Management of Advanced Heart Failure in Children with Cancer Therapy-Related Cardiac Dysfunction
Abstract
:1. Introduction
2. Risk Factors for Cardiac Therapy-Related Cardiac Dysfunction
3. Advanced Heart Failure Therapies
4. Cardiac Resynchronization Therapy (CRT)
5. Mechanical Circulatory Support
6. Heart Transplant
- Case 1:
- Case 2:
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA A Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. SEER Cancer Statistics Review, 1975–2017; National Cancer Institute: Bethesda, MD, USA, 2020. [Google Scholar]
- Armenian, S.H.; Armstrong, G.T.; Aune, G.; Chow, E.J.; Ehrhardt, M.; Ky, B.; Moslehi, J.; Mulrooney, D.A.; Nathan, P.C.; Ryan, T.D.; et al. Cardiovascular Disease in Survivors of Childhood Cancer: Insights into Epidemiology, Pathophysiology, and Prevention. J. Clin. Oncol. 2018, 36, 2135–2144. [Google Scholar] [CrossRef] [PubMed]
- Lipshultz, S.E.; Adams, M.J.; Colan, S.D.; Constine, L.S.; Herman, E.H.; Hsu, D.; Hudson, M.M.; Kremer, L.C.; Landy, D.; Miller, T.L.; et al. Long-term Cardiovascular Toxicity in Children, Adolescents, and Young Adults Who Receive Cancer Therapy: Pathophysiology, Course, Monitoring, Management, Prevention, and Research Directions. Circulation 2013, 128, 1927–1995. [Google Scholar] [CrossRef] [Green Version]
- Ryan, T.D.; Nagarajan, R.; Godown, J. Cardiovascular Toxicities in Pediatric Cancer Survivors. Cardiol. Clin. 2019, 37, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Oeffinger, K.C.; Mertens, A.C.; Sklar, C.A. Chronic Health Conditions in Adult Survivors of Childhood Cancer. Oncol. Times 2007, 29, 26. [Google Scholar] [CrossRef] [Green Version]
- Mulrooney, D.A.; Yeazel, M.W.; Kawashima, T.; Mertens, A.C.; Mitby, P.; Stovall, M.; Donaldson, S.S.; Green, D.M.; A Sklar, C.; Robison, L.L.; et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: Retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ 2009, 339, b4606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloom, M.W.; Hamo, C.E.; Cardinale, D.; Ky, B.; Nohria, A.; Baer, L.; Skopicki, H.; Lenihan, D.J.; Gheorghiade, M.; Lyon, A.R.; et al. Cancer Therapy–Related Cardiac Dysfunction and Heart Failure. Circ. Heart Fail. 2016, 9, e002661. [Google Scholar] [CrossRef] [Green Version]
- Lipshultz, S.E.; Alvarez, J.A.; Scully, R. Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart 2007, 94, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Lipshultz, S.E.; Landy, D.; Lopez-Mitnik, G.; Lipsitz, S.R.; Hinkle, A.S.; Constine, L.S.; French, C.A.; Rovitelli, A.M.; Proukou, C.; Adams, M.J.; et al. Cardiovascular Status of Childhood Cancer Survivors Exposed and Unexposed to Cardiotoxic Therapy. J. Clin. Oncol. 2012, 30, 1050–1057. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Lipsitz, S.R.; Sallan, S.E.; Dalton, V.M.; Mone, S.M.; Gelber, R.D.; Colan, S.D. Chronic Progressive Cardiac Dysfunction Years After Doxorubicin Therapy for Childhood Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2005, 23, 2629–2636. [Google Scholar] [CrossRef]
