Sex Differences in Dysfunctional Movements and Asymmetries in Young Normal Weight, Overweight, and Obese Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Physical Measurements
2.3. Functional Movement Screen
2.4. Data Analysis
3. Results
4. Discussion
4.1. Sex Differences in the FMS Score
4.2. Sex Differences in Individual FMS Test Items
4.3. Measures of Adiposity and the FMS Score
4.4. Effects of Age on the FMS Score
4.5. Asymmetries and Dysfunctional Scores
4.6. Limitations of This Study and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plowman, S.A. Top 10 research questions related to musculoskeletal physical fitness testing in children and adolescents. Res. Q. Exerc. Sport 2014, 85, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Huxel, K.C.; Nesser, T.W. Relationship between core stability, functional movement, and performance. J. Strength Cond. Res. 2011, 25, 252–261. [Google Scholar] [CrossRef]
- Mulder, T. A process-oriented model of human motor behavior: Toward a theory-based rehabilitation approach. Phys. Ther. 1991, 71, 157–164. [Google Scholar] [CrossRef]
- Mitchell, U.H.; Johnson, A.W.; Adamson, B. Relationship between functional movement screen scores, core strength, posture, and body mass index in school children in Moldova. J. Strength Cond. Res. 2015, 29, 1172–1179. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.; Burton, L.; Hoogenboom, B. Pre-participation screening: The use of fundamental movements as an assessment of function—Part 1. N. Am. J. Sports Phys. Ther. 2006, 1, 62–72. [Google Scholar]
- Kiesel, K.; Plisky, P.J.; Voight, M. Can serious injury in professional football be predicted by a preseason functional movement screen? N. Am. J. Sports Phys. Ther. 2007, 2, 147–158. [Google Scholar] [PubMed]
- Kraus, K.; Schutz, E.; Taylor, W.R. Efficacy of the functional movement screen: A review. J. Strength Cond. Res. 2014, 28, 3571–3584. [Google Scholar] [CrossRef]
- Anderson, B.E.; Neumann, M.L.; Bliven, K.C.H. Functional movement screen differences between male and female secondary school athletes. J. Strength Cond. Res. 2015, 29, 1098–1106. [Google Scholar] [CrossRef]
- Bryson, A.; Arthur, R.; Easton, C. Prior knowledge of the grading criteria increases Functional Movement Screen scores in youth soccer players. J. Strength Cond. Res. 2018. published online ahead of print. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, R.S.; Oliver, J.L.; Radnor, J.M.; Rhodes, B.C.; Faigenbaum, A.D.; Meyer, G.D. Relationships between functional movement screen scores, maturation, and physical performance in young soccer players. J. Sports Sci. 2015, 33, 11–19. [Google Scholar] [CrossRef]
- Newton, F.; McCall, A.; Ryan, D.; Blackburne, C.; de Funten, K.; Meyer, T.; Lewin, C.; McCunn, R. Functional Movement Screen (FMS) score does not predict injury in English Premier League youth academy football players. Sci. Med. Footb. 2017, 1, 102–106. [Google Scholar] [CrossRef]
- Portas, M.D.; Parkin, G.; Roberts, J.; Batterham, A.M. Maturational effects of Functional Movement Screen score in adolescent soccer players. J. Sci. Med. Sport 2016, 19, 854–858. [Google Scholar] [CrossRef] [Green Version]
- Rusling, C.; Edwards, K.L.; Bhattacharya, A.; Reed, A.; Irwin, S.; Boles, A.; Potts, A.; Hodgson, L. The Functional Movement Screening tool does not predict injury in football. Prog. Orthop. Sci. 2015, 1, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Silva, B.; Clemente, F.M.; Camoes, M.; Bezerra, P. Functional Movement Screen scores and physical performance among youth elite soccer players. Sports 2017, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Bardenett, S.M.; Micca, J.J.; DeNoyelles, J.T.; Miller, S.D.; Jenk, D.T.; Brooks, G.S. Functional movement screen normative values and validity in high school athletes: Can the FMS be used as a predictor of injury? Int. J. Sports Phys. Ther. 2015, 10, 303–308. [Google Scholar]
