Evaluation of a Hypersensitivity Inhibitor Containing a Novel Monomer That Induces Remineralization—A Case Series in Pediatric Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Application
2.2. Desensitizer Treatment for Hypersensitive Teeth
2.3. Digital Image Analysis for Evaluation of Remineralization Ability
2.4. Subjective Assessment of Patients and Statistical Analysis
2.5. Pain Evaluation of Hypersensitivity Using Visual Analogue Scale (VAS)
3. Case Presentation
3.1. Case 1: Hypersensitivity of the Permanent Teeth with Brown and Cloudiness Spots Caused by Primary Tooth Trauma
3.2. Case 2: Hypersensitivity of the Permanent Teeth with Cloudiness Spots Caused by Primary Tooth Trauma
3.3. Case 3: Hypersensitivity of the Permanent Teeth with Brown Spots Caused by Primary Tooth Caries
3.4. Case 4: Hypersensitivity of the Permanent Teeth with Brown and Cloudiness Spots
3.5. Changes in VAS of Hyperesthesia and Remineralization in These Four Cases
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Heitmuller, D.; Thiering, E.; Hoffmann, U.; Heinrich, J.; Manton, D.; Kuhnisch, J.; Neumann, C.; Bauer, C.P.; Heinrich-Weltzien, R.; Hickel, R.; et al. Is there a positive relationship between molar incisor hypomineralisations and the presence of dental caries? Int. J. Paediatr. Dent. 2013, 23, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Ki, Y.; Chu, V. Molar incisor hypomineralization in Hong Kong Chinese children. Int. J. Paediatr. Dent. 2008, 18, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, M.; Shintani, S. Molar incisor hypomineralization: A review and prevalence in Japan. Jpn. Dent. Sci. Rev. 2021, 57, 71–77. [Google Scholar] [CrossRef]
- Patel, A.; Aghababaie, S.; Parekh, S. Hypomineralisation or hypoplasia? Br. Dent. J. 2019, 227, 683–686. [Google Scholar] [CrossRef]
- Ghanim, A.M.; Morgan, M.V.; Marino, R.J.; Bailey, D.L.; Manton, D.J. Risk factors of hypomineralised second primary molars in a group of Iraqi schoolchildren. Eur. Arch. Paediatr. Dent. 2012, 13, 111–118. [Google Scholar] [CrossRef]
- Munoz, C.S.; Ruiz, A.O.J.; Silva, A.P.; Bravo-Gonzalez, L.A.; Vicente, A. Second primary molar hypomineralisation and drugs used during pregnancy and infancy. A systematic review. Clin. Oral Investig. 2020, 24, 1287–1297. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Kim, Y.J.; Oh Kim, S.; Choi, S.C.; Kim, J.; Lee, J.H.; Kim, H.J.; Shin, J.; Lee, N.Y.; Kim, S.M.; et al. Factors associated with molar-incisor hypomineralization: A population-based case-control study. Pediatr. Dent. 2020, 42, 134–140. [Google Scholar]
- Mejia, J.D.; Restrepo, M.; Gonzalez, S.; Alvarez, L.G.; Santos-Pinto, L.; Escobar, A. Molar incisor hypomineralization in Colombia: Prevalence, severity and associated risk factors. J. Clin. Pediatr. Dent. 2019, 43, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Vlachou, C.; Arhakis, A.; Kotsanos, N. Distribution and morphology of enamel hypomineralisation defects in second primary molars. Eur. Arch. Paediatr. Dent. 2021, 22, 241–246. [Google Scholar] [CrossRef]
- Garot, E.; Denis, A.; Delbos, Y.; Manton, D.; Silva, M.; Rouas, P. Are hypomineralised lesions on second primary molars (HSPM) a predictive sign of molar incisor hypomineralisation (MIH)? A systematic review and a meta-analysis. J. Dent. 2018, 72, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, J.M.; Thomson, W.M.; Williams, S.M. Does caries in primary teeth predict enamel defects in permanent teeth? A longitudinal study. J. Dent. Res. 2005, 84, 260–264. [Google Scholar] [CrossRef]
