Children with Poor Motor Skills Have Lower Health-Related Fitness Compared to Typically Developing Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Measurements
2.3.1. Movement Assessment Battery for Children, Second Edition (MABC-2)
2.3.2. Progressive Aerobic Cardiovascular Endurance Run (PACER)
2.3.3. Bruininks–Oseretsky Test of Motor Proficiency, Second Edition (BOT-2)
2.3.4. Anthropometric Measurements
2.4. Statistical Analysis
3. Results
3.1. Motor Performance
3.2. Group Differences Regarding the Health-Related Fitness
3.3. Aerobic Capacity
3.4. Anaerobic Capacity and Agility
3.5. Strength and Muscular Endurance
3.6. Body Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2013; pp. 74–77. [Google Scholar]
- Amador-Ruiz, S.; Gutierrez, D.; Martinez-Vizcaino, V.; Guilias-Gonzalez, R.; Pardo-Guarro, M.J.; Sanchez-Lopez, M. Motor competence levels and prevalence of developmental coordination disorder in Spanish children: The MOVI-KIDS study. J. Sch. Health 2018, 88, 538–646. [Google Scholar] [CrossRef]
- Cardosa, A.A.; Magalhães, L.V.; Rezende, M.B. Motor skills in Brazilian children with developmental coordination disorder versus children with motor typical development. Occup. Ther. Intl. 2014, 21, 176–185. [Google Scholar] [CrossRef] [PubMed]
- De Milander, M.; Coetzee, F.F.; Venter, A. Developmental coordination disorder in grade 1 learners. Afr. J. Phys. Health Educ. Recreat. Dance 2014, 20, 1075–1085. [Google Scholar]
- Dhote, N.S.; Tushar, J.P.; Ganvir, S. Age wise prevalence of developmental coordination in school going children in west India. Int. Arch. Integr. Med. 2017, 4, 1–7. [Google Scholar]
- Zwicker, J.G.; Missiuna, C.; Harris, S.R.; Boyd, L.A. Developmental coordination disorder: A review and update. Eur. J. Paediatr. Neurol. 2012, 16, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Izadi-Najafabadi, S.; Ryan, N.; Ghafooripoor, G.; Kamaldeep, G.; Zwicker, J.G. Participation of children with developmental coordination disorder. Res. Dev. Disabil. 2019, 84, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Hiraga, C.Y.; Rocha, P.R.H.; De Castro Ferracioli, M.; Gama, D.T.; Pellegrini, A.M. Physical fitness in children with probable developmental coordination disorder and normal body mass index. Rev. Bras. Cineantropom. Desempenho. Hum. 2014, 16, 182–190. [Google Scholar]
- Ružbarská, I. Physical fitness of primary school children in the reflection of different levels of gross motor coordination. Acta Gymn. 2016, 46, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Silman, A.; Cairney, J.; Hay, J.; Klentrou, P.; Faught, B.E. Role of physical activity and perceived adequacy on peak aerobic power in children with developmental coordination disorder. Hum. Mov. Sci. 2011, 30, 672–681. [Google Scholar] [CrossRef]
- Cairney, J.; Veldhuizen, S.; King-Dowling, S.; Faught, B.E.; Hay, J. Tracking cardiorespiratory fitness and physical activity in children with and without motor coordination problems. J. Sci. Med. Sport 2017, 20, 380–385. [Google Scholar] [CrossRef]
- Cantell, M.; Crawford, S.G.; Doyle-Baker, P.K. Physical fitness and health indices in children, adolescents and adults with high or low motor competence. Hum. Mov. Sci. 2008, 27, 344–362. [Google Scholar] [CrossRef]
- Schott, N.; Alof, V.; Hultsch, D.; Meerman, D. Physical fitness in children with developmental coordination disorder. Res. Q. Exerc. Sport 2007, 78, 438–450. [Google Scholar] [CrossRef]
- Kanioglou, A. Estimation of physical abilities of children with developmental coordination disorder. Stud. Phys. Cult. Tour 2006, 13, 25–32. [Google Scholar]
