The Prevalence of Metabolic Syndrome According to Grip Strength in Teenagers
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Grip Strength Test
2.3. Metabolic Syndrome Diagnosis
2.3.1. Waist Circumference
2.3.2. Blood Pressure
2.3.3. Blood Collection
2.4. Data Analysis
3. Results
3.1. General Characteristics
3.2. Cut-Off Value for Grip Strength to Predict MetS
3.3. Association between Grip Strength and MetS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018, 20, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Kawamoto, R.; Ninomiya, D.; Kasai, Y.; Kusunoki, T.; Ohtsuka, N.; Kumagi, T.; Abe, M. Handgrip strength is associated with metabolic syndrome among middle-aged and elderly community-dwelling persons. Clin. Exp. Hypertens. 2016, 38, 245–251. [Google Scholar] [CrossRef]
- Lim, H.; Kim, E. Determining prevalence of metabolic syndrome among Korean adults using complex samples analysis. Korean J. Meas. Eval. Phys. Educ. Sport Sci. 2017, 19, 85–97. [Google Scholar]
- Grundy, S.M. Metabolic syndrome pandemic. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 629–636. [Google Scholar] [CrossRef] [Green Version]
- Al-Hamad, D.; Raman, V. Metabolic syndrome in children and adolescents. Transl. Pediatrics 2017, 6, 397–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juna, C.F.; Cho, Y.H.; Joung, H. Low elevation and physical inactivity are associated with a higher prevalence of metabolic syndrome in ecuadorian adults: A national cross-sectional study. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 2217–2226. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, Y.H.; Kim, W. Association of low muscle mass and isokinetic strength with metabolic syndrome. J. Men’s Health 2020, 16, e50–e58. [Google Scholar] [CrossRef]
- Kim, Y.H.; So, W.-Y. A low arm and leg muscle mass to total body weight ratio is associated with an increased prevalence of metabolic syndrome: The Korea National Health and Nutrition Examination Survey 2010–2011. Technol. Health Care 2016, 24, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Chae, J.; Shin, J. Trend analysis of physique and physical fitness according to the time of children and youth in Korea. Korean J. Meas. Eval. Phys. Educ. Sport Sci. 2015, 17, 23–38. [Google Scholar]
- Bohannon, R.W. Grip strength: An indispensable biomarker for older adults. Clin. Interv. Aging 2019, 14, 1681–1691. [Google Scholar] [CrossRef] [Green Version]
- Bae, E.-J.; Park, N.-J.; Sohn, H.-S.; Kim, Y.-H. Handgrip strength and all-cause mortality in middle-aged and older Koreans. Int. J. Environ. Res. Public Health 2019, 16, 740. [Google Scholar] [CrossRef] [Green Version]
- Mainous, A.G.; Tanner, R.J.; Anton, S.D.; Jo, A. Low grip strength and prediabetes in normal-weight adults. J. Am. Board Fam. Med. 2016, 29, 280–282. [Google Scholar] [CrossRef] [Green Version]
- McGrath, R.P.; Kraemer, W.J.; Al Snih, S.; Peterson, M.D. Handgrip strength and health in aging adults. Sports Med. 2018, 48, 1993–2000. [Google Scholar] [CrossRef]
- Hong, S. Association of relative handgrip strength and metabolic syndrome in Korean older adults: Korea national health and nutrition examination Survey VII-1. J. Obes. Metab. Syndr. 2019, 28, 53–60. [Google Scholar] [CrossRef]
- Bohannon, R.W. Reference values for extremity muscle strength obtained by hand-held dynamometry from adults aged 20 to 79 years. Arch. Phys. Med. Rehabil. 1997, 78, 26–32. [Google Scholar] [CrossRef]
