Delivery Room Care for Premature Infants Born after Less than 25 Weeks’ Gestation—A Narrative Review
Abstract
:1. Introduction
2. Decision Making at <25 Weeks’ Gestation
3. Umbilical Cord Clamping
3.1. Delayed Cord Clamping
3.2. Umbilical Cord Milking
3.3. Intact Cord Resuscitation
4. Temperature Control
5. Respiratory Support in the Delivery Room
5.1. Spontaneous Breathing
5.2. Initial Respiratory Support
5.3. Oxygen Titration
5.4. Continuous Positive Airway Pressure
5.5. Surfactant Administration
6. Cardio-Circulatory Support
6.1. Chest Compressions and Epinephrine Administration
6.2. Vascular Access
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wyckoff, M.H. Initial resuscitation and stabilization of the periviable neonate: The golden-hour approach. Semin. Perinatol. 2014, 38, 12–16. [Google Scholar] [CrossRef]
- Patel, P.N.; Banerjee, J.; Godambe, S.V. Resuscitation of extremely preterm infants–controversies and current evidence. World J. Clin. Pediatr. 2016, 5, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Nosherwan, A.; Cheung, P.Y.; Schmölzer, G.M. Management of extremely low birth weight infants in delivery room. Clin. Perinatol. 2017, 44, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Sweet, D.G.; Carnielli, V.; Greisen, G.; Hallman, M.; Ozek, E.; Te Pas, A.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; Simeoni, U.; et al. European consensus guidelines on the management of respiratory distress syndrome–2019 update. Neonatology 2019, 115, 432–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, K.; Lee, C.H.C.; Escobedo, M.B.; Hoover, A.V.; Kamath-Rayne, B.D.; Kapadia, V.S.; Magid, D.J.; Niermeyer, S.; Schmölzer, G.M.; Szyld, E.; et al. Part 5: Neonatal resuscitation 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Pediatrics 2021, 147, e2020038505E. [Google Scholar] [CrossRef] [PubMed]
- Madar, J.; Roehr, C.C.; Ainsworth, S.; Ersdal, H.; Morley, C.; Rudiger, M.; Skare, C.; Szczapa, T.; Te Pas, A.; Trevisanuto, D.; et al. European Resuscitation Council guidelines 2021: Newborn resuscitation and support of transition of infants at birth. Resuscitation 2021, 161, 291–326. [Google Scholar] [CrossRef] [PubMed]
- Wyckoff, M.H.; Wyllie, J.; Aziz, K.; de Almeida, M.F.; Fabres, J.W.; Fawke, J.; Guinsburg, R.; Hosono, S.; Isayama, T.; Kapadia, V.S.; et al. Neonatal life support 2020 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation 2020, 156, A156–A187. [Google Scholar] [CrossRef]
- Wilkinson, D.J. Gestational ageism. Arch. Pediatr. Adolesc. Med. 2012, 166, 567–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, T.; Hennessy, E.M.; Myles, J.; Johnson, S.J.; Draper, E.S.; Costeloe, K.L.; Marlow, N. Neurological and developmental outcome in extremely preterm children born in england in 1995 and 2006: The epicure studies. BMJ 2012, 345, e7961. [Google Scholar] [CrossRef] [Green Version]
- Tyson, J.E.; Parikh, N.A.; Langer, J.; Green, C.; Higgins, R.D.; National Institute of Child, H.; Human Development Neonatal Research, N. Intensive care for extreme prematurity--moving beyond gestational age. N. Engl. J. Med. 2008, 358, 1672–1681. [Google Scholar] [CrossRef] [Green Version]
- Shim, S.S.; Romero, R.; Hong, J.S.; Park, C.W.; Jun, J.K.; Kim, B.I.; Yoon, B.H. Clinical significance of intra-amniotic inflammation in patients with preterm premature rupture of membranes. Am. J. Obstet. Gynecol. 2004, 191, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