- Sorensen, K.; Levitt, G.A.; Bull, C.; Dorup, I.; Sullivan, I.D. Late anthracycline cardiotoxicity after childhood cancer. Cancer 2003, 97, 1991–1998. [Google Scholar] [CrossRef]
- Krischer, J.P.; Epstein, S.; Cuthbertson, D.D.; Goorin, A.M.; Epstein, M.L.; Lipshultz, S.E. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: The Pediatric Oncology Group experience. J. Clin. Oncol. 1997, 15, 1544–1552. [Google Scholar] [CrossRef] [PubMed]
- Wouters, K.A.; Kremer, L.C.M.; Miller, T.L.; Herman, E.H.; Lipshultz, S.E. Protecting against anthracycline-induced myocardial damage: A review of the most promising strategies. Br. J. Haematol. 2005, 131, 561–578. [Google Scholar] [CrossRef] [PubMed]
- Lipshultz, S.E.; Colan, S.D.; Gelber, R.D.; Perez-Atayde, A.R.; Sallan, S.E.; Sanders, S. Late Cardiac Effects of Doxorubicin Therapy for Acute Lymphoblastic Leukemia in Childhood. N. Engl. J. Med. 1991, 324, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Lipshultz, S.E.; Lipsitz, S.R.; Mone, S.M.; Goorin, A.M.; Sallan, S.E.; Sanders, S.; Orav, E.J.; Gelber, R.D.; Colan, S.D. Female Sex and Higher Drug Dose as Risk Factors for Late Cardiotoxic Effects of Doxorubicin Therapy for Childhood Cancer. N. Engl. J. Med. 1995, 332, 1738–1744. [Google Scholar] [CrossRef] [PubMed]
- Giantris, A. Anthracycline-induced cardiotoxicity in children and young adults. Crit. Rev. Oncol. 1998, 27, 53–68. [Google Scholar] [CrossRef]
- Bansal, N.; Amdani, S.; Lipshultz, E.R.; Lipshultz, S.E. Chemotherapy-induced cardiotoxicity in children. Expert Opin. Drug Metab. Toxicol. 2017, 13, 817–832. [Google Scholar] [CrossRef]
- Mukku, R.B.; Fonarow, G.C.; Watson, K.E.; Ajijola, O.A.; Depasquale, E.C.; Nsair, A.; Baas, A.S.; Deng, M.C.; Yang, E.H. Heart Failure Therapies for End-Stage Chemotherapy–Induced Cardiomyopathy. J. Card. Fail. 2016, 22, 439–448. [Google Scholar] [CrossRef] [Green Version]
- 2005 Writing Committee Members; Hunt, S.A.; Abraham, W.T.; Chin, M.H.; Feldman, A.M.; Francis, G.S.; Ganiats, T.G.; Jessup, M.; Konstam, M.A.; Mancini, D.M.; et al. 2009 Focused Update Incorporated Into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults. Circulation 2009, 119, e391–e479. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Scully, R.; Lipsitz, S.R.; Sallan, S.E.; Silverman, L.B.; Miller, T.L.; Barry, E.V.; Asselin, B.L.; Athale, U.; Clavell, L.A.; et al. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: Long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol. 2010, 11, 950–961. [Google Scholar] [CrossRef] [Green Version]
- Lipshultz, S.E.; Rifai, N.; Dalton, V.M.; Levy, D.E.; Silverman, L.B.; Lipsitz, S.R.; Colan, S.D.; Asselin, B.L.; Barr, R.D.; Clavell, L.A.; et al. The Effect of Dexrazoxane on Myocardial Injury in Doxorubicin-Treated Children with Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2004, 351, 145–153. [Google Scholar] [CrossRef]