- ACSM. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2017. [Google Scholar]
- Lee, Y.-M.; Park, H.S.; Chun, B.-C.; Kim, H.S. Reliability of measurements of waist circumference at 3 different site. J. Korean Soc. Study Obes. 2002, 11, 123–130. [Google Scholar]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef] [Green Version]
- Maille, B.; Marlinge, M.; Vairo, D.; Mottola, G.; Koutbi, L.; Deharo, P.; Gastaldi, M.; Gaudry, M.; Guiol, C.; Bottone, S. Adenosine plasma level in patients with paroxysmal or persistent atrial fibrillation and normal heart during ablation procedure and/or cardioversion. Purinergic Signal. 2019, 15, 45–52. [Google Scholar] [CrossRef]
- Mainous, A.G., III; Tanner, R.J.; Anton, S.D.; Jo, A. Grip strength as a marker of hypertension and diabetes in healthy weight adults. Am. J. Prev. Med. 2015, 49, 850–858. [Google Scholar] [CrossRef] [Green Version]
- Choquette, S.; Bouchard, D.; Doyon, C.; Sénéchal, M.; Brochu, M.; Dionne, I.J. Relative strength as a determinant of mobility in elders 67–84 years of age. a nuage study: Nutrition as a determinant of successful aging. J. Nutr. Health Aging 2010, 14, 190–195. [Google Scholar] [CrossRef]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M. The FNIH sarcopenia project: Rationale, study description, conference recommendations, and final estimates. J. Gerontol. Ser. A Biomed. Sci. Med Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef]
- Churilla, J.R.; Summerlin, M.; Richardson, M.R.; Boltz, A. Mean combined relative grip strength and metabolic syndrome: 2011–2014 national health and nutrition examination survey. J. Strength Cond. Res. 2020, 34, 995–1000. [Google Scholar] [CrossRef]
- Pan, Y.; Pratt, C.A. Metabolic syndrome and its association with diet and physical activity in US adolescents. J. Am. Diet. Assoc. 2008, 108, 276–286. [Google Scholar] [CrossRef]
- de Fatima Aguiar Lopes, M.; Tureck, L.V.; de Abreu de Lima, V.; Jose de Menezes Junior, F.; Mota, J.; Leite, N. Effect of Exercise on Concentration of High-Density Lipoprotein in Youth: A Systematic Review and Meta-Analysis. J. Exerc. Physiol. 2019, 22, 183–199. [Google Scholar]
- Chen, S.-M.; Lin, W.-C.; Lin, H.-S.; Wu, J. Effects of a youth diabetes prevention program on health-related outcomes in overweight male adolescents. Am. J. Biomed. Sci. Res. 2020, 8, 127–135. [Google Scholar]
- Whooten, R.; Kerem, L.; Stanley, T. Physical activity in adolescents and children and relationship to metabolic health. Curr. Opin. Endocrinol. Diabetes Obes. 2019, 26, 25–31. [Google Scholar] [CrossRef]
- Lee, K.; Ko, D.H.; Lee, J.Y. Prevalence of metabolic syndrome according to causes of physical activity limitation. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 2455–2463. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.G.; Song, H.J.; Kang, J.H. Prevalence of the metabolic syndrome in Korean children and adolescents according to the international diabetes federation definition in children and adolescents. Korean J. Fam. Med. 2009, 30, 261–268. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, K.; Choi, Y.C. Relative grip strength cut-point and metabolic syndrome in the elderly: Korea national health and nutrition examination survey 2014–2017. J. Men’s Health 2019, 15, e47–e57. [Google Scholar]
- Kuzik, N.; Carson, V.; Andersen, L.B.; Sardinha, L.B.; Grøntved, A.; Hansen, B.H.; Ekelund, U.; International Children's Accelerometry Database (ICAD) Collaborators; Atkin, A.; Ekelund, U. Physical activity and sedentary time associations with metabolic health across weight statuses in children and adolescents. Obesity 2017, 25, 1762–1769. [Google Scholar] [CrossRef] [Green Version]