- Ehret, D.E.Y.; Edwards, E.M.; Greenberg, L.T.; Bernstein, I.M.; Buzas, J.S.; Soll, R.F.; Horbar, J.D. Association of antenatal steroid exposure with survival among infants receiving postnatal life support at 22 to 25 weeks’ gestation. JAMA Netw. Open 2018, 1, e183235. [Google Scholar] [CrossRef] [Green Version]
- McGoldrick, E.; Stewart, F.; Parker, R.; Dalziel, S.R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 2020, 12, CD004454. [Google Scholar]
- Doyle, L.W.; Crowther, C.A.; Middleton, P.; Marret, S.; Rouse, D. Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst. Rev. 2009, 2009, CD004661. [Google Scholar] [CrossRef]
- Rysavy, M.A.; Horbar, J.D.; Bell, E.F.; Li, L.; Greenberg, L.T.; Tyson, J.E.; Patel, R.M.; Carlo, W.A.; Younge, N.E.; Green, C.E.; et al. Assessment of an updated neonatal research network extremely preterm birth outcome model in the vermont oxford network. JAMA Pediatr. 2020, 174, e196294. [Google Scholar] [CrossRef]
- Phibbs, C.S.; Baker, L.C.; Caughey, A.B.; Danielsen, B.; Schmitt, S.K.; Phibbs, R.H. Level and volume of neonatal intensive care and mortality in very-low-birth-weight infants. N. Engl. J. Med. 2007, 356, 2165–2175. [Google Scholar] [CrossRef]
- Hakansson, S.; Farooqi, A.; Holmgren, P.A.; Serenius, F.; Hogberg, U. Proactive management promotes outcome in extremely preterm infants: A population-based comparison of two perinatal management strategies. Pediatrics 2004, 114, 58–64. [Google Scholar] [CrossRef]
- Lorenz, J.M.; Paneth, N.; Jetton, J.R.; den Ouden, L.; Tyson, J.E. Comparison of management strategies for extreme prematurity in New Jersey and The Netherlands: Outcomes and resource expenditure. Pediatrics 2001, 108, 1269–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katheria, A.C.; Lakshminrusimha, S.; Rabe, H.; McAdams, R.; Mercer, J.S. Placental transfusion: A review. J. Perinatol. 2017, 37, 105–111. [Google Scholar] [CrossRef]
- Rabe, H.; Gyte, G.M.; Diaz-Rossello, J.L.; Duley, L. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. Cochrane Database Syst. Rev. 2019, 9, CD003248. [Google Scholar] [CrossRef] [PubMed]
- Seidler, A.L.; Gyte, G.M.L.; Rabe, H.; Diaz-Rossello, J.L.; Duley, L.; Aziz, K.; Testoni Costa-Nobre, D.; Davis, P.G.; Schmölzer, G.M.; Ovelman, C.; et al. Umbilical cord management for newborns <34 weeks’ gestation: A meta-analysis. Pediatrics 2021, 147, 3. [Google Scholar] [CrossRef]
- Tarnow-Mordi, W.; Morris, J.; Kirby, A.; Robledo, K.; Askie, L.; Brown, R.; Evans, N.; Finlayson, S.; Fogarty, M.; Gebski, V.; et al. Delayed versus immediate cord clamping in preterm infants. N. Engl. J. Med. 2017, 377, 2445–2455. [Google Scholar] [CrossRef] [Green Version]
- Blank, D.A.; Polglase, G.R.; Kluckow, M.; Gill, A.W.; Crossley, K.J.; Moxham, A.; Rodgers, K.; Zahra, V.; Inocencio, I.; Stenning, F.; et al. Haemodynamic effects of umbilical cord milking in premature sheep during the neonatal transition. Arch. Dis. Child. Fetal Neonatal. Ed. 2018, 103, F539–F546. [Google Scholar] [CrossRef] [Green Version]
- Katheria, A.C.; Truong, G.; Cousins, L.; Oshiro, B.; Finer, N.N. Umbilical cord milking versus delayed cord clamping in preterm infants. Pediatrics 2015, 136, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Katheria, A.; Garey, D.; Truong, G.; Akshoomoff, N.; Steen, J.; Maldonado, M.; Poeltler, D.; Harbert, M.J.; Vaucher, Y.E.; Finer, N. A randomized clinical trial of umbilical cord milking vs delayed cord clamping in preterm infants: Neurodevelopmental outcomes at 22–26 months of corrected age. J. Pediatr. 2018, 194, 76–80. [Google Scholar] [CrossRef]