- Lo, E.C.; Zheng, C.G.; King, N.M. Relationship between the presence of demarcated opacities and hypoplasia in permanent teeth and caries in their primary predecessors. Caries Res. 2003, 37, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Bardellini, E.; Amadori, F.; Pasini, S.; Majorana, A. Dental anomalies in permanent teeth after trauma in primary dentition. J. Clin. Pediatr. Dent. 2017, 41, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Mendoza, A.; Iglesias-Linares, A.; Yanez-Vico, R.M.; Abalos-Labruzzi, C. Prevalence and complications of trauma to the primary dentition in a subpopulation of Spanish children in southern Europe. Dent. Traumatol. 2015, 31, 144–149. [Google Scholar] [CrossRef]
- Ferreira, J.M.; Fernandes de Andrade, E.M.; Katz, C.R.; Rosenblatt, A. Prevalence of dental trauma in deciduous teeth of Brazilian children. Dent. Traumatol. 2009, 25, 219–223. [Google Scholar] [CrossRef] [PubMed]
- do Espirito Santo Jacomo, D.R.; Campos, V. Prevalence of sequelae in the permanent anterior teeth after trauma in their predecessors: A longitudinal study of 8 years. Dent. Traumatol. 2009, 25, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Lexomboon, D.; Carlson, C.; Andersson, R.; von Bultzingslowen, I.; Mensah, T. Incidence and causes of dental trauma in children living in the county of Varmland, Sweden. Dent. Traumatol. 2016, 32, 58–64. [Google Scholar] [CrossRef]
- Nelson, S.; Albert, J.M.; Geng, C.; Curtan, S.; Lang, K.; Miadich, S.; Heima, M.; Malik, A.; Ferretti, G.; Eggertsson, H.; et al. Increased enamel hypoplasia and very low birthweight infants. J. Dent. Res. 2013, 92, 788–794. [Google Scholar] [CrossRef] [Green Version]
- McKee, J.K.; Lunz, R. Correlates of enamel hypoplasia with human dental reduction. Am. J. Hum. Biol. 1990, 2, 459–465. [Google Scholar] [CrossRef]
- Abbott, P. Traumatic dental injuries are now the 5th most prevalent disease/injury in the world-But they are being neglected!! Dent. Traumatol. 2018, 34, 383. [Google Scholar] [CrossRef]
- Petti, S.; Glendor, U.; Andersson, L. World traumatic dental injury prevalence and incidence, a meta-analysis—One billion living people have had traumatic dental injuries. Dent. Traumatol. 2018, 34, 71–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannetti, L.; Murri Dello Diago, A.; Silingardi, G.; Spinas, E. Superficial infiltration to treat white hypomineralized defects of enamel: Clinical trial with 12-month follow-up. J. Biol. Regul. Homeost. Agents. 2018, 32, 1335–1338. [Google Scholar] [PubMed]
- Bozal, C.B.; Kaplan, A.; Ortolani, A.; Cortese, S.G.; Biondi, A.M. Ultrastructure of the surface of dental enamel with molar incisor hypomineralization (MIH) with and without acid etching. Acta Odontol. Latinoam. 2015, 28, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Epasinghe, D.J.; Yiu, C.K.Y. Effect of etching on bonding of a self-etch adhesive to dentine affected by amelogenesis imperfecta. J. Investig. Clin. Dent. 2018, 9, e12276. [Google Scholar] [CrossRef] [Green Version]
- Pitiphat, W.; Savisit, R.; Chansamak, N.; Subarnbhesaj, A. Molar incisor hypomineralization and dental caries in six- to seven-year-old Thai children. Pediatr. Dent. 2014, 36, 478–482. [Google Scholar]
