Three Novel EPCAM Variants Causing Tufting Enteropathy in Three Families
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Molecular Investigation
3. Results
3.1. Clinical Findings
3.2. Molecular Findings
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reifen, R.M.; Cutz, E.; Griffiths, A.M.; Ngan, B.Y.; Sherman, P.M. Tufting enteropathy: A newly recognized clinicopathological entity associated with refractory diarrhea in infants. J. Pediatr. Gastroenterol. Nutr. 1994, 18, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Goulet, O.; Salomon, J.; Ruemmele, F.; de Serres, N.P.; Brousse, N. Intestinal epithelial dysplasia (tufting enteropathy). Orphanet J. Rare Dis. 2007, 2, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salomon, J.; Goulet, O.; Canioni, D.; Brousse, N.; Lemale, J.; Tounian, P.; Coulomb, A.; Marinier, E.; Hugot, J.P.; Ruemmele, F.; et al. Genetic characterization of congenital tufting enteropathy: Epcam associated phenotype and involvement of SPINT2 in the syndromic form. Hum. Genet. 2014, 133, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Sivagnanam, M. Congenital Tufting Enteropathy: Biology, Pathogenesis and Mechanisms. J. Clin. Med. 2020, 10, 19. [Google Scholar] [CrossRef]
- Lemale, J.; Coulomb, A.; Dubern, B.; Boudjemaa, S.; Viola, S.; Josset, P.; Tounian, P.; Girardet, J.P. Intractable diarrhea with tufting enteropathy: A favorable outcome is possible. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 734–739. [Google Scholar] [CrossRef]
- Ozler, O.; Brunner-Véber, A.; Fatih, P.; Müller, T.; Janecke, A.R.; Arikan, C. Long-Term Follow-Up of Tufting Enteropathy Caused by EPCAM Mutation p.Asp253Asn and Absent EPCAM Expression. JPGN Rep. 2020, 2, e029. [Google Scholar] [CrossRef]
- Hassan, K.; Sher, G.; Hamid, E.; Hazima, K.A.; Abdelrahman, H.; Al Mudahka, F.; Al-Masri, W.; Sankar, J.; Daryaee, M.; Shawish, R.; et al. Outcome associated with EPCAM founder mutation c.499dup in Qatar. Eur. J. Med. Genet. 2020, 63, 104023. [Google Scholar] [CrossRef]
- Sivagnanam, M.; Mueller, J.L.; Lee, H.; Chen, Z.; Nelson, S.F.; Turner, D.; Zlotkin, S.H.; Pencharz, P.B.; Ngan, B.Y.; Libiger, O.; et al. Identification of EpCAM as the gene for congenital tufting enteropathy. Gastroenterology 2008, 135, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Pathak, S.J.; Mueller, J.L.; Okamoto, K.; Das, B.; Hertecant, J.; Greenhalgh, L.; Cole, T.; Pinsk, V.; Yerushalmi, B.; Gurkan, O.E.; et al. EPCAM mutation update: Variants associated with congenital tufting enteropathy and Lynch syndrome. Hum. Mutat. 2019, 40, 142–161. [Google Scholar] [CrossRef] [Green Version]
- Heinz-Erian, P.; Muller, T.; Krabichler, B.; Schranz, M.; Becker, C.; Ruschendorf, F.; Nurnberg, P.; Rossier, B.; Vujic, M.; Booth, I.W.; et al. Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea. Am. J. Hum. Genet. 2009, 84, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Holt-Danborg, L.; Vodopiutz, J.; Nonboe, A.W.; De Laffolie, J.; Skovbjerg, S.; Wolters, V.M.; Muller, T.; Hetzer, B.; Querfurt, A.; Zimmer, K.P.; et al. SPINT2 (HAI-2) missense variants identified in congenital sodium diarrhea/tufting enteropathy affect the ability of HAI-2 to inhibit prostasin but not matriptase. Hum. Mol. Genet. 2019, 28, 828–841. [Google Scholar] [CrossRef]
- Sivagnanam, M.; Janecke, A.R.; Muller, T.; Heinz-Erian, P.; Taylor, S.; Bird, L.M. Case of syndromic tufting enteropathy harbors SPINT2 mutation seen in congenital sodium diarrhea. Clin. Dysmorphol. 2010, 19, 48. [Google Scholar] [CrossRef]
- Litvinov, S.V.; Velders, M.P.; Bakker, H.A.; Fleuren, G.J.; Warnaar, S.O. Ep-CAM: A human epithelial antigen is a homophilic cell-cell adhesion molecule. J. Cell Biol. 1994, 125, 437–446. [Google Scholar] [CrossRef]