- Katheria, A.; Reister, F.; Essers, J.; Mendler, M.; Hummler, H.; Subramaniam, A.; Carlo, W.; Tita, A.; Truong, G.; Davis-Nelson, S.; et al. Association of umbilical cord milking vs delayed umbilical cord clamping with death or severe intraventricular hemorrhage among preterm infants. JAMA 2019, 322, 1877–1886. [Google Scholar] [CrossRef] [PubMed]
- Hosono, S.; Mugishima, H.; Takahashi, S.; Takahashi, S.; Masaoka, N.; Yamamoto, T.; Tamura, M. One-time umbilical cord milking after cord cutting has same effectiveness as multiple-time umbilical cord milking in infants born at <29 weeks of gestation: A retrospective study. J. Perinatol. 2015, 35, 590–594. [Google Scholar] [CrossRef]
- Hosono, S.; Hine, K.; Nagano, N.; Taguchi, Y.; Yoshikawa, K.; Okada, T.; Mugishima, H.; Takahashi, S.; Takahashi, S. Residual blood volume in the umbilical cord of extremely premature infants. Pediatr. Int. 2015, 57, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Ram Mohan, G.; Shashidhar, A.; Chandrakala, B.S.; Nesargi, S.; Suman Rao, P.N. Umbilical cord milking in preterm neonates requiring resuscitation: A randomized controlled trial. Resuscitation 2018, 130, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Duley, L.; Dorling, J.; Pushpa-Rajah, A.; Oddie, S.J.; Yoxall, C.W.; Schoonakker, B.; Bradshaw, L.; Mitchell, E.J.; Fawke, J.A.; Cord Pilot Trial Collaborative, G. Randomised trial of cord clamping and initial stabilisation at very preterm birth. Arch. Dis. Child. Fetal Neonatal. Ed. 2018, 103, F6–F14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knol, R.; Brouwer, E.; van den Akker, T.; DeKoninck, P.; van Geloven, N.; Polglase, G.R.; Lopriore, E.; Herkert, E.; Reiss, I.K.M.; Hooper, S.B.; et al. Physiological-based cord clamping in very preterm infants–randomised controlled trial on effectiveness of stabilisation. Resuscitation 2020, 147, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Katheria, A.; Poeltler, D.; Durham, J.; Steen, J.; Rich, W.; Arnell, K.; Maldonado, M.; Cousins, L.; Finer, N. Neonatal resuscitation with an intact cord: A randomized clinical trial. J. Pediatr. 2016, 178, 75–80.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratesi, S.; Montano, S.; Ghirardello, S.; Mosca, F.; Boni, L.; Tofani, L.; Dani, C. Placental circulation intact trial (pci-t)-resuscitation with the placental circulation intact vs. Cord milking for very preterm infants: A feasibility study. Front. Pediatr. 2018, 6, 364. [Google Scholar] [CrossRef]
- Brouwer, E.; Knol, R.; Vernooij, A.S.N.; van den Akker, T.; Vlasman, P.E.; Klumper, F.; DeKoninck, P.; Polglase, G.R.; Hooper, S.B.; Te Pas, A.B. Physiological-based cord clamping in preterm infants using a new purpose-built resuscitation table: A feasibility study. Arch. Dis. Child. Fetal Neonatal. Ed. 2019, 104, F396–F402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, S.E.; Isaac, T.C.W.; Marion, R.L.; Norman, V.; Gumley, J.S.; Sullivan, C.D. Delayed cord clamping with stabilisation at all preterm births–feasibility and efficacy of a low cost technique. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 236, 109–115. [Google Scholar] [CrossRef]
- Winter, J.; Kattwinkel, J.; Chisholm, C.; Blackman, A.; Wilson, S.; Fairchild, K. Ventilation of preterm infants during delayed cord clamping (ventfirst): A pilot study of feasibility and safety. Am. J. Perinatol. 2017, 34, 111–116. [Google Scholar] [CrossRef]
- Trevisanuto, D.; Testoni, D.; de Almeida, M.F.B. Maintaining normothermia: Why and how? Semin. Fetal Neonatal Med. 2018, 23, 333–339. [Google Scholar] [CrossRef]