- Chia, L.C.; Guelfi, K.J.; Licari, M.K. A comparison of the oxygen cost of locomotion in children without developmental coordination disorder. Dev. Med. Child. Neuro 2009, 52, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Cairney, J.; Hay, J.A.; Faught, B.E.; Flouris, A.; Klentrou, P. Developmental coordination disorder and cardiorespiratory fitness in children. Pediatr. Exerc. Sci. 2007, 19, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Cairney, J.; Hay, J.; Veldhuizen, S.; Faught, B.E. Trajectories of cardiorespiratory fitness in children with and without developmental coordination disorder: A longitudinal analysis. Br. J. Sports Med. 2011, 45, 1196–1201. [Google Scholar] [CrossRef]
- Van der Hoek, F.D.; Stuive, I.; Reinders-Messelink, H.A.; Holty, L.; De Blecourt, A.C.E.; Maathuis, C.G.B.; Van Weert, E. Health-related physical fitness in Dutch children with developmental coordination disorder. J. Dev. Behav. Paediatr. 2012, 33, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.K.; Lin, H.; Li, Y.; Tsai, C.; Cairney, J. Cardiopulmonary fitness and endurance in children with developmental coordination disorder. Res. Dev. Disabil. 2010, 31, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Smits-Engelsman, B.; Cavalcante Neto, J.L.; Draghi, T.T.G.; Rohr, L.A.; Jelsma, D. Construct validity of the PERF-FIT, a test of motor skill-related fitness for children in low resource areas. Res. Dev. Disabil. 2020, 102, 103663. [Google Scholar] [CrossRef] [PubMed]
- Smits-Engelsman, B.C.M.; Bonney, E. Children’s repetitive and intermittent sprinting performance (CRISP) test: A new field-based test for assessing anaerobic power and repeated sprint performance in children with developmental coordination disorder. Res. Dev. Disabil. 2019, 93, 103461. [Google Scholar] [CrossRef]
- Cairney, J.; Hay, J.; Veldhuizen, S.; Faught, B. Comparison of VO2 maximum obtained from 20 m shuttle run and cycle ergometer in children with and without developmental coordination disorder. Res. Dev. Dis. 2010, 31, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, C.G.; Prins, M.R.; Dekkers, H. Developmental coordination disorder and overweight and obesity in children: A systematic review. Int. Stud. Obes. 2014, 15, 408–423. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.; Missiuna, C.; Hanna, S.; Hay, J.; Faught, B.E.; Cairney, J. Relationship between BMI, waist circumference, physical activity and probable developmental coordination disorder over time. Hum. Mov. Sci. 2015, 40, 237–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lifshitz, N.; Raz-Silbiger, S.; Weintraub, N.; Steinhart, S.; Cermak, S.A.; Katz, N. Physical fitness and overweight in Israeli children with and without developmental coordination disorder: Gender differences. Res. Dev. Disabil. 2014, 35, 2773–2780. [Google Scholar] [CrossRef]
- Wahi, G.; LeBlanc, P.J.; Hay, J.A.; Faught, B.E.; O′Leary, D.; Cairney, J. Metabolic syndrome in children with and without developmental coordination disorder. Res. Dev. Disabil. 2011, 32, 2785–2789. [Google Scholar] [CrossRef] [PubMed]
- Cempaka, P.M.V.P.; Sidiartha, G.L. Waist circumference and insulin levels in obese children. Pediatr. Indones. 2017, 57, 194–197. [Google Scholar] [CrossRef]
- Moschonis, G.; Karatzi, K.; Polychronopoulou, M.C.; Manios, Y. Waist circumference, trunk and visceral fat cutoff values for detecting hyperinsulinemia and insulin resistance in children: The healthy growth study. Eur. J. Nutr. 2016, 55, 2331–2334. [Google Scholar] [CrossRef]
- World Health Organization. Tenfold Increase in Childhood and Adolescent Obesity in Four Decades: New Study by Imperial College London and WHO. Available online: http://www.who.int/mediacentre/news/releases/2017/increase-childhood-obesity/en/ (accessed on 1 March 2018).