- Mueller, J.L.; McGeough, M.D.; Pena, C.A.; Sivagnanam, M. Functional consequences of EpCam mutation in mice and men. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306, G278–G288. [Google Scholar] [CrossRef] [Green Version]
- Ladwein, M.; Pape, U.F.; Schmidt, D.S.; Schnolzer, M.; Fiedler, S.; Langbein, L.; Franke, W.W.; Moldenhauer, G.; Zoller, M. The cell-cell adhesion molecule EpCAM interacts directly with the tight junction protein claudin-7. Exp. Cell Res. 2005, 309, 345–357. [Google Scholar] [CrossRef]
- Das, B.; Okamoto, K.; Rabalais, J.; Kozan, P.A.; Marchelletta, R.R.; McGeough, M.D.; Durali, N.; Go, M.; Barrett, K.E.; Das, S.; et al. Enteroids expressing a disease-associated mutant of EpCAM are a model for congenital tufting enteropathy. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 317, G580–G591. [Google Scholar] [CrossRef]
- Wu, C.J.; Feng, X.; Lu, M.; Morimura, S.; Udey, M.C. Matriptase-mediated cleavage of EpCAM destabilizes claudins and dysregulates intestinal epithelial homeostasis. J. Clin. Investig. 2017, 127, 623–634. [Google Scholar] [CrossRef]
- Zhou, Y.Q.; Wu, G.S.; Kong, Y.M.; Zhang, X.Y.; Wang, C.L. New mutation in EPCAM for congenital tufting enteropathy: A case report. World J. Clin. Cases 2020, 8, 4975–4980. [Google Scholar] [CrossRef]
- Schnell, U.; Kuipers, J.; Mueller, J.L.; Veenstra-Algra, A.; Sivagnanam, M.; Giepmans, B.N. Absence of cell-surface EpCAM in congenital tufting enteropathy. Hum. Mol. Genet. 2013, 22, 2566–2571. [Google Scholar] [CrossRef] [Green Version]
- Schnell, U.; Cirulli, V.; Giepmans, B.N. EpCAM: Structure and function in health and disease. Biochim. Biophys. Acta 2013, 1828, 1989–2001. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Y.; Ward, S.C.; Fiel, M.I.; Teruya-Feldstein, J.; Dekio, F. EpCam is Required for Maintaining the Integrity of the Biliary Epithelium. Liver Int. 2021. [Google Scholar] [CrossRef] [PubMed]
- Ashworth, I.; Wilson, A.; Aquilina, S.; Parascandalo, R.; Mercieca, V.; Gerada, J.; Macdonald, S.; Simchowitz, V.; Hill, S. Reversal of Intestinal Failure in Children With Tufting Enteropathy Supported With Parenteral Nutrition at Home. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 967–971. [Google Scholar] [CrossRef] [PubMed]
Family 1 | Family 2 | Family 3 | ||||
---|---|---|---|---|---|---|
Patient 1 | Patient 2 | Patient 1 | Patient 2 | Patient 3 | Patient 1 | |
Parental consanguinity | + | + | + | + | + | - |
Pregnancy and gestational age | Preeclampsia 34 weeks | Born at term | Born at term | n.a. | 38 weeks | 41 weeks |
Birth measures | W = 2645 g (z = 0.58), L = 48 cm (z = 0.52) HC = 31.3 cm (z = −0.57). | L = 53 cm (z = 0.61), HC = 35 cm (z = 0.04) | W = 3415 g (z = 0.23), L = 51 cm (z = −0.05), HC = 34 cm (z = −0.20) | n.a. | W = 3700 g (z = 0.61), L = 56 cm (z = 1.86), HC = 37 cm (z = 1.92) | W = 3660 g (z = −0.14), L = 52 cm (z = −0.44), HC = 34 (z = −0.90) |
Onset of persistent diarrhea | First day of life | One year | Six weeks of life | First day of life | Six weeks of life | Second month of life |
Disease course | Intractable diarrhea and failure to thrive, weighing 5710 g (z = −3.63) at one year. Breast milk feeding in the first year of life. No duodenal biopsy was obtained. | Intractable diarrhea and failure to thrive from one year of age. No duodenal biopsy was obtained. | Intractable diarrhea and failure to thrive. TBIL of 3.47 mg/dl (expected 0.1–1.20), direct bilirubin (DBIL) 3.01 mg/dl (0.0–0.3) prior to PN initiation. | Intractable diarrhea and failure to thrive. PN and PEG tube feeding. Duodenal biopsies showed total villus atrophy and mild inflammation, and findings of TE on re-evaluation