- Fuller, J.T.; Chalmers, S.; Debenedictis, T.A.; Townsley, S.; Lynagh, M.; Gleeson, C.; Zacharia, A.; Thomson, S.; Magarey, M. High prevalence of dysfunctional, assymetrical, and painful movement in elite junior Australian Football players using the Functional Movement Screen. J. Sci. Med. Sport 2017, 20, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Lisman, P.; Hilderbrand, E.; Nadelen, M.; Leppert, K. Association of Functional Movement Screen and Y-Balance test scores with injury in high school athletes. J. Strength Cond. Res. 2019. published online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Magyari, N.; Szakacs, V.; Bartha, C.; Szilagyi, B.; Galamb, K.; Magyar, M.O.; Hortobagyi, T.; Kiss, R.M.; Tihanyi, J.; Negyesi, J. Gender may have an influence on the relationship between Functional Movement Screen scores and gait parameters in elite junior athletes—A pilot study. Physiol. Int. 2017, 104, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Stanley, M. Functional movement is negatively associated with weight status and positively associated with physical activity in British primary school children. J. Obes. 2012, 2012, 697563. [Google Scholar] [CrossRef]
- Duncan, M.J.; Stanley, M.; Wright, S.L. The association between functional movement and overweight and obesity in British primary school children. BMC Sports Sci. Med. Rehabil. 2013, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wright, M.D.; Portas, M.D.; Evans, V.J.; Weston, M. The effectiveness of 4 weeks of fundamental movement training on Function Movement Screen and physiological performance in physically active children. J. Strength Cond. Res. 2015, 29, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Paszkewicz, J.R.; McCarty, C.W.; Van Lunen, B.L. Comparison of functional and static evaluation tools among adolescent athletes. J. Strength Cond. Res. 2013, 27, 2842–2850. [Google Scholar] [CrossRef]
- Chalmers, S.; Fuller, J.T.; Debenedictis, T.A.; Townsley, S.; Lynach, M.; Gleeson, C.; Zacharia, A.; Thomson, S.; Magarey, M. Asymmetry during preseason Functional Movement Screen testing is associated with injury during a junior a junior Australian football season. J. Sci. Med. Sport 2017, 20, 653–657. [Google Scholar] [CrossRef]
- Linek, P.; Saulicz, E.; Mysliwiec, A.; Wojtowicz, M.; Wolny, T. The effect of specific sling exercises on the Functional Movement Screen score in adolescent volleyball players: A preliminary study. J. Hum. Kinet. 2016, 54, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, C.; Olivier, B.; Benjamin, N. The Functional Movement Screen in the prediction of injury in adolescent cricket pace bowlers: An observational study. J. Sport Rehabil. 2017, 26, 386–395. [Google Scholar] [CrossRef]
- Rowan, C.P.; Kuropkat, C.; Gumienlak, R.J.; Gledhill, N.; Jamnik, V.K. Integration of the Functional Movement Screen into the national hockey league combine. J. Strength Cond. Res. 2015, 29, 1163–1171. [Google Scholar] [CrossRef]
- Abraham, A.; Sannasi, R.; Nair, R. Normative values for the functional movement screen in adolescent school aged children. Int. J. Sports Phys. Ther. 2015, 10, 29–36. [Google Scholar] [PubMed]
- Coker, C.A. Improving functional movement proficiency in middle school physical education. Res. Q. Exerc. Sport 2018, 89, 367–372. [Google Scholar] [CrossRef]
- Centers for Disease Control. About Teen and Child BMI. Available online: https://www.cdc.gov/healthyweight/assessing/bmi/childrens_bmi/about_childrens_bmi.html#HowIsBMIUsed (accessed on 15 May 2020).