- Aertssen, W.; Bonney, E.; Ferguson, G.; Smits-Engelsman, B. Subtyping children with developmental coordination disorder based on physical fitness outcomes. Hum. Mov. Sci. 2005, 60, 87–97. [Google Scholar] [CrossRef]
- Smits-Engelsman, B.C.M.; Jelsma, L.D.; Ferguson, G.D. The effect of exergames on functional strength, anaerobic fitness, balance and agility in children with and without motor coordination difficulties living in low-income communities. Hum. Mov. Sci. 2017, 55, 327–337. [Google Scholar] [CrossRef]
- Sember, V.; Jurak, G.; Kovač, M.; Đurić, S.; Starc, G. Decline of physical activity in early adolescence: A 3-year cohort study. PLoS ONE 2016, 15, e0229305. [Google Scholar] [CrossRef] [Green Version]
- Straatman, V.S.; Oliveira, A.J.; Rostila, M.; Lopes, C.S. Changes in physical activity and screen time related to psychological well-being in early adolescence: Findings from longitudinal study ELANA. BMC Public Health 2016, 16, 977. [Google Scholar] [CrossRef] [Green Version]
- Smits-Engelsman, B.; Schoemaker, M.; Delabastita, T.; Hoskens, J.; Geuze, R. Diagnostic criteria for DCD: Past and future. Hum. Mov. Sci. 2015, 42, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Henderson, S.E.; Sugden, D.A.; Barnett, A.L. Movement Assessment Battery for Children-2 (MABC-2), 2nd ed.; The Psychological Corporation: London, UK, 2007. [Google Scholar]
- Wuang, Y.; Su, J.; Su, C. Reliability and responsiveness of the Movement Assessment Battery for Children—Second edition test in children with developmental coordination disorder. Dev. Med. Child Neur. 2012, 54, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20-meter shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Boiarskaia, E.A.; Boscolo, M.S.; Zhu, W.; Mahar, M.T. Cross-validation of an equating method linking aerobic FITNESSGRAM field tests. Am. J. Prev. Med. 2011, 41, S124–S130. [Google Scholar] [CrossRef] [PubMed]
- Bruininks, R.H.; Bruininks, B.D. Bruininks-Oseretsky Test. of Motor Proficiency: Manual, 2nd ed.; Pearson Assessments: Minneapolis, MN, USA, 2005. [Google Scholar]
- Wuang, Y.; Su, C. Reliability and responsiveness of the Bruininks-Oseretsky test of motor proficiency—Second edition in children with intellectual disability. Res. Dev. Disabil. 2009, 30, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.; Marfell-Jones, M.; Olds, T.; de Ridder, H. International Standards for Anthropometric Assessment; ISAK—International Society for the Advancement of Kinanthropometry: Brasilia, Brazil, 2011. [Google Scholar]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillside, NJ, USA, 1988. [Google Scholar]
- Tomkinson, G.R.; Lang, J.J.; Tremblay, M.; Dale, M.; LeBlanc, A.; Belanger, K.; Ortega, F.B.; Léger, L. International normative 20 m shuttle run values from 1,142,026 children and youth representing 50 countries. Brit. J. Sports Med. 2017, 51, 1545–1554. [Google Scholar] [CrossRef] [Green Version]