- Garg, R.; Yusuf, S.; Bussmann, W.D.; Sleight, P.; Uprichard, A.; Massie, B.; McGrath, B.; Nilsson, B.; Pitt, B.; Magnani, B.; et al. Overview of Randomized Trials of Angiotensin-Converting Enzyme Inhibitors on Mortality and Morbidity in Patients with Heart Failure. JAMA 1995, 273, 1450–1456. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Lipsitz, S.R.; Sallan, S.E.; Ii, V.C.S.; Shaikh, S.L.; Mone, S.M.; Gelber, R.D.; Colan, S.D. Long-Term Enalapril Therapy for Left Ventricular Dysfunction in Doxorubicin-Treated Survivors of Childhood Cancer. J. Clin. Oncol. 2002, 20, 4517–4522. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, D.; Colombo, A.; Bacchiani, G.; Tedeschi, I.; Meroni, C.A.; Veglia, F.; Civelli, M.; Lamantia, G.; Colombo, N.; Curigliano, G.; et al. Early Detection of Anthracycline Cardiotoxicity and Improvement with Heart Failure Therapy. Circulation 2015, 131, 1981–1988. [Google Scholar] [CrossRef] [Green Version]
- Bristow, M.R. Mechanism of Action of Beta-Blocking Agents in Heart Failure. Am. J. Cardiol. 1997, 80, 26L–40L. [Google Scholar] [CrossRef]
- Lechat, P.; Packer, M.; Chalon, S.; Cucherat, M.; Arab, T.; Boissel, J.P. Clinical effects of beta-adrenergic blockade in chronic heart failure: A meta-anal- ysis of double-blind, placebo-controlled, randomized trials. Circulation 1998, 98, 1184–1191. [Google Scholar] [CrossRef] [Green Version]
- Silber, J.H.; Cnaan, A.; Clark, B.J.; Paridon, S.M.; Chin, A.J.; Rychik, J.; Hogarty, A.N.; Cohen, M.I.; Barber, G.; Rutkowski, M.; et al. Enalapril to Prevent Cardiac Function Decline in Long-Term Survivors of Pediatric Cancer Exposed to Anthracyclines. J. Clin. Oncol. 2004, 22, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Long, Y.; Tang, X.; Zhang, N. Cardioprotective Effects and Duration of Beta Blocker Therapy in Anthracycline-Treated Patients: A Systematic Review and Meta-analysis. Cardiovasc. Toxicol. 2019, 20, 11–19. [Google Scholar] [CrossRef]
- Kalay, N.; Basar, E.; Ozdogru, I.; Er, O.; Cetinkaya, Y.; Dogan, A.; Oguzhan, A.; Eryol, N.K.; Topsakal, R.; Ergin, A.; et al. Protective Effects of Carvedilol Against Anthracycline-Induced Cardiomyopathy. J. Am. Coll. Cardiol. 2006, 48, 2258–2262. [Google Scholar] [CrossRef] [Green Version]
- Gujral, D.M.; Lloyd, G.; Bhattacharyya, S. Effect of prophylactic betablocker or ACE inhibitor on cardiac dysfunction & heart failure during anthracycline chemotherapy ± trastuzumab. Breast 2018, 37, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Bolli, R.; Perin, E.C.; Willerson, J.T.; Yang, P.C.; Traverse, J.H.; Henry, T.D.; Pepine, C.J.; Mitrani, R.D.; Hare, J.M.; Murphy, M.P.; et al. Allogeneic Mesenchymal Cell Therapy in Anthracycline-Induced Cardiomyopathy Heart Failure Patients. JACC CardioOncology 2020, 2, 581–595. [Google Scholar] [CrossRef] [PubMed]
- Bianco, C.; Al-Kindi, S.G.; Oliveira, G.H. Advanced Heart Failure Therapies for Cancer Therapeutics–Related Cardiac Dysfunction. Hear. Fail. Clin. 2017, 13, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.H.; Dupont, M.; Naftel, D.; Myers, S.L.; Yuan, Y.; Tang, W.W.; Gonzalez-Stawinski, G.; Young, J.B.; Taylor, D.O.; Starling, R.C. Increased Need for Right Ventricular Support in Patients with Chemotherapy-Induced Cardiomyopathy Undergoing Mechanical Circulatory Support. J. Am. Coll. Cardiol. 