- Chitty, H.; Wyllie, J. Importance of maintaining the newly born temperature in the normal range from delivery to admission. Semin. Fetal Neonatal Med. 2013, 18, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.; Maier, R.F.; Norman, M.; Misselwitz, B.; Howell, E.A.; Zeitlin, J.; Bonamy, A.K.; Effective Perinatal Intensive Care in Europe Research, G. Admission hypothermia in very preterm infants and neonatal mortality and morbidity. J. Pediatr. 2016, 175, 61–67.e4. [Google Scholar] [CrossRef]
- Laptook, A.R.; Salhab, W.; Bhaskar, B.; Neonatal Research, N. Admission temperature of low birth weight infants: Predictors and associated morbidities. Pediatrics 2007, 119, e643–e649. [Google Scholar] [CrossRef]
- Meyer, M.P.; Owen, L.S.; Te Pas, A.B. Use of heated humidified gases for early stabilization of preterm infants: A meta-analysis. Front. Pediatr. 2018, 6, 319. [Google Scholar] [CrossRef]
- Van Leuteren, R.W.; Scholten, A.W.J.; Dekker, J.; Martherus, T.; de Jongh, F.H.; van Kaam, A.H.; Te Pas, A.B.; Hutten, J. The effect of initial oxygen exposure on diaphragm activity in preterm infants at birth. Front. Pediatr. 2021, 9, 640491. [Google Scholar] [CrossRef]
- O’Donnell, C.P.; Kamlin, C.O.; Davis, P.G.; Morley, C.J. Crying and breathing by extremely preterm infants immediately after birth. J. Pediatr. 2010, 156, 846–847. [Google Scholar] [CrossRef]
- Crawshaw, J.R.; Kitchen, M.J.; Binder-Heschl, C.; Thio, M.; Wallace, M.J.; Kerr, L.T.; Roehr, C.C.; Lee, K.L.; Buckley, G.A.; Davis, P.G.; et al. Laryngeal closure impedes non-invasive ventilation at birth. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 103, F112–F119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Vonderen, J.J.; Hooper, S.B.; Hummler, H.D.; Lopriore, E.; te Pas, A.B. Effects of a sustained inflation in preterm infants at birth. J. Pediatr. 2014, 165, 903–908.e1. [Google Scholar] [CrossRef] [Green Version]
- Dekker, J.; Hooper, S.B.; Martherus, T.; Cramer, S.J.E.; van Geloven, N.; Te Pas, A.B. Repetitive versus standard tactile stimulation of preterm infants at birth–a randomized controlled trial. Resuscitation 2018, 127, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Baik-Schneditz, N.; Urlesberger, B.; Schwaberger, B.; Mileder, L.; Schmölzer, G.; Avian, A.; Pichler, G. Tactile stimulation during neonatal transition and its effect on vital parameters in neonates during neonatal transition. Acta Paediatr. 2018, 107, 952–957. [Google Scholar] [CrossRef]
- Gaertner, V.D.; Flemmer, S.A.; Lorenz, L.; Davis, P.G.; Kamlin, C.O.F. Physical stimulation of newborn infants in the delivery room. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 103, F132–F136. [Google Scholar] [CrossRef] [PubMed]
- Kraaijenga, J.V.; Hutten, G.J.; de Jongh, F.H.; van Kaam, A.H. The effect of caffeine on diaphragmatic activity and tidal volume in preterm infants. J. Pediatr. 2015, 167, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Dekker, J.; Hooper, S.B.; van Vonderen, J.J.; Witlox, R.; Lopriore, E.; Te Pas, A.B. Caffeine to improve breathing effort of preterm infants at birth: A randomized controlled trial. Pediatr. Res. 2017, 82, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Dekker, J.; Martherus, T.; Lopriore, E.; Giera, M.; McGillick, E.V.; Hutten, J.; van Leuteren, R.W.; van Kaam, A.H.; Hooper, S.B.; Te Pas, A.B. The effect of initial high vs. Low FiO2 on breathing effort in preterm infants at birth: A randomized controlled trial. Front. Pediatr. 2019, 7, 504. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.P.; Dawson, J.A.; Davis, P.G.; Dahlen, H.G. Routine oro/nasopharyngeal suction versus no suction at birth. Cochrane Database Syst. Rev. 2017, 4, CD010332. [Google Scholar] [CrossRef]