- Bonney, E.; Jelsma, L.D.; Ferguson, G.D.; Smits-Engelsman, B.C.M. Learning better by repetition or variation? Is transfer at odds with task specific training. PLoS ONE 2017, 12, e0174214. [Google Scholar] [CrossRef]
- Aertssen, W.F.M.; Ferguson, G.D.; Smits-Engelsman, B.C.M. Performance on functional strength measurement and muscle power sprint test confirm poor anaerobic capacity in children with developmental coordination disorder. Res. Develop. Disabil. 2016, 59, 115–126. [Google Scholar] [CrossRef]
- Farhat, F.; Hsairi, I.; Baiti, H.; Cairney, J.; Mchirgui, R.; Masmoudi, K.; Moalla, W. Assessment of physical fitness and exercise tolerance in children with developmental coordination disorder. Res. Develop. Disabil. 2015, 45, 210–219. [Google Scholar] [CrossRef]
- Demers, I.; Moffet, H.; Hébert, L.; Maltais, D.B. Growth and muscle strength development in children with developmental coordination disorder. Develop. Med. Child. Neurol. 2020, 62, 1082–1088. [Google Scholar] [CrossRef]
- Verbecque, E.; Coetzee, D.; Ferguson, G.; Smits-Engelsman, B. High BMI and low muscular fitness predict low motor competence in school-aged children living in low resourced areas. Int. J. Environ. Res. Public Health 2021, 18, 7878. [Google Scholar] [CrossRef]
- Utesch, T.; Bardid, F.; Büsch, D.; Strauss, B. The relationship between motor competence and physical fitness from early childhood to early adulthood: A meta-analysis. Sport Med. 2019, 49, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, G.D.; Aertssen, W.F.M.; Rameckers, E.A.A.; Jelsma, J.; Smits-Engelsman, B.C.M. Physical fitness in children with developmental coordination disorder: Measurement matters. Res. Dev. Disabil. 2014, 35, 1087–1097. [Google Scholar] [CrossRef]
- Farhat, F.; Masmoudi, K.; Hsairi, I.; Smits-Engelsman, B.C.M.; Mchirgui, R.; Chahnez, T.; Moalla, W. The effects of 8 weeks of motor skill training on cardiorespiratory fitness and endurance performance in children with developmental coordination disorder. Appl. Physiol. Nutr. Metab. 2015, 40, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Hands, B. Changes in motor skill and fitness measures among children with high and low motor competence: A five-year longitudinal study. J. Sci. Med. Sport 2008, 11, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Department of Basic Education. National School Nutrition Program. Available online: https://www.education.gov.za/Programmes/NationalSchoolNutritionProgramme.aspx (accessed on 25 April 2021).
- Lunchbox Fund. Why Nutrition? Available online: https://www.thelunchboxfund.org/why-nutrition (accessed on 25 April 2021).