2013, 63, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, G.H.; Qattan, M.Y.; Al-Kindi, S.; Park, S.J. Advanced Heart Failure Therapies for Patients With Chemotherapy-Induced Cardiomyopathy. Circ. Heart Fail. 2014, 7, 1050–1058. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, N.; Hilton, J. Orthotopic Heart Transplantation and Mechanical Circulatory Support in Cancer Survivors: Challenges and Outcomes. J. Oncol. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, K.R.; Rao, K.G.S.; Subramaniam, G.; Sharma, D. Transplantation for chemotherapy-induced cardiomyopathy—Case series and review of current practice. Indian J. Thorac. Cardiovasc. Surg. 2020, 36, 287–293. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure. J. Am. Coll. Cardiol. 2017, 70, 776–803. [Google Scholar] [CrossRef]
- van der Meer, P.; Gaggin, H.K.; Dec, G.W. ACC/AHA Versus ESC Guidelines on Heart Failure. J. Am. Coll. Cardiol. 2019, 73, 2756–2768. [Google Scholar] [CrossRef]
- Glikson, M.; Nielsen, J.C.; Kronborg, M.B.; Michowitz, Y.; Auricchio, A.; Barbash, I.M.; Barrabés, J.A.; Boriani, G.; Braunschweig, F.; Brignole, M.; et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur. Heart J. 2021, 42, 3427–3520. [Google Scholar] [CrossRef]
- Hill, A.; Silka, M.; Bar-Cohen, Y. Cardiac Resynchronization Therapy in Pediatrics. J. Innov. Card. Rhythm. Manag. 2018, 9, 3256–3264. [Google Scholar] [CrossRef]
- Kirk, R.; Dipchand, A.I.; Rosenthal, D.; Addonizio, L.; Burch, M.; Chrisant, M.; Dubin, A.; Everitt, M.; Gajarski, R.; Mertens, L.; et al. The International Society for Heart and Lung Transplantation Guidelines for the management of pediatric heart failure: Executive summary. J. Heart Lung Transplant. 2014, 33, 888–909. [Google Scholar] [CrossRef]
- Ezzeddine, F.M.; Saliba, A.N.; Jain, V.; Villarraga, H.R.; Herrmann, J.; Asirvatham, S.J.; Cha, Y. Outcomes of cardiac resynchronization therapy in patients with chemotherapy-induced cardiomyopathy. Pacing Clin. Electrophysiol. 2021, 44, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.P.; Solomon, S.D.; Fradley, M.G.; Barac, A.; Kremer, K.A.; Beck, C.A.; Brown, M.W.; McNitt, S.; Schleede, S.; Zareba, W.; et al. Association of Cardiac Resynchronization Therapy with Change in Left Ventricular Ejection Fraction in Patients With Chemotherapy-Induced Cardiomyopathy. JAMA 2019, 322, 1799–1805. [Google Scholar] [CrossRef]
- Jones, B.O.; Davis, A.; Alison, J.; Weintraub, R.G.; Butt, W.; Cheung, M.M. Cardiac Re-synchronization Therapy in a Child with Severe Anthracycline-induced Congestive Heart Failure and Normal QRS Duration. J. Heart Lung Transplant. 2007, 26, 1333–1335. [Google Scholar] [CrossRef] [PubMed]
- Shugh, S.B.; Ryan, T.D. Heart transplantation in survivors of childhood cancer. Transl. Pediatr. 2019, 8, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Al-Kindi, S.G.; Oliveira, G.H. Heart Transplantation Outcomes in Radiation-Induced Restrictive Cardiomyopathy. J. Card. Fail. 2016, 22, 475–478. [Google Scholar] [CrossRef]