- Moon, W.-J. The relation among adolescents metabolic syndrome, dietary life, physical activity and mental health-using 7 th national nutrition survey of 1 st year (2016). J. Korea Acad. Ind. Coop. Soc. 2019, 20, 158–168. [Google Scholar]
- Dencker, M.; Thorsson, O.; Karlsson, M.; Lindén, C.; Eiberg, S.; Wollmer, P.; Andersen, L. Daily physical activity related to body fat in children aged 8–11 years. J. Pediatrics 2006, 149, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Haider, S.; Luger, E.; Kapan, A.; Titze, S.; Lackinger, C.; Schindler, K.E.; Dorner, T.E. Associations between daily physical activity, handgrip strength, muscle mass, physical performance and quality of life in prefrail and frail community-dwelling older adults. Qual. Life Res. 2016, 25, 3129–3138. [Google Scholar] [CrossRef] [Green Version]
- Gomes, T.N.; dos Santos, F.K.; Katzmarzyk, P.T.; Maia, J. Active and strong: Physical activity, muscular strength, and metabolic risk in children. Am. J. Hum. Biol. 2017, 29, e22904–e22911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bang, S.Y. Prevalence and related factors of metabolic syndrome in Korean adolescent. J. Korea Acad. Ind. Coop. Soc. 2018, 19, 309–316. [Google Scholar]
- Garcia-Hermoso, A.; Tordecilla-Sanders, A.; Correa-Bautista, J.E.; Peterson, M.D.; Izquierdo, M.; Quino-Ávila, A.C.; Sandoval-Cuellar, C.; González-Ruíz, K.; Ramírez-Vélez, R. Muscle strength cut-offs for the detection of metabolic syndrome in a nonrepresentative sample of collegiate students from Colombia. J. Sport Health Sci. 2020, 9, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.W.; D’Agostino, R.B.; Parise, H.; Sullivan, L.; Meigs, J.B. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 2005, 112, 3066–3072. [Google Scholar] [CrossRef] [PubMed]
- Molina-Luque, R.; Ulloa, N.; Gleisner, A.; Zilic, M.; Romero-Saldaña, M.; Molina-Recio, G. An approach to early detection of metabolic syndrome through non-invasive methods in obese children. Children 2020, 7, 304. [Google Scholar] [CrossRef]
- Cho, K.K.; Kim, Y.H.; Kim, Y.H. Association of fitness, body circumference, muscle mass, and exercise habits with metabolic syndrome. J. Men’s Health 2019, 15, e46–e55. [Google Scholar]
Variables | Boy | Girl | ||||
---|---|---|---|---|---|---|
ET (n = 496) | MT (n = 550) | LT (n = 481) | ET n = 424) | MT (n = 442) | LT (n = 426) | |
Age, year | 11.0 (10.0–12.0) | 14.0 (13.0–15.0) a | 17.0 (16.0–18.0) b,c | 11.0 (10.0–12.0) | 14.0 (13.0–15.0) a | 17.0 (16.0–18.0) b,c |
Height, cm | 150.0 (144.1–156.2) | 169.0 (165.0–173.4) a | 173.4 (169.6–177.9) b,c | 151.0 (144.9–156.0) | 159.8 (156.2–163.1) a | 161.2 (157.8–164.8) b,c |
Weight, kg | 44.1 (36.5–52.3) | 60.0 (52.5–69.2) a | 65.5 (58.1–75.0) b,c | 41.7 (35.9–48.4) | 51.2 (46.2–57.7) a | 55.1 (50.0–62.0) b,c |
BMI, kg/m2 | 19.2 (17.1–22.3) | 20.6 (18.5–23.9) a | 21.7 (19.6–24.5) b,c | 18.4 (16.7–20.6) | 20.2 (18.4–22.4) a | 21.2 (19.5–23.7) b,c |
Grip, kg | 17.5 (15.0–21.5) | 31.0 (26.5–36) a | 36.5 (32.5–41) b,c | 16.0 (13.5–19.5) | 21.5 (19.0–24.5) a | 23.5 (20.5–26.5) b,c |
Grip, kg/BW | 0.41 (0.35–0.47) | 0.52 (0.44–0.59) a | 0.56 (0.48–0.63) b,c | 0.40 (0.33–0.45) | 0.42 (0.37–0.47) a | 0.45 (0.39–0.51) b,c |
Group | Cut-Off | AUC (95% CI) | Sensitivity | Specificity | p |
---|---|---|---|---|---|
Boy | |||||