- Peninsula School Feeding Association. The Need. Available online: https://www.psfa.org.za/the-need/ (accessed on 25 April 2021).
- Burnett, C. A national study on the state and status of physical education in South African public schools. Phys. Educ. Sport Ped. 2021, 26, 179–196. [Google Scholar] [CrossRef]
- Draper, C.E.; Tomaz, S.A.; Bassett, S.H.; Burnett, C.; Christie, C.J.; Cozett, C.; De Milander, M.; Lambert, E.V. Results from South Africa’s 2018 report card on physical activity for children and youth. J. Phys. Act. Health 2018, 15, S406–S408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minnaar, E.; Grant, C.C.; Fletcher, L. Physical activity of children from a small rural town, South Africa. S. Afr. Fam. Pract. 2016, 58, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Roux, K.C.J. The delivery of primary school physical education in South African public schools: The perceptions of educators. S. Afr. J. Child. Educ. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Chepyator-Thomas, J.R.; Hsu, S. Global Perspectives on Physical Education and After-School Sport Programs, 1st ed.; UPA: Lanham, MD, USA, 2013. [Google Scholar]
- Tremblay, M.S.; Barnes, J.D.; González, S.A.; Katzmarzyk, P.T.; Onywera, V.O.; Reilly, J.J.; the Global Matrix 2.0 Research Team. Global matrix 2.0: Report card grades on the physical activity of children and youth comparing 38 countries. J. Phys. Act. Health 2016, 13, S343–S366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
TD | p-DCD | |||||
---|---|---|---|---|---|---|
Frequency | Percent | Frequency | Percent | Chi-Square | Odds Ratio | |
Sex | ||||||
Boys | 55 | 50.5 | 18 | 48.6 | 0.52, p = 0.82 | n.a. |
Girls | 54 | 49.5 | 19 | 51.4 | ||
PACER classification | ||||||
At or below 20th SR | 52 | 47.7 | 24 | 64.9 | 3.90, p = 0.048 * | 1.57 (0.96–2.58) |
Above 20th SR | 57 | 52.3 | 12 | 32.4 | ||
BOT-2 strength and agility | ||||||
At and below 20th percentile | 6 | 5.5 | 12 | 32.4 | 18.53, p = 0.001 * | 1.40 (1.11–1.76) |
Above 20th percentile | 103 | 94.5 | 25 | 67.6 | ||
SES | ||||||
Low (quintile 1–3) | 65 | 59.6 | 24 | 64.9 | 0.32, p = 0.57 | n.a. |
High (quintile 4–5) | 44 | 40.4 | 13 | 35.1 | ||
Total | 109 | 100 | 37 | 100 | ||
BMI classification | ||||||
Underweight | 9 | 8.3 | 3 | 8.1 | 8.07, p = 0.45 | n.a. |
Normal weight | 80 | 73.4 | 25 | 67.6 | ||
Overweight | 13 | 11.9 | 4 | 10.8 | ||
Obese | 7 | 6.4 | 5 | 13.5 |
Variable | Total (n) | U-Value | z-Value | p-Value (2-Sided Test) | Eta Squared | Cohen’s d |
---|---|---|---|---|---|---|
Aerobic capacity | ||||||
PACER (laps) | 145 | 1380 | 2.66 | 0.008 * | 0.04 | 0.41 • |
Shuttle run stage | 145 | 1463 | 2.36 | 0.018 * | 0.03 | 0.35 • |
VO2 max | 145 | 1420 | 2.50 | 0.012 * | 0.04 | 0.41 • |
Anaerobic capacity and agility | ||||||
Shuttle run | 146 | 2617 | 2.70 | 0.007 * | 0.05 | 0.46 • |
