin, incision, and drainage or excision of lymph node | In Group 1, resolution or improvement was achieved in 51.4% (37/72) of patients without additional medical or surgical intervention 48.6% (35/72) not improved: 2 had no additional therapy 33 received a second course of azithromycin, TMP/SMX, erythromycin, amoxicillin/clavulanate, or rifampin with/without surgical intervention. Response to additional interventions was achieved in 78.7% (26/33) In Group 2, resolution or improvement was achieved in 61.5% (8/13) of patients without additional medical or surgical intervention No statistically significant difference in the effectiveness based on CSD resolution or improvement between azithromycin and TMP/SMX groups (p = 0.56) (OR 0.66; 95% CI of OR [0.15, 2.56]) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecora, F.; Abate, L.; Scavone, S.; Petrucci, I.; Costa, F.; Caminiti, C.; Argentiero, A.; Esposito, S. Management of Infectious Lymphadenitis in Children. Children 2021, 8, 860. https://doi.org/10.3390/children8100860
Pecora F, Abate L, Scavone S, Petrucci I, Costa F, Caminiti C, Argentiero A, Esposito S. Management of Infectious Lymphadenitis in Children. Children. 2021; 8(10):860. https://doi.org/10.3390/children8100860
Chicago/Turabian StylePecora, Francesco, Luciana Abate, Sara Scavone, Irene Petrucci, Federico Costa, Caterina Caminiti, Alberto Argentiero, and Susanna Esposito. 2021. "Management of Infectious Lymphadenitis in Children" Children 8, no. 10: 860. https://doi.org/10.3390/children8100860
APA StylePecora, F., Abate, L., Scavone, S., Petrucci, I., Costa, F., Caminiti, C., Argentiero, A., & Esposito, S. (2021). Management of Infectious Lymphadenitis in Children. Children, 8(10), 860. https://doi.org/10.3390/children8100860