- Bullock, G.S.; Brookreson, N.; Knab, A.M.; Butler, R.J. Examining fundamental movement competency and closed-chain upper extremity dynamic balance in swimmers. J. Strength Cond. Res. 2017, 31, 1544–1551. [Google Scholar] [CrossRef]
- Hills, A.P.; Hennig, E.M.; Bryne, N.M.; Steele, J.R. The biomechanics of adiposity—structural and functional limitations of obesity and implications for movement. Obes. Rev. 2002, 3, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Nantel, J.; Mathieu, M.-E.; Prince, F. Physical activity and obesity: Biomechanical and physiological concepts. J. Obes. 2011, 2011. [Google Scholar] [CrossRef]
- Smith, L.J.; Creps, J.R.; Bean, R.; Rodda, B.; Alsaleheen, B. Performance of high school male athletes on the Functional Movement Screen. Phys. Ther. Sport 2017, 27, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Fousekis, K.; Tsepis, E.; Vaenas, G. Lower limb strength in professional soccer players: Profile, asymmetry, and training age. J. Sports Sci. Med. 2010, 9, 364–373. [Google Scholar] [PubMed]
- Clark, J.E.; Metcalfe, J.S. The mountain of motor development. In Motor Development: Research and Reviews; Clark, J.E., Humphrey, J.H., Eds.; National Association of Sports & Physical Education: Reston, VA, USA, 2002; Volume 2, pp. 163–190. [Google Scholar]
- Gallahue, D.L.; Ozmun, J.C. Understanding Motor Development: Infants, Children, Adolescents, Adults, 6th ed.; McGraw-Hill: Boston, MA, USA, 2006. [Google Scholar]
- Lubans, D.R.; Morgan, P.J.; Cliff, D.P.; Barnett, L.M. Fundamental movement skills in children and adolescents. Sports Med. 2010, 40, 1019–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Boys (n = 53) | Girls (n = 41) | Combined (n = 94) | |
---|---|---|---|
Age (yrs) | 10.4 ± 1.36 | 10.4 ± 1.1 | 10.4 ± 1.25 |
Height (cm) | 146.9 ± 10.9 | 147.9 ± 9.5 | 147.4 ± 10.3 |
Body Mass (kg) | 40.9 ± 9.5 | 41.3 ± 10.5 | 41.0 ± 9.9 |
Waist Circumference (cm) | 66.5 ± 7.4 | 65.6 ± 9.8 | 66.1 ± 8.5 |
Hip Circumference (cm) | 78.2 ± 7.9 | 79.4 ± 9.8 | 78.7 ± 8.8 |
WHR | 0.85 ± 0.05 | 0.82 ± 0.05 | 0.84 ± 0.05 |
BMI (kg/m2) | 18.8 ± 3.1 | 18.6 ± 3.4 | 18.7 ± 3.2 |
BMI (age percentile) | 61.1 ± 30.3 | 55.1 ± 29.2 | 58.5 ± 29.8 |
Body Fat (%) | 25.1 ± 8.3 | 25.9 ± 5.5 | 25.5 ± 7.2 |
Boys (n = 53) | Girls (n = 41) | Combined (n = 94) | |
---|---|---|---|
Deep Squat | 1.6 ± 0.6 | 1.8 ± 0.7 | 1.7 ± 0.6 |
Hurdle Step | 2.0 ± 0.2 | 2.2 ± 0.4 | 2.1 ± 0.3 |
Right | 2.0 ± 0.2 | 2.2 ± 0.4 | 2.1 ± 0.3 |
Left | 2.0 ± 0.2 | 2.2 ± 0.4 | 2.1 ± 0.3 |
Inline Lunge | 2.1 ± 0.4 | 2.1 ± 0.4 | 2.1 ± 0.4 |
Right | 2.1 ± 0.4 | 2.2 ± 0.5 | 2.1 ± 0.4 |
Left | 2.1 ± 0.5 | 2.3 ± 0.4 | 2.2 ± 0.5 |
Shoulder Mobility | 2.4 ± 0.8 | 2.7 ± 0.4 | 2.6 ± 0.7 |
Right | 2.6 ± 0.7 | 2.8 ± 0.4 | 2.7 ± 0.6 |
Left | 2.5 ± 0.8 | 2.8 ± 0.4 | 2.6 ± 0.7 |
Active Straight Leg Raise | 1.7 ± 0.7 | 2.3 ± 0.7 * | 2.0 ± 0.8 |
Right | 1.8 ± 0.7 | 2.4 ± 0.6 * | 2.1 ± 0.7 |
Left | 1.8 ± 0.7 | 2.3 ± 0.7 * | 2.0 ± 0.8 |
Trunk Stability Pushup | 1.4 ± 0.6 | 1.3 ± 0.6 | 1.3 ± 0.6 |
Rotary Stability | 1.6 ± 0.5 | 1.7 ± 0.5 | 1.6 ± 0.5 |
Right | 1.7 ± 0.5 | 1.9 ± 0.6 | 1.8 ± 0.5 |
Left | 1.6 ± 0.5 | 1.8 ± 0.6 | 1.7 ± 0.5 |
Total FMS Score | 12.9 ± 2.2 | 14.1 ± 1.8 * | 13.4 ± 2.1 |