- Vargas-Ferreira, F.; Zeng, J.; Thomson, W.M.; Peres, M.A.; Demarco, F.F. Association between developmental defects of enamel and dental caries in schoolchildren. J. Dent. 2014, 42, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Somani, C.; Taylor, G.D.; Garot, E.; Rouas, P.; Lygidakis, N.A.; Wong, F.S.L. An update of treatment modalities in children and adolescents with teeth affected by molar incisor hypomineralisation (MIH): A systematic review. Eur. Arch. Paediatr. Dent. 2021, 1–26. [Google Scholar] [CrossRef]
- Ghosh, A.; Mazumder, D. Comparative evaluation of treatment of noncarious cervical hypersensitivity by a fluoride varnish, a dentin bonding agent, and Er, Cr:YSGG laser: An in vivo study. J. Conserv. Dent. 2019, 22, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Mathew, M.; Soni, A.; Khan, M.; Kauser, A.; Charan, V.S.; Akula, S. Efficacy of remineralizing agents to occlude dentinal tubules in primary teeth subjected to dentin hypersensitivity in vitro: SEM study. J. Fam. Med. Prim. Care. 2020, 9, 354. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Iijima, M.; Motai, F.; Mizoguchi, I.; Saito, T. Effects of calcium salts of acidic monomers on mineral induction of phosphoprotein immobilized to agarose beads. J. Biomed. Mater. Res. Part A 2012, 100, 2760–2765. [Google Scholar] [CrossRef] [PubMed]
- Thaweboon, S.; Saito, T.; Nagano, K.; Thaweboon, B. Evaluation of an adhesive containing calcium salt of acidic monomers on inhibition of biofilm formation of bacteria related to root caries. Key Eng. Mater. 2020, 853, 41–45. [Google Scholar] [CrossRef]
- Qiu, Y.J.; Tang, J.; Saito, T. A novel bio-active adhesive monomer induces odontoblast differentiation: A comparative study. Int. Endod. J. 2020, 53, 1413–1429. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, Y.; Saito, K.; Futaki, M.; Naruse, M.; Ono, M.; Hino, R.; Chiba, Y.; Arakaki, M.; Yamada, A.; Fukumoto, S. Evaluation of the optimal exposure settings for occlusal photography with digital cameras. Ped. Dent. J. 2014, 24, 89–96. [Google Scholar] [CrossRef]
- Price, D.D.; McGrath, P.A.; Rafii, A.; Buckingham, B. The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain 1983, 17, 45–56. [Google Scholar] [CrossRef]
- de Souza, R.F.; Travess, H.; Newton, T.; Marchesan, M.A. Interventions for treating traumatised ankylosed permanent front teeth. Cochrane Database Syst. Rev. 2015, CD007820. [Google Scholar] [CrossRef] [PubMed]
- Lauridsen, E.; Blanche, P.; Amaloo, C.; Andreasen, J.O. The risk of healing complications in primary teeth with concussion or subluxation injury-A retrospective cohort study. Dent. Traumatol. 2017, 33, 337–344. [Google Scholar] [CrossRef]
- Assuncao, L.R.; Ferelle, A.; Iwakura, M.L.; Nascimento, L.S.; Cunha, R.F. Luxation injuries in primary teeth: A retrospective study in children assisted at an emergency service. Braz. Oral Res. 2011, 25, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Altun, C.; Cehreli, Z.C.; Guven, G.; Acikel, C. Traumatic intrusion of primary teeth and its effects on the permanent successors: A clinical follow-up study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 107, 493–498. [Google Scholar] [CrossRef]
- Carvalho, V.; Jacomo, D.R.; Campos, V. Frequency of intrusive luxation in deciduous teeth and its effects. Dent. Traumatol. 2010, 26, 304–307. [Google Scholar] [CrossRef] [PubMed]
- La Monaca, G.; Pranno, N.; Vozza, I.; Annibali, S.; Polimeni, A.; Bossù, M.; Cristalli, M.P. Sequelae in permanent teeth after traumatic injuries to primary dentition. Minerva Stomatol. 2019, 68, 332–340. [Google Scholar] [CrossRef]