- Joong, A.; Gossett, J.G.; Blume, E.D.; Thrush, P.; Pahl, E.; Mongé, M.C.; Backer, C.L.; Patel, A. Variability in clinical decision-making for ventricular assist device implantation in pediatrics. Pediatr. Transplant. 2020, 24, e13840. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.H.; Hardaway, B.W.; Kucheryavaya, A.Y.; Stehlik, J.; Edwards, L.B.; Taylor, D.O. Characteristics and survival of patients with chemotherapy-induced cardiomyopathy undergoing heart transplantation. J. Heart Lung Transplant. 2012, 31, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Musci, M.; Loebe, M.; Grauhan, O.; Weng, Y.; Hummel, M.; Lange, P.; Hetzer, R. Heart transplantation for doxorubicin-induced congestive heart failure in children and adolescents. Transplant. Proc. 1997, 29, 578–579. [Google Scholar] [CrossRef]
- Freilich, M.; Stub, D.; Esmore, D.; Negri, J.; Salamonsen, R.; Bergin, P.; Leet, A.; Richardson, M.; Taylor, A.; Woodard, J.; et al. Recovery from Anthracycline Cardiomyopathy After Long-term Support With a Continuous Flow Left Ventricular Assist Device. J. Heart Lung Transplant. 2009, 28, 101–103. [Google Scholar] [CrossRef] [PubMed]
- Schweiger, M.; Dave, H.; Lemme, F.; Cavigelli-Brunner, A.; Romanchenko, O.; Heineking, B.; Hofmann, M.; Bürki, C.; Stiasny, B.; Hübler, M. Acute Chemotherapy-Induced Cardiomyopathy Treated with Intracorporeal Left Ventricular Assist Device in an 8-Year-Old Child. ASAIO J. 2013, 59, 520–522. [Google Scholar] [CrossRef] [PubMed]
- Cavigelli-Brunner, A.; Schweiger, M.; Knirsch, W.; Stiasny, B.; Klingel, K.; Kretschmar, O.; Hübler, M. VAD as Bridge to Recovery in Anthracycline-Induced Cardiomyopathy and HHV6 Myocarditis. Pediatrics 2014, 134, e894–e899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lara, D.A.; Jeewa, A.; Elias, B.A.; McCullum, E.O.; Denfield, S.W.; Dreyer, W.J.; Adachi, I. Titanium Plug Closure after HeartWare Ventricular Assist Device Explantation in a 15-Year-Old Girl: First U.S. Experience. Tex. Heart Inst. J. 2017, 44, 66–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bock, M.J.; Pahl, E.; Rusconi, P.G.; Boyle, G.J.; Parent, J.J.; Twist, C.J.; Kirklin, J.K.; Pruitt, E.; Bernstein, D. Cancer recurrence and mortality after pediatric heart transplantation for anthracycline cardiomyopathy: A report from the Pediatric Heart Transplant Study (PHTS) group. Pediatr. Transplant. 2017, 21, e12923. [Google Scholar] [CrossRef]
- Hope, K.D.; Tunuguntla, H.P.; Elias, B.A.; McMullen, J.; Spinner, J.A.; Choudhry, S.; Price, J.F.; Denfield, S.W.; Dreyer, W.J.A.I. Rest and Recovery? A Single Center Pediatric Experience with Myocardial Recovery on LVAD Support. ASAIO J. 2020, 66, 53. [Google Scholar]
- Puri, K.; Coleman, R.; Adachi, I.; Spinner, J.; Choudhry, S.; Denfield, S.; Dreyer, W.; Price, J.; Tunuguntla, H. Assisting the Heart to Assist the Lungs: LVAD Support in Restrictive Physiology and Pulmonary Hypertension. J. Heart Lung Transplant. 2021, 40, S518. [Google Scholar] [CrossRef]
- Lenneman, A.J.; Wang, L.; Wigger, M.; Frangoul, H.; Harrell, F.E.; Silverstein, C.; Sawyer, D.B.; Lenneman, C.G. Heart Transplant Survival Outcomes for Adriamycin-Dilated Cardiomyopathy. Am. J. Cardiol. 2012, 111, 609–612. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.; Aggarwal, S.; L’Ecuyer, T. Outcome of heart transplantation in pediatric cancer survivors. Pediatr. Transplant. 2013, 17, 423–428. [Google Scholar] [CrossRef]