post-mortem. Birth of patient 1 to this family led to a diagnosis of TE. | Intractable diarrhea and failure to thrive. Fully breastfed for six weeks. Hyperbilirubinemia (TBIL = 8.75 mg/dl, DBIL = 0.56 mg/dl) prior to PN initiation. | Intractable diarrhea and severe failure to thrive weighing 3910 g (z −2.87) at three months with infant formula. Stool pH low (pH = 6.0), steatorrhea. Initial suspicion of cow’s milk protein intolerance. Esophagogastroduodenoscopy and colonoscopy at four months of age excluded inflammatory bowel disease; gastroduodenoscopy at six months revealed nearly absent EPCAM expression. |
Age at definite diagnosis of TE/method | Two years/exome sequencing | Post-mortem, in retrospect | Three months/EPCAM sequencing | Post-mortem, in retrospect/immunohistochemistry | Nine weeks of age/EPCAM sequencing | Eight months/immunohistochemistry and exome sequencing |
Age at last examination or death | Three years | Died age seven years | Died age 3.5 years from multi-organ failure | Died age eight years from catheter-related septicemia and multiple organ failure | Three years | Two years |
Body measuresat last examination | W = 12.5 kg (z = −0.96) L of 82 cm (z = −3.4) HC = 49 cm (z = −0.34) | W = 7.5 kg (z = −15.86). | W = 9.4 kg (z = −2.97), L = 81 cm (z = −3.22). | n.a. | W = 15 kg (z = 0.08), L = 92 cm (z = −1.47), HC = 50.7 cm (−0.05) | W = 10.45 kg (z = −1.23), L = 77.5 cm (z = −2.74), HC = 49 cm (z = −0.25) |
Current treatment | ≈90% of calories and fluid by central venous catheter; pancreatic enzymes orally, at home. | n.a. | n.a. | n.a. | Family food (1277 kcal/day), PN for 12 h/day (800 mL, glucose = 12 g/kg, protein = 23.5 g/kg, lipids = 2 g/kg, respectively, 80 kcal/kg), PN paused every fourth day | Enteral nutrition: Solid low-protein foods (220 kcal/d and 8 g of protein/day), 550 mL Basic-p 17% + 15 mL Liquigen/d, approximately 578 kcal/d). PN for 12 h/day (glucose = 2.5 g/kg, amino acids = 2.9 g/kg, lipids = 0.8 g/kg, corresponding to 283 kcal/d) |
Current status | Persistent diarrhea. Psychomotor development is age-appropriate. | Formed to mucous stools 1–3 times/day, abdomen extended with weakened peristalsis. Age-appropriate psychomotor development. | Formed to mucous stools 2–3 times/day, abdomen distended but soft, no palpable resistance. Age-appropriate psychomotor development. | |||
Additional findings | AST elevation (46.5 U/L (0–32)) with PN. | Ventriculostomy for aqueduct stenosis. Marked scoliosis. | Persisting mild acidosis (pH = 7.31), mild AST, and ALT elevation. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayyıldız Civan, H.; Leitner, C.; Östreicher, I.; Schneider, A.-M.; Cremer, M.; Mayr, J.A.; Rossi, R.; Müller, T.; Janecke, A.R. Three Novel EPCAM Variants Causing Tufting Enteropathy in Three Families. Children 2021, 8, 503. https://doi.org/10.3390/children8060503
Ayyıldız Civan H, Leitner C, Östreicher I, Schneider A-M, Cremer M, Mayr JA, Rossi R, Müller T, Janecke AR. Three Novel EPCAM Variants Causing Tufting Enteropathy in Three Families. Children. 2021; 8(6):503. https://doi.org/10.3390/children8060503
Chicago/Turabian StyleAyyıldız Civan, Hasret, Coleen Leitner, Iris Östreicher, Anna-Maria Schneider, Malte Cremer, Johannes A. Mayr, Rainer Rossi, Thomas Müller, and Andreas R. Janecke. 2021. "Three Novel EPCAM Variants Causing Tufting Enteropathy in Three Families" Children 8, no. 6: 503. https://doi.org/10.3390/children8060503
APA StyleAyyıldız Civan, H., Leitner, C., Östreicher, I., Schneider, A. -M., Cremer, M., Mayr, J. A., Rossi, R., Müller, T., & Janecke, A. R. (2021). Three Novel EPCAM Variants Causing Tufting Enteropathy in Three Families. Children, 8(6), 503. https://doi.org/10.3390/children8060503