- Mazur, M.; Jedliński, M.; Ndokaj, A.; Ardan, R.; Janiszewska-Olszowska, J.; Nardi, G.M.; Ottolenghi, L.; Guerra, F. Long-Term Effectiveness of Treating Dentin Hypersensitivity with Bifluorid 10 and Futurabond U: A Split-Mouth Randomized Double-Blind Clinical Trial. J. Clin. Med. 2021, 10, 2085. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.X.; Song, L.; Yuca, E.; Boone, K.; Sarikaya, R.; VanOosten, S.K.; Misra, A.; Ye, Q.; Spencer, P.; Tamerler, C. Antimicrobial peptide-polymer conjugates for dentistry. ACS Appl. Polym. Mater. 2020, 2, 1134–1144. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, K.; Nagaoka, N.; Yoshida, Y.; Van Meerbeek, B.; Hayakawa, S. Atomic level observation and structural analysis of phosphoric-acid ester interaction at dentin. Acta Biomater. 2019, 97, 544–556. [Google Scholar] [CrossRef] [PubMed]
- Poitevin, A.; De Munck, J.; Cardoso, M.V.; Mine, A.; Peumans, M.; Lambrechts, P.; Van Meerbeek, B. Dynamic versus static bond-strength testing of adhesive interfaces. Dent. Mater. 2010, 26, 1068–1076. [Google Scholar] [CrossRef] [PubMed]
- Hashimura, T.; Yamada, A.; Iwamoto, T.; Arakaki, M.; Saito, K.; Fukumoto, S. Application of a tooth-surface coating material to teeth with discolored crowns. Ped. Dent. J. 2013, 23, 44–50. [Google Scholar] [CrossRef]
- Suzuki, M.; Yamada, A.; Saito, K.; Hino, R.; Sugawara, Y.; Ono, M.; Naruse, M.; Arakaki, M.; Fukumoto, S. Application of a tooth-surface coating material containing pre-reacted glass-ionomer fillers for caries prevention. Ped. Dent. J. 2015, 25, 72–78. [Google Scholar] [CrossRef]
- Putzeys, E.; Duca, R.C.; Coppens, L.; Vanoirbeek, J.; Godderis, L.; Van Meerbeek, B.; Van Landuyt, K.L. In-vitro transdentinal diffusion of monomers from adhesives. J. Dent. 2018, 75, 91–97. [Google Scholar] [CrossRef]
- Accorinte Mde, L.; Loguercio, A.D.; Reis, A.; Muench, A.; de Araujo, V.C. Adverse effects of human pulps after direct pulp capping with the different components from a total-etch, three-step adhesive system. Dent. Mater. 2005, 21, 599–607. [Google Scholar] [CrossRef]
- Cooper, P.R.; Takahashi, Y.; Graham, L.W.; Simon, S.; Imazato, S.; Smith, A.J. Inflammation-regeneration interplay in the dentine-pulp complex. J. Dent. 2010, 38, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, Y.; Inuyama, H.; Maeda, H.; Akamine, A.; Nor, J.E.; Saito, T. Cytotoxicity of one-step dentin-bonding agents toward dental pulp and odontoblast-like cells. J. Oral. Rehabil. 2008, 35, 940–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes Soares, I.P.; Anovazzi, G.; Anselmi, C.; Leite, M.L.; Scheffel, D.L.S.; Soares, D.G.; de Souza Costa, C.A.; Hebling, J. Response of pulp cells to resin infiltration of enamel white spot-like lesions. Dent. Mater. 2021, 37, e329–e340. [Google Scholar] [CrossRef] [PubMed]
- Sabel, N.; Klinberg, G.; Nietzsche, S.; Robertson, A.; Odelius, H.; Noren, J.G. Analysis of some elements in primary enamel during postnatal mineralization. Swed. Dent. J. 2009, 33, 85–95. [Google Scholar] [PubMed]
- Sumikawa, D.A.; Marshall, G.W.; Gee, L.; Marshall, S.J. Microstructure of primary tooth dentin. Pediatr. Dent. 1999, 21, 439–444. [Google Scholar] [PubMed]
- Mahoney, E.; Holt, A.; Swain, M.; Kilpatrick, N. The hardness and modulus of elasticity of primary molar teeth: An ultra-micro-indentation study. J. Dent. 2000, 28, 589–594. [Google Scholar] [CrossRef]