Stepping sideways | 146 | 1200.5 | 3.67 | <0.001 * | 0.09 | 0.63 ▲ |
One legged stationary hop | 146 | 1567.5 | 2.02 | 0.043 * | 0.02 | 0.29 • |
One legged side hop | 146 | 1295 | 3.25 | 0.001 * | 0.07 | 0.55 ▲ |
Two-legged side hop | 146 | 1173.5 | 3.80 | <0.001 * | 0.09 | 0.63 ▲ |
Running speed and agility scale score | 146 | 1067.5 | 4.16 | <0.001 * | 0.11 | 0.70 ▲ |
Strength and muscular endurance | ||||||
Standing long jump | 146 | 1597 | 1.88 | 0.059 | 0.02 | 0.29 • |
Push-ups | 146 | 1388 | 2.83 | 0.005 * | 0.05 | 0.46 • |
Sit-ups | 146 | 1617 | 1.80 | 0.072 | 0.02 | 0.29 • |
Wall sit | 146 | 1528 | 2.84 | 0.004 * | 0.05 | 0.46 • |
V-up | 146 | 1350 | 3.48 | 0.001 * | 0.08 | 0.59 ▲ |
Strength scale score | 146 | 1271 | 3.37 | 0.001 * | 0.07 | 0.55 ▲ |
Composite score of strength and agility | 146 | 1080 | 4.22 | <0.001 * | 0.12 | 0.74 ▲ |
Body composition | ||||||
Height (cm) | 146 | 1889 | 0.57 | 0.566 | ||
Weight (kg) | 146 | 1930 | 0.39 | 0.695 | ||
BMI | 146 | 2070 | 0.24 | 0.810 | ||
BMI-z | 146 | 1934 | 0.37 | 0.711 | ||
Waist circumference (cm) | 146 | 2041 | 0.11 | 0.912 | ||
Fat percentage | 146 | 2089 | 0.32 | 0.744 | ||
Skinfolds | ||||||
Subscapular skinfold | 146 | 2253 | 1.06 | 0.287 | ||
Triceps skinfold | 146 | 2174 | 0.71 | 0.477 | ||
Calf skinfold | 146 | 2158 | 0.63 | 0.523 |
Description | n | Mean | SD | Median | Min | Max | Interquartile Range |
---|---|---|---|---|---|---|---|
Aerobic capacity | |||||||
PACER laps | |||||||
p-DCD | 36 | 43.7 | 3 | 43.3 | 4 | 48 | 11.7 |
TD | 109 | 21.6 | 12.1 | 20 | 5 | 74 | 18.5 |
Group | 145 | 20.4 | 12 | 18 | 4 | 74 | 17 |
Shuttle run stage | |||||||
p-DCD | 36 | 3 | 1.3 | 2.5 | 1.4 | 6.7 | 2.5 |
TD | 109 | 3.6 | 1.4 | 3.5 | 1.5 | 9.2 | 2.2 |
Group | 145 | 3.5 | 1.4 | 3.3 | 1.4 | 9.2 | 2.1 |
VO2max | |||||||
p-DCD | 36 | 43.7 | 3 | 43.3 | 39.1 | 51 | 4.1 |
TD | 109 | 44.9 | 3.2 | 43.8 | 33.4 | 53.4 | 2.9 |
Group | 145 | 44.6 | 3.2 | 43.8 | 33.4 | 53.4 | 3.3 |
Anaerobic capacity and agility | |||||||
Shuttle run | |||||||
p-DCD | 37 | 9.5 | 1.2 | 9.3 | 7.3 | 12 | 1.1 |
TD | 109 | 9 | 0.7 | 8.9 | 7.3 | 11 | 1 |
Group | 146 | 9.1 | 0.9 | 9.1 | 7.3 | 12 | 1.1 |
Stepping sideways | |||||||
p-DCD | 37 | 31.9 | 9 | 32 | 8 | 55 | 12 |
TD | 109 | 37.7 | 7.9 | 38 | 11 | 58 | 11 |
Group | 146 | 36.3 | 8.6 | 37 | 8 | 58 | 12 |
One legged stationary hop | |||||||
p-DCD | 37 | 38 | 7.1 | 38 | 23 | 50 | 9 |
TD | 109 | 41.3 | 7.6 | 41 | 25 | 60 | 12 |
Group | 146 | 40.5 | 7.6 | 40 | 23 | 60 | 10 |
One legged side hop | |||||||
p-DCD | 37 | 20.1 | 7 | 19 | 10 | 32 | 12 |
TD | 109 | 24.8 | 6.5 | 25 | 11 | 42 | 10 |
Group | 146 | 23.6 | 6.9 | 24 | 10 | 42 | 10 |
Two-legged side hop | |||||||
p-DCD | 37 | 24.6 | 5.7 | 25 | 10 | 35 | 7 |
TD | 109 | 39.1 | 5.3 | 29 | 16 | 40 | 8 |