- Bhat, P.; Hunt, K.; Harris, C.; Murthy, V.; Milner, A.D.; Greenough, A. Inflation pressures and times during initial resuscitation in preterm infants. Pediatr. Int. 2017, 59, 906–910. [Google Scholar] [CrossRef] [Green Version]
- Lamberska, T.; Luksova, M.; Smisek, J.; Vankova, J.; Plavka, R. Premature infants born at <25 weeks of gestation may be compromised by currently recommended resuscitation techniques. Acta Paediatr. 2016, 105, e142–e150. [Google Scholar] [CrossRef]
- Murthy, V.; D’Costa, W.; Shah, R.; Fox, G.F.; Campbell, M.E.; Milner, A.D.; Greenough, A. Prematurely born infants’ response to resuscitation via an endotracheal tube or a face mask. Early Hum. Dev. 2015, 91, 235–238. [Google Scholar] [CrossRef]
- Foglia, E.E.; Te Pas, A.B.; Kirpalani, H.; Davis, P.G.; Owen, L.S.; van Kaam, A.H.; Onland, W.; Keszler, M.; Schmölzer, G.M.; Hummler, H.; et al. Sustained inflation vs standard resuscitation for preterm infants: A systematic review and meta-analysis. JAMA Pediatr. 2020, 174, e195897. [Google Scholar] [CrossRef] [PubMed]
- Bruschettini, M.; O’Donnell, C.P.; Davis, P.G.; Morley, C.J.; Moja, L.; Calevo, M.G. Sustained versus standard inflations during neonatal resuscitation to prevent mortality and improve respiratory outcomes. Cochrane Database Syst. Rev. 2020, 3, CD004953. [Google Scholar] [CrossRef]
- Kapadia, V.S.; Urlesberger, B.; Soraisham, A.; Liley, H.G.; Schmolzer, G.M.; Rabi, Y.; Wyllie, J.; Wyckoff, M.H.; International Liaison Committee on Resuscitation Neonatal Life Support Task Force. Sustained lung inflations during neonatal resuscitation at birth: A meta-analysis. Pediatrics 2021, 147, 78. [Google Scholar] [CrossRef] [PubMed]
- Kirpalani, H.; Ratcliffe, S.J.; Keszler, M.; Davis, P.G.; Foglia, E.E.; Te Pas, A.; Fernando, M.; Chaudhary, A.; Localio, R.; van Kaam, A.H.; et al. Effect of sustained inflations vs intermittent positive pressure ventilation on bronchopulmonary dysplasia or death among extremely preterm infants: The SAIL randomized clinical trial. JAMA 2019, 321, 1165–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuypers, K.; Lamberska, T.; Martherus, T.; Dekker, J.; Bohringer, S.; Hooper, S.B.; Plavka, R.; Te Pas, A.B. The effect of a face mask for respiratory support on breathing in preterm infants at birth. Resuscitation 2019, 144, 178–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuypers, K.; Lamberska, T.; Martherus, T.; Dekker, J.; Bohringer, S.; Hooper, S.B.; Plavka, R.; Te Pas, A.B. Comparing the effect of two different interfaces on breathing of preterm infants at birth: A matched-pairs analysis. Resuscitation 2020, 157, 60–66. [Google Scholar] [CrossRef]
- Mangat, A.; Bruckner, M.; Schmölzer, G.M. Face mask versus nasal prong or nasopharyngeal tube for neonatal resuscitation in the delivery room: A systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 561–567. [Google Scholar] [CrossRef]