- Ward, K.M.; Binns, H.; Chin, C.; Webber, S.A.; Canter, C.E.; Pahl, E. Pediatric heart transplantation for anthracycline cardiomyopathy: Cancer recurrence is rare. J. Heart Lung Transplant. 2004, 23, 1040–1045. [Google Scholar] [CrossRef]
- Levitt, G.; Anazodo, A.; Burch, M.; Bunch, K. Cardiac or cardiopulmonary transplantation in childhood cancer survivors: An increasing need? Eur. J. Cancer 2009, 45, 3027–3034. [Google Scholar] [CrossRef] [PubMed]
Study | Patients (#) Age at Implant Weight, BSA | Cancer Diagnosis a | Cumulative Anthracycline (Dose Equivalent of Doxorubicin) | Time of Implant (from Completion of Chemotherapy) | Type of Durable VAD | Support Duration | Outcome |
---|---|---|---|---|---|---|---|
Musci et al. 1997 [51] | 2 patients, specific ages not stated | Cohort included: ALL, EWS, embryonal rhabdo-myosarcoma | 435 mg/m2 (mean dose), (2 patients also had radiation therapy) | Not stated | Berlin EXCOR® biventricular system | 4 weeks, 7 weeks | Heart transplant ×2 |
Freilech et al. 2009 [52] | 1 patient 16 years | Non-Hodgkin’s Lymphoma | 400 mg/m2 | 3–4 months (8 months from diagnosis) | VentrAssistTM LVAD (ECMO 6 d before) | 1 year 13d | Recovery, explant |
Schweiger et al. 2013, [53] Cavigelli et al. 2014 [54] | 1 patient 8 years 25 kg, BSA 0.97 m2 | Osteosarcoma | 450 mg/m2 | 10 d | HeartWareTM LVAD | 149 d | Recovery, explant |
Lara et al. 2017 [55] | * 1 patient 14 years 51 kg, BSA 1.4 m2 | AML | 150 mg/m2 | 3 months | HeartWareTM LVAD | 1 year | Recovery, explant |
Bock et al. 2017 [56] | 13 patients | Not stated | Not stated | Not stated | Not stated | Not stated | Heart transplant, number of patients not stated |
Hope et al. 2020 [57] | 2 patients: * 14 years 51 kg, BSA 1.4 m2 7 years 20.6 kg, BSA 0.8 m2 | AML ×2 | 150 mg/m2, 630 mg/m2 | 3 months | HeartWareTM LVAD | 9 months | Recovery, explant ×2 |
Puri et al. 2021 [58] | 1 patient 4 years, 13 kg | Congenital AML | 630 mg/m2 | 4 years | HeartWareTM LVAD | 6 months | Heart transplant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tunuguntla, H.P.; Puri, K.; Denfield, S.W. Management of Advanced Heart Failure in Children with Cancer Therapy-Related Cardiac Dysfunction. Children 2021, 8, 872. https://doi.org/10.3390/children8100872
Tunuguntla HP, Puri K, Denfield SW. Management of Advanced Heart Failure in Children with Cancer Therapy-Related Cardiac Dysfunction. Children. 2021; 8(10):872. https://doi.org/10.3390/children8100872
Chicago/Turabian StyleTunuguntla, Hari P., Kriti Puri, and Susan W. Denfield. 2021. "Management of Advanced Heart Failure in Children with Cancer Therapy-Related Cardiac Dysfunction" Children 8, no. 10: 872. https://doi.org/10.3390/children8100872
APA StyleTunuguntla, H. P., Puri, K., & Denfield, S. W. (2021). Management of Advanced Heart Failure in Children with Cancer Therapy-Related Cardiac Dysfunction. Children, 8(10), 872. https://doi.org/10.3390/children8100872