Group | 146 | 28 | 5.8 | 28.5 | 10 | 40 | 30 |
Running speed and agility scale score | |||||||
p-DCD | 37 | 14.9 | 3.4 | 15 | 10 | 22 | 6 |
TD | 109 | 17.6 | 2.7 | 18 | 11 | 23 | 5 |
Group | 146 | 16.9 | 3.1 | 17 | 10 | 23 | 4 |
Strength and muscular endurance | |||||||
Standing long jump | |||||||
p-DCD | 37 | 38.4 | 7.8 | 40.7 | 17.8 | 49.6 | 10.2 |
TD | 109 | 42.1 | 8.2 | 41.6 | 8.3 | 64.3 | 9.8 |
Group | 146 | 41.2 | 8.2 | 41.1 | 8.3 | 64.3 | 9.8 |
Push-ups | |||||||
p-DCD | 37 | 14.8 | 5.5 | 15 | 0 | 25 | 7 |
TD | 109 | 18.2 | 5.8 | 18 | 3 | 30 | 9 |
Group | 146 | 17.4 | 5.9 | 17 | 0 | 30 | 8 |
Sit-ups | |||||||
p-DCD | 37 | 16.5 | 5.4 | 17 | 0 | 23 | 6 |
TD | 109 | 18.9 | 6 | 19 | 5 | 50 | 6 |
Group | 146 | 18.3 | 5.9 | 18 | 0 | 50 | 6 |
Wall sit | |||||||
p-DCD | 37 | 47.7 | 16.7 | 60 | 9 | 60 | 28 |
TD | 109 | 56.1 | 9.2 | 60 | 17 | 60 | 0 |
Group | 146 | 54 | 12.1 | 60 | 9 | 60 | 4 |
V-up | |||||||
p-DCD | 37 | 40.5 | 21.9 | 50 | 0 | 60 | 36 |
TD | 109 | 53 | 13.1 | 60 | 0 | 60 | 11 |
Group | 146 | 49.8 | 16.6 | 60 | 0 | 60 | 15 |
Strength scale score | |||||||
p-DCD | 37 | 13.9 | 3.6 | 15 | 5 | 19 | 6 |
TD | 109 | 16.6 | 2.9 | 16 | 9 | 24 | 4 |
Group | 146 | 15.9 | 3.3 | 16 | 5 | 24 | 4 |
Composite Score Strength and agility | |||||||
p-DCD | 37 | 48.5 | 7.6 | 50 | 22 | 61 | 12 |
TD | 109 | 55 | 5.7 | 55 | 42 | 67 | 9 |
Group | 146 | 53.4 | 6.8 | 54 | 33 | 67 | 9 |
Body composition | |||||||
Height (cm) | |||||||
p-DCD | 37 | 137 | 7.6 | 134.4 | 123.8 | 155.1 | 11.2 |
TD | 109 | 137.2 | 7.7 | 136.4 | 123.2 | 161 | 8.8 |
Group | 146 | 137.2 | 7 | 136.5 | 123.2 | 161 | 9.2 |
Weight (kg) | |||||||
p-DCD | 37 | 35 | 9.1 | 30.1 | 21 | 59.9 | 10 |
TD | 109 | 33.2 | 7.7 | 32.1 | 22.2 | 59.9 | 9.6 |
Group | 146 | 33.1 | 8 | 31.6 | 21 | 59.9 | 9.6 |
BMI-z scores | |||||||
p-DCD | 37 | 17.3 | 3.7 | 17.1 | 12.2 | 27.7 | 3 |
TD | 109 | 17.4 | 2.9 | 16.7 | 10 | 29.7 | 2.9 |
Group | 146 | 17.4 | 3.1 | 16.7 | 10 | 29.7 | 2.9 |
Waist circumference (cm) | |||||||
p-DCD | 37 | 59.8 | 7.5 | 57.8 | 46 | 81.5 | 7.2 |
TD | 109 | 59.8 | 6.6 | 58.2 | 51 | 83 | 6.9 |
Group | 146 | 59.8 | 6.8 | 58.1 | 46 | 83 | 6.9 |
Fat percentage | |||||||
p-DCD | 37 | 18.8 | 8.2 | 17.3 | 9 | 41.6 | 7.7 |
TD | 109 | 18.1 | 7.3 | 17.8 | 7.4 | 46.6 | 9.7 |
Group | 146 | 18.2 | 7.5 | 17.6 | 7.4 | 46.6 | 8.6 |
Subscapular skinfold | |||||||
p-DCD | 37 | 9.1 | 6.7 | 6.5 | 3.2 | 30.7 | 3.8 |
TD | 109 | 7.8 | 4.6 | 6.5 | 3.5 | 31 | 3 |
Group | 146 | 8.1 | 5.2 | 6.5 | 3.2 | 31 | 3.5 |
Triceps skinfolds | |||||||
p-DCD | 37 | 11.6 | 5.7 | 9.5 | 5.2 | 27.7 | 8.1 |
TD | 109 | 11.1 | 5.4 | 9.5 | 3.5 | 27.2 | 7.6 |
Group | 146 | 11.2 | 5.5 | 9.5 | 3.5 | 27.7 | 7.3 |
Calf skinfolds | |||||||
p-DCD | 37 | 13.4 | 7.5 | 11.5 | 5 | 35.2 | 7.6 |
TD | 109 | 12.4 | 5.9 | 11.7 | 3.5 | 31.2 | 7.5 |