- Kamlin, C.O.; Schilleman, K.; Dawson, J.A.; Lopriore, E.; Donath, S.M.; Schmölzer, G.M.; Walther, F.J.; Davis, P.G.; Te Pas, A.B. Mask versus nasal tube for stabilization of preterm infants at birth: A randomized controlled trial. Pediatrics 2013, 132, e381–e388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmölzer, G.M.; Agarwal, M.; Kamlin, C.O.; Davis, P.G. Supraglottic airway devices during neonatal resuscitation: An historical perspective, systematic review and meta-analysis of available clinical trials. Resuscitation 2013, 84, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Kamlin, C.O.F.; Schmölzer, G.M.; Dawson, J.A.; McGrory, L.; O’Shea, J.; Donath, S.M.; Lorenz, L.; Hooper, S.B.; Davis, P.G. A randomized trial of oropharyngeal airways to assist stabilization of preterm infants in the delivery room. Resuscitation 2019, 144, 106–114. [Google Scholar] [CrossRef]
- Trevisanuto, D.; Roehr, C.C.; Davis, P.G.; Schmölzer, G.M.; Wyckoff, M.H.; Liley, H.G.; Rabi, Y.; Weiner, G.M.; International Liaison Committee on Resuscitation Neonatal Life Support Task Force. Devices for administering ventilation at birth: A systematic review. Pediatrics 2021, 148, e2021050174. [Google Scholar] [CrossRef] [PubMed]
- Oei, J.L.; Saugstad, O.D.; Vento, M. Oxygen and preterm infant resuscitation: What else do we need to know? Curr. Opin. Pediatr. 2018, 30, 192–198. [Google Scholar] [CrossRef]
- Baik, N.; Urlesberger, B.; Schwaberger, B.; Schmölzer, G.M.; Avian, A.; Pichler, G. Cerebral haemorrhage in preterm neonates: Does cerebral regional oxygen saturation during the immediate transition matter? Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F422–F427. [Google Scholar] [CrossRef] [PubMed]
- Welsford, M.; Nishiyama, C.; Shortt, C.; Weiner, G.; Roehr, C.C.; Isayama, T.; Dawson, J.A.; Wyckoff, M.H.; Rabi, Y.; International Liaison Committee on Resuscitation Neonatal Life Support Task Force. Initial oxygen use for preterm newborn resuscitation: A systematic review with meta-analysis. Pediatrics 2019, 143, 26. [Google Scholar] [CrossRef] [Green Version]
- Kapadia, V.; Oei, J.L. Optimizing oxygen therapy for preterm infants at birth: Are we there yet? Semin. Fetal Neonatal Med. 2020, 25, 101081. [Google Scholar] [CrossRef]
- Oei, J.L.; Finer, N.N.; Saugstad, O.D.; Wright, I.M.; Rabi, Y.; Tarnow-Mordi, W.; Rich, W.; Kapadia, V.; Rook, D.; Smyth, J.P.; et al. Outcomes of oxygen saturation targeting during delivery room stabilisation of preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 103, F446–F454. [Google Scholar] [CrossRef]
- Pichler, G.; Baumgartner, S.; Biermayr, M.; Dempsey, E.; Fuchs, H.; Goos, T.G.; Lista, G.; Lorenz, L.; Karpinski, L.; Mitra, S.; et al. Cerebral regional tissue oxygen saturation to guide oxygen delivery in preterm neonates during immediate transition after birth (COSGOD III): An investigator-initiated, randomized, multi-center, multi-national, clinical trial on additional cerebral tissue oxygen saturation monitoring combined with defined treatment guidelines versus standard monitoring and treatment as usual in premature infants during immediate transition: Study protocol for a randomized controlled trial. Trials 2019, 20, 178. [Google Scholar]
- Ng, E.H.; Shah, V. Guidelines for surfactant replacement therapy in neonates. Paediatr. Child Health 2021, 26, 35–49. [Google Scholar] [CrossRef]
- Schmölzer, G.M.; Kumar, M.; Pichler, G.; Aziz, K.; O’Reilly, M.; Cheung, P.Y. Non-invasive versus invasive respiratory support in preterm infants at birth: Systematic review and meta-analysis. BMJ 2013, 347, f5980. [Google Scholar] [CrossRef] [Green Version]
- SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network. Early cpap versus surfactant in extremely preterm infants. N. Engl. J. Med. 2010, 362, 1970–1979. [Google Scholar] [CrossRef] [Green Version]