- Cao, C.; Mei, M.; Li, Q.-L.; Lo, E.; Chu, C. Methods for biomimetic remineralization of human dentine: A systematic review. Int. J. Mol. Sci. 2015, 16, 4615–4627. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Freitas, M.; Prakki, A.; Mosquim, V.; Gonzalez, A.H.M.; Rios, D.; Honorio, H.M. Experimental self-etching resin infiltrants on the treatment of simulated carious white spot lesions. J. Mech. Behav. Biomed. Mater. 2021, 113, 104146. [Google Scholar] [CrossRef] [PubMed]
- Hochli, D.; Hersberger-Zurfluh, M.; Papageorgiou, S.N.; Eliades, T. Interventions for orthodontically induced white spot lesions: A systematic review and meta-analysis. Eur. J. Orthod. 2017, 39, 122–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mane, P.; Ganiger, C.R.; Pawar, R.; Phaphe, S.; Ronad, Y.A.; Valekar, S.; Kanitkar, A.A. Effect of fluoride on mechanical properties of NiTi and CuNiTi orthodontic archwires: An in vitro study. Dental Press J. Orthod. 2021, 26, e212020. [Google Scholar] [CrossRef]
Case 1 | Pre-Treatment (Pixels) | Post-Treatment (Pixels) | p-Value |
---|---|---|---|
Cloudiness | 6331 ± 1091 | 65 ± 48 | p < 0.0005 |
Brown | 12,898 ± 1223 | 2118 ± 923 | p < 0.0003 |
Case 2 | Pre-Treatment (Pixels) | Post-Treatment (Pixels) | p-Value |
---|---|---|---|
Cloudiness | 27,886 ± 2341 | 7904 ± 1304 | p < 0.0003 |
Brown | 4541 ± 2040 | 122 ± 156 | p < 0.03 |
Case 3 | Pre-Treatment (Pixels) | Post-Treatment (Pixels) | p-Value |
---|---|---|---|
Cloudiness | N.D. | N.D. | |
Brown | 4858 ± 339 | 1755 ± 111 | p < 0.0002 |
Case 4 | Pre-Treatment (Pixels) | Post-Treatment (Pixels) | p-Value |
---|---|---|---|
Cloudiness | 6872 ± 442 | 1903 ± 580 | p < 0.0003 |
Brown | 6595 ± 102 | 1667 ± 671 | p < 0.0003 |
Pre-Treatment | 1 Month | 4 Months | 7 Months | |
---|---|---|---|---|
Case 1 | 6.5 | 4 | 1 | 0.5 |
Case 2 Case 3 Case 4 | 7.5 4 3 | 4.5 1 0.5 | 2 0 0 | 2.5 0 0 |
Mean ± SD | 5.25 ± 2.1 | 2.50 ± 2.0 | 0.75 ± 0.95 | 0.75 ± 1.19 |
p-value | p = 0.1 | p < 0.02 | p < 0.03 |
Cloudiness | Brown | |
---|---|---|
Case 1 | 98.9% | 83.6% |
Case 2 Case 3 Case 4 | 71.7% N.D. 72.3% | 97.3% 36.1% 74.7% |
mean ± SD | 81.0 ± 15.6% | 72.9 ± 26.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadano, M.; Yamada, A.; Maruya, Y.; Hino, R.; Nakamura, T.; Hoshikawa, S.; Fukumoto, S.; Saito, K. Evaluation of a Hypersensitivity Inhibitor Containing a Novel Monomer That Induces Remineralization—A Case Series in Pediatric Patients. Children 2021, 8, 1189. https://doi.org/10.3390/children8121189
Tadano M, Yamada A, Maruya Y, Hino R, Nakamura T, Hoshikawa S, Fukumoto S, Saito K. Evaluation of a Hypersensitivity Inhibitor Containing a Novel Monomer That Induces Remineralization—A Case Series in Pediatric Patients. Children. 2021; 8(12):1189. https://doi.org/10.3390/children8121189
Chicago/Turabian StyleTadano, Manami, Aya Yamada, Yuriko Maruya, Ryoko Hino, Tomoaki Nakamura, Seira Hoshikawa, Satoshi Fukumoto, and Kan Saito. 2021. "Evaluation of a Hypersensitivity Inhibitor Containing a Novel Monomer That Induces Remineralization—A Case Series in Pediatric Patients" Children 8, no. 12: 1189. https://doi.org/10.3390/children8121189
APA StyleTadano, M., Yamada, A., Maruya, Y., Hino, R., Nakamura, T., Hoshikawa, S., Fukumoto, S., & Saito, K. (2021). Evaluation of a Hypersensitivity Inhibitor Containing a Novel Monomer That Induces Remineralization—A Case Series in Pediatric Patients. Children, 8(12), 1189. https://doi.org/10.3390/children8121189