ET | 0.349 | 0.865 (0.767–0.839) | 88.2 | 78.0 | 0.031 * |
MT | 0.466 | 0.777 (0.732–0.804) | 69.2 | 69.9 | 0.032 * |
LT | 0.485 | 0.825 (0.789–0.858) | 80.6 | 77.8 | 0.029 * |
Girl | |||||
ET | 0.373 | 0.751 (0.715–0.788) | 85.7 | 60.4 | 0.043 * |
MT | 0.383 | 0.753 (0.711–0.792) | 66.7 | 74.2 | 0.047 * |
LT | 0.382 | 0.778 (0.737–0.816) | 81.8 | 67.8 | 0.040 * |
Variables | Boy | Girl | ||||
---|---|---|---|---|---|---|
Grip Low | Grip High | p | Grip Low | Grip High | p | |
ET | ||||||
Waist C., cm | 71.7 (63.7–78.4) | 62.5 (58.2–67.6) | <0.001 * | 65.9 (61–72.2) | 60.5 (56.5–65) | <0.001 * |
SBP, mmHg | 108 (100–114) | 105 (99–113) | 0.097 | 104 (99–111) | 104 (99–111) | 0.811 |
DBP, mmHg | 62 (58–68) | 63 (57–69) | 0.171 | 63 (59–68) | 63 (58–68) | 0.541 |
HDL-C, mg/dL | 51 (45–59) | 54 (47–62) | 0.005 * | 50 (44–57) | 53 (46–61) | 0.005 * |
TG, mg/dL | 75 (51–112) | 64 (44–88) | 0.033 * | 93 (64–131) | 77 (54–105) | 0.006 * |
Glucose, mg/dL | 95 (91–98) | 94 (90–98) | 0.078 | 92 (89–96) | 92 (88–96) | 0.256 |
MT | ||||||
Waist C., cm | 77.6 (69.7–86.1) | 68.2 (64.3–73.2) | <0.001 * | 70 (64.4–74.3) | 64.6 (61.2–68.4) | <0.001 * |
SBP, mmHg | 110 (105–118) | 110 (103–116) | 0.145 | 106 (99–112) | 105 (100–112) | 0.853 |
DBP, mmHg | 65 (59–72) | 66 (61–72) | 0.200 | 66 (61–72) | 66 (61–71) | 0.843 |
HDL-C, mg/dL | 46 (41–54) | 50 (44–56) | 0.002 * | 50 (44–57) | 53 (47–60) | <0.001 * |
TG, mg/dL | 78 (59–114) | 63 (46–87) | <0.001 * | 83 (57–109) | 72 (51–92) | 0.003 * |
Glucose, mg/dL | 93 (89–97) | 92 (88–96) | 0.211 | 90 (86–95) | 89 (85–93) | <0.001 * |
LT | ||||||
Waist C., cm | 81.3 (73.7–90.2) | 70.8 (67.1–75.2) | <0.001 * | 72.3 (67.3–80) | 66.6 (63.6–70.7) | <0.001 * |
SBP, mmHg | 115 (108–123) | 112 (105–118) | <0.001 * | 106 (102–113) | 105 (100–111) | 0.074 |
DBP, mmHg | 71 (66–76) | 72 (66–75) | 0.644 | 68 (63–74) | 68 (63–72) | 0.059 |
HDL-C, mg/dL | 46 (41–53) | 49 (42–55) | 0.014 * | 51 (46–58) | 54 (48–60) | 0.034 * |
TG, mg/dL | 84 (62–116) | 70 (53–101) | 0.003 * | 78 (57–105) | 70 (51–93) | 0.021 * |
Glucose, mg/dL | 91 (88–96) | 90 (86–95) | 0.282 | 88 (85–93) | 88 (83–92) | 0.077 |
Group | Grip | Boy | Girl | ||||
---|---|---|---|---|---|---|---|
Non-MetS | MetS | p | Non-MetS | MetS | p | ||
ET | Low | 247 (94.6%) | 14 (5.4%) | 0.005 * | 205 (97.6%) | 5 (2.4%) | 0.007 * |
High | 233 (99.1%) | 2 (0.9%) | 218 (99.1%) | 2 (0.9%) | |||
MT | Low | 241 (88.0%) | 33 (12.0%) | <0.001 * | 222 (93.3%) | 16 (6.7%) | <0.001 * |
High | 270 (97.8%) | 6 (2.2%) | 220 (99.1%) | 2 (0.9%) | |||
LT | Low | 205 (88.0%) | 28 (12.0%) | <0.001 * | 209 (91.7%) | 19 (8.3%) | <0.001 * |
High | 245 (98.8%) | 3 (1.2%) | 217 (98.6%) | 3 (1.4%) | |||
p for trend | 0.028 * | 0.008 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, D.H.; Kim, Y.K. The Prevalence of Metabolic Syndrome According to Grip Strength in Teenagers. Children 2021, 8, 108. https://doi.org/10.3390/children8020108
Ko DH, Kim YK. The Prevalence of Metabolic Syndrome According to Grip Strength in Teenagers. Children. 2021; 8(2):108. https://doi.org/10.3390/children8020108
Chicago/Turabian StyleKo, Duk Han, and Young Kyun Kim. 2021. "The Prevalence of Metabolic Syndrome According to Grip Strength in Teenagers" Children 8, no. 2: 108. https://doi.org/10.3390/children8020108
APA StyleKo, D. H., & Kim, Y. K. (2021). The Prevalence of Metabolic Syndrome According to Grip Strength in Teenagers. Children, 8(2), 108. https://doi.org/10.3390/children8020108