- Martherus, T.; Crossley, K.J.; Rodgers, K.A.; Dekker, J.; Demel, A.; Moxham, A.M.; Zahra, V.A.; Polglase, G.R.; Roberts, C.T.; Te Pas, A.B.; et al. High-CPAP does not impede cardiovascular changes at birth in preterm sheep. Front. Pediatr. 2020, 8, 584138. [Google Scholar] [CrossRef]
- Polglase, G.R.; Morley, C.J.; Crossley, K.J.; Dargaville, P.; Harding, R.; Morgan, D.L.; Hooper, S.B. Positive end-expiratory pressure differentially alters pulmonary hemodynamics and oxygenation in ventilated, very premature lambs. J. Appl. Physiol. 2005, 99, 1453–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polglase, G.R.; Hooper, S.B.; Gill, A.W.; Allison, B.J.; McLean, C.J.; Nitsos, I.; Pillow, J.J.; Kluckow, M. Cardiovascular and pulmonary consequences of airway recruitment in preterm lambs. J. Appl. Physiol. 2009, 106, 1347–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herting, E.; Hartel, C.; Gopel, W. Less invasive surfactant administration (LISA): Chances and limitations. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F655–F659. [Google Scholar] [CrossRef] [PubMed]
- Aldana-Aguirre, J.C.; Pinto, M.; Featherstone, R.M.; Kumar, M. Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: A systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2017, 102, F17–F23. [Google Scholar] [CrossRef]
- Kribs, A.; Roll, C.; Gopel, W.; Wieg, C.; Groneck, P.; Laux, R.; Teig, N.; Hoehn, T.; Bohm, W.; Welzing, L.; et al. Nonintubated surfactant application vs conventional therapy in extremely preterm infants: A randomized clinical trial. JAMA Pediatr. 2015, 169, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Isayama, T.; Iwami, H.; McDonald, S.; Beyene, J. Association of noninvasive ventilation strategies with mortality and bronchopulmonary dysplasia among preterm infants: A systematic review and meta-analysis. JAMA 2016, 316, 611–624. [Google Scholar] [CrossRef] [Green Version]
- Herting, E.; Kribs, A.; Hartel, C.; von der Wense, A.; Weller, U.; Hoehn, T.; Vochem, M.; Moller, J.; Wieg, C.; Roth, B.; et al. Two-year outcome data suggest that less invasive surfactant administration (LISA) is safe. Results from the follow-up of the randomized controlled amv (avoid mechanical ventilation) study. Eur. J. Pediatr. 2020, 179, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Marquez Isidro, E.; Sanchez Luna, M.; Ramos-Navarro, C. Long-term outcomes of preterm infants treated with less invasive surfactant technique (LISA). J. Matern. Fetal Neonatal Med. 2021, 34, 1919–1924. [Google Scholar] [CrossRef]
- Verder, H.; Albertsen, P.; Ebbesen, F.; Greisen, G.; Robertson, B.; Bertelsen, A.; Agertoft, L.; Djernes, B.; Nathan, E.; Reinholdt, J. Nasal continuous positive airway pressure and early surfactant therapy for respiratory distress syndrome in newborns of less than 30 weeks’ gestation. Pediatrics 1999, 103, E24. [Google Scholar] [CrossRef] [Green Version]
- Stevens, T.P.; Harrington, E.W.; Blennow, M.; Soll, R.F. Early surfactant administration with brief ventilation vs. Selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst. Rev. 2007, 4, CD003063. [Google Scholar] [CrossRef]
- Kribs, A.; Hummler, H. Ancillary therapies to enhance success of non-invasive modes of respiratory support–approaches to delivery room use of surfactant and caffeine? Semin. Fetal Neonatal Med. 2016, 21, 212–218. [Google Scholar] [CrossRef]
- Wyckoff, M.H.; Salhab, W.A.; Heyne, R.J.; Kendrick, D.E.; Stoll, B.J.; Laptook, A.R.; National Institute of Child, H.; Human Development Neonatal Research, N. Outcome of extremely low birth weight infants who received delivery room cardiopulmonary resuscitation. J. Pediatr. 2012, 160, 239–244.e232. [Google Scholar] [CrossRef] [Green Version]