Group | 146 | 12.8 | 6.6 | 11.7 | 3.5 | 35.2 | 7.3 |
Subscapular and triceps skinfolds sum | |||||||
p-DCD | 37 | 20.8 | 12.3 | 16.5 | 9.5 | 58.5 | 10.2 |
TD | 109 | 18.9 | 9.8 | 16.5 | 7.5 | 57.5 | 10.7 |
Group | 146 | 19.4 | 10.5 | 16.5 | 7.5 | 58.5 | 10.5 |
p-DCD | TD | Total | ||
---|---|---|---|---|
SES | Low SES | High SES | Total | |
Underweight | n (%) | 11 (12.4) | 1 (1.8) | 12 (8.3) |
Normal weight | n (%) | 65 (73) | 40 (71.4) | 105 (72.4) |
Overweight | n (%) | 9 (10.1) | 8 (14.3) | 17 (11.7) |
Obese | n (%) | 4 (4.5) | 7 (12.5) | 11 (7.6) |
Total group | n (%) | 89 (100) | 56 (100) | 145 (100) |
Spearman’s Rho n = 145 | PACER | Running Speed and Agility | Strength Scale Score | Strength and Agility | Weight (kg) | BMI | Waist Circumference | Fat | SES |
---|---|---|---|---|---|---|---|---|---|
Pacer laps | 1 | −0.376 ** | 0.494 ** | 0.483 ** | −0.216 ** | −0.288 ** | −0.255 ** | −0.392 ** | 0.031 |
Running speed and agility | 0.376 ** | 1 | 0.522 ** | 0.876 ** | −0.125 | −0.097 | −0.062 | −0.188 * | 0.012 |
Strength (scale score) | 0.494 ** | 0.522 ** | 1 | 0.839 ** | −0.072 | −0.066 | −0.069 | −0.305 ** | 0.154 |
Strength and agility composite score | 0.483 ** | 0.876 ** | 0.839 ** | 1 | −0.144 | −0.113 | −0.089 | −0.275 ** | 0.064 |
Weight (kg) | −0.216 ** | −0.125 | −0.072 | −0.144 | 1 | 0.894 ** | 0.854 ** | 0.665 ** | 0.430 ** |
BMI (z-score) | −2.88 ** | −0.097 | −0.066 | −0.113 | 0.894 ** | 1 | 0.831 ** | 0.661 ** | 0.357 ** |
Waist circumference (cm) | −0.255 ** | −0.062 | −0.069 | −0.089 | 0.854 ** | 0.831 ** | 1 | 0.591 ** | 0.304 ** |
Mean fat (%) | −0.392 ** | −0.188 * | −0.305 ** | −2.73 ** | 0.665 ** | 0.661 ** | 0.591 ** | 1 | 0.307 ** |
SES | 0.031 | 0.012 | 0.154 | 0.064 | 0.430 ** | 0.357 ** | 0.304 ** | 0.307 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denysschen, M.; Coetzee, D.; Smits-Engelsman, B.C.M. Children with Poor Motor Skills Have Lower Health-Related Fitness Compared to Typically Developing Children. Children 2021, 8, 867. https://doi.org/10.3390/children8100867
Denysschen M, Coetzee D, Smits-Engelsman BCM. Children with Poor Motor Skills Have Lower Health-Related Fitness Compared to Typically Developing Children. Children. 2021; 8(10):867. https://doi.org/10.3390/children8100867
Chicago/Turabian StyleDenysschen, Marisja, Dané Coetzee, and Bouwien C. M. Smits-Engelsman. 2021. "Children with Poor Motor Skills Have Lower Health-Related Fitness Compared to Typically Developing Children" Children 8, no. 10: 867. https://doi.org/10.3390/children8100867
APA StyleDenysschen, M., Coetzee, D., & Smits-Engelsman, B. C. M. (2021). Children with Poor Motor Skills Have Lower Health-Related Fitness Compared to Typically Developing Children. Children, 8(10), 867. https://doi.org/10.3390/children8100867