Boys (n = 53) | Girls (n = 41) | Combined (n = 94) | |
---|---|---|---|
No Asymmetries | 24 | 13 | 37 |
One Asymmetry | 22 | 16 | 38 |
Two Asymmetries | 6 | 9 | 15 |
Three Asymmetries | 1 | 3 | 4 |
Boys (n = 53) | Girls (n = 41) | Combined (n = 94) | |
---|---|---|---|
Deep Squat | 22 | 13 | 35 |
Hurdle Step | 0 | 0 | 0 |
Inline Lunge | 3 | 1 | 4 |
Shoulder Mobility | 10 | 0 | 10 |
Active Straight Leg Raise | 23 | 6 | 29 |
Rotary Stability | 21 | 13 | 34 |
Trunk Stability Pushup | 38 | 31 | 69 |
Total | 117 | 64 | 181 |
Age | kg | cm | BMI | BMI% | WHR | %BF | |
---|---|---|---|---|---|---|---|
Squat | |||||||
Boys | 0.203 | −0.189 | −0.081 | −0.206 | −0.176 | −0.085 | −0.404 * |
Girls | 0.037 | −0.332 * | −0.133 | −0.377 * | −0.277 | −0.362 * | −0.262 |
Hurdle Step | |||||||
Boys | 0.308 | 0.276 | 0.399 * | 0.009 | −0.014 | −0.194 | −0.205 |
Girls | −0.232 | −0.330 * | 0.090 | −0.385 * | −0.433 * | 0.134 | −0.181 |
Inline Lunge | |||||||
Boys | 0.028 | −0.075 | 0.031 | −0.125 | −0.153 | −0.013 | −0.266 |
Girls | 0.411 * | 0.057 | 0.199 | −0.061 | −0.087 | −0.058 | −0.243 |
Shoulder Mobility | |||||||
Boys | 0.033 | −0.100 | 0.082 | −0.213 | −0.184 | −0.006 | −0.255 |
Girls | −0.009 | −0.223 | −0.012 | −0.316 * | −0.285 | −0.011 | −0.082 |
Active Straight Leg Raise | |||||||
Boys | 0.078 | −0.302 * | −0.100 | −0.333 * | −0.361 * | 0.115 | −0.296 |
Girls | −0.059 | −0.188 | −0.066 | −0.327 * | −0.322 * | 0.083 | −0.198 |
Rotary Stability | |||||||
Boys | 0.323 | 0.088 | 0.193 | −0.068 | −0.100 | −0.153 | −0.454 * |
Girls | 0.131 | 0.007 | 0.133 | −0.105 | −0.182 | −0.135 | −0.047 |
Trunk Stability Pushup | |||||||
Boys | 0.152 | −0.048 | 0.016 | −0.088 | −0.065 | −0.125 | −0.365 * |
Girls | 0.011 | −0.018 | 0.001 | −0.014 | −0.003 | 0.040 | −0.296 |
Total FMS Score | |||||||
Boys | 0.242 | −0.170 | 0.064 | −0.305 * | −0.303 * | −0.083 | −0.584 * |
Girls | 0.053 | −0.274 | 0.044 | −0.423 * | −0.425 * | −0.098 | −0.371 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vehrs, P.R.; Barker, H.; Nomiyama, M.; Vehrs, Z.; Tόth, M.; Uvacsek, M.; Mitchel, U.H.; Johnson, A.W. Sex Differences in Dysfunctional Movements and Asymmetries in Young Normal Weight, Overweight, and Obese Children. Children 2021, 8, 184. https://doi.org/10.3390/children8030184
Vehrs PR, Barker H, Nomiyama M, Vehrs Z, Tόth M, Uvacsek M, Mitchel UH, Johnson AW. Sex Differences in Dysfunctional Movements and Asymmetries in Young Normal Weight, Overweight, and Obese Children. Children. 2021; 8(3):184. https://doi.org/10.3390/children8030184
Chicago/Turabian StyleVehrs, Pat R., Haley Barker, Misea Nomiyama, Zachary Vehrs, Miklόs Tόth, Martina Uvacsek, Ulrike H. Mitchel, and Aaron W. Johnson. 2021. "Sex Differences in Dysfunctional Movements and Asymmetries in Young Normal Weight, Overweight, and Obese Children" Children 8, no. 3: 184. https://doi.org/10.3390/children8030184
APA StyleVehrs, P. R., Barker, H., Nomiyama, M., Vehrs, Z., Tόth, M., Uvacsek, M., Mitchel, U. H., & Johnson, A. W. (2021). Sex Differences in Dysfunctional Movements and Asymmetries in Young Normal Weight, Overweight, and Obese Children. Children, 8(3), 184. https://doi.org/10.3390/children8030184