- Arnon, S.; Dolfin, T.; Reichman, B.; Regev, R.H.; Lerner-Geva, L.; Boyko, V.; Litmanovitz, I. Delivery room resuscitation and adverse outcomes among very low birth weight preterm infants. J. Perinatol. 2017, 37, 1010–1016. [Google Scholar] [CrossRef]
- Soraisham, A.S.; Lodha, A.K.; Singhal, N.; Aziz, K.; Yang, J.; Lee, S.K.; Shah, P.S.; Canadian Neonatal, N. Neonatal outcomes following extensive cardiopulmonary resuscitation in the delivery room for infants born at less than 33 weeks gestational age. Resuscitation 2014, 85, 238–243. [Google Scholar] [CrossRef]
- Fischer, N.; Soraisham, A.; Shah, P.S.; Synnes, A.; Rabi, Y.; Singhal, N.; Ting, J.Y.; Creighton, D.; Dewey, D.; Ballantyne, M.; et al. Extensive cardiopulmonary resuscitation of preterm neonates at birth and mortality and developmental outcomes. Resuscitation 2019, 135, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Finer, N.N.; Horbar, J.D.; Carpenter, J.H. Cardiopulmonary resuscitation in the very low birth weight infant: The Vermont Oxford Network experience. Pediatrics 1999, 104, 428–434. [Google Scholar] [CrossRef]
- Wilkinson, D.; Marlow, N.; Hayden, D.; Mactier, H. Recommendations in the face of uncertainty: Should extremely preterm infants receive chest compressions and/or epinephrine in the delivery room? Arch. Dis. Child. Fetal Neonatal Ed. 2020, 105, 240–241. [Google Scholar] [CrossRef] [PubMed]
- Baik-Schneditz, N.; Pichler, G.; Schwaberger, B.; Mileder, L.; Avian, A.; Urlesberger, B. Peripheral intravenous access in preterm neonates during postnatal stabilization: Feasibility and safety. Front. Pediatr. 2017, 5, 171. [Google Scholar] [CrossRef]
- Scrivens, A.; Reynolds, P.R.; Emery, F.E.; Roberts, C.T.; Polglase, G.R.; Hooper, S.B.; Roehr, C.C. Use of intraosseous needles in neonates: A systematic review. Neonatology 2019, 116, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Mileder, L.P.; Urlesberger, B.; Schwaberger, B. Use of intraosseous vascular access during neonatal resuscitation at a tertiary center. Front. Pediatr. 2020, 8, 571285. [Google Scholar] [CrossRef]
- Lake, W.; Emmerson, A.J. Use of a butterfly as an intraosseous needle in an oedematous preterm infant. Arch. Dis. Child. Fetal Neonatal Ed. 2003, 88, F409. [Google Scholar] [CrossRef] [Green Version]
- Ellemunter, H.; Simma, B.; Trawoger, R.; Maurer, H. Intraosseous lines in preterm and full term neonates. Arch. Dis. Child. Fetal Neonatal Ed. 1999, 80, F74–F75. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwaberger, B.; Urlesberger, B.; Schmölzer, G.M. Delivery Room Care for Premature Infants Born after Less than 25 Weeks’ Gestation—A Narrative Review. Children 2021, 8, 882. https://doi.org/10.3390/children8100882
Schwaberger B, Urlesberger B, Schmölzer GM. Delivery Room Care for Premature Infants Born after Less than 25 Weeks’ Gestation—A Narrative Review. Children. 2021; 8(10):882. https://doi.org/10.3390/children8100882
Chicago/Turabian StyleSchwaberger, Bernhard, Berndt Urlesberger, and Georg M. Schmölzer. 2021. "Delivery Room Care for Premature Infants Born after Less than 25 Weeks’ Gestation—A Narrative Review" Children 8, no. 10: 882. https://doi.org/10.3390/children8100882
APA StyleSchwaberger, B., Urlesberger, B., & Schmölzer, G. M. (2021). Delivery Room Care for Premature Infants Born after Less than 25 Weeks’ Gestation—A Narrative Review. Children, 8(10), 882. https://doi.org/